CN105384436B - 一种富钛型钛酸锶钡基电介质陶瓷材料及其制备方法 - Google Patents

一种富钛型钛酸锶钡基电介质陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN105384436B
CN105384436B CN201510763312.2A CN201510763312A CN105384436B CN 105384436 B CN105384436 B CN 105384436B CN 201510763312 A CN201510763312 A CN 201510763312A CN 105384436 B CN105384436 B CN 105384436B
Authority
CN
China
Prior art keywords
barium
ceramic material
strontium titanate
dielectric ceramic
based dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510763312.2A
Other languages
English (en)
Other versions
CN105384436A (zh
Inventor
张晨
王爱成
凌志新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Pant Piezoelectric Tech Co ltd
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN201510763312.2A priority Critical patent/CN105384436B/zh
Publication of CN105384436A publication Critical patent/CN105384436A/zh
Application granted granted Critical
Publication of CN105384436B publication Critical patent/CN105384436B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开一种富钛型钛酸锶钡基电介质陶瓷材料及其制备方法,该陶瓷材料包括如下质量百分比的组分:(Ba0.75Sr0.25)Ti1~1.008O395.9~98.1wt%、Sb2O30.8~1.2wt%、ZnO 0.1~0.3wt%、MnO20.1~0.3wt%、MgO 0.1~0.3wt%、Nd2O30.8~2.0wt%。制备过程中,先预合成(Ba0.75Sr0.25)Ti1~1.008O3粉体,然后加入Sb2O3、ZnO、MnO2、MgO和Nd2O3制备坯体,经排胶烧结制得产品。本发明优点在于该陶瓷材料为具有高介电常数、低介电损耗的钙钛矿结构细晶单相固溶体,其制备方法得到的陶瓷材料气孔率低、致密度高、重复性好。

Description

一种富钛型钛酸锶钡基电介质陶瓷材料及其制备方法
技术领域
本发明涉及一种陶瓷电介质技术领域,尤其涉及一种富钛型钛酸锶钡基电介质陶瓷材料及其制备方法。
背景技术
钛酸锶钡(Ba1-xSrxTiO3,BST)为BaTiO3与SrTiO3组成的无限固溶体,即在BaTiO3结构中,部分Ba2+被Sr2+所取代,形成A位取代式固溶体,其兼具了BaTiO3的高介电性与SrTiO3的高稳定性、低损耗性的特点,可作为陶瓷电容器介质材料。目前,BST基低频陶瓷电容器介质还存在诸多问题,主要是介电常数、介电损耗等性能指标间的相互制约。申请号为201010100772.4的中国专利公布了一种陶瓷电介质材料及其制备方法,其摩尔百分比组成为BaCO312.50~34.50%;SrCO314.79~37.49%;TiO245.29~49.39%;CeO20.01~0.99%;Dy2O30.02~0.89%;MnO20.01~0.14%,其介电损耗仅为0.2%~0.25%,介电常数为3000~3500。申请号为201310019324.5的中国专利公布了一种高介电低损耗介质陶瓷及其制备方法,其组成按质量百分比为Ba0.68-xSr0.32YxTi1-2xCo2xO3:99.2-99.9%,其中x=0~0.012;MnO2:0.05-0.2%;MgO:0.1-0.4%,其介电常数可达5296,但介电损耗较高0.83%且配方组成区别于本专利。申请号为201210519989.8的中国专利公布了一种Ba1-xSmxNbyTi0.9-yZr0.1O3基电介质陶瓷材料及其制备方法,其质量含量组成为Ba1-xSmxNbyTi0.9-yZr0.1O399.6%,其中x=0~0.01,y=0~0.016;MnO2:0.1-0.3%;MgO:0.1~0.3%,介电常数为2863,介电损耗为1.10%。
随着钛酸锶钡电介质陶瓷中钙钛矿晶胞A、B位离子比例变化对瓷料微观结构及宏观介电性能影响的逐渐认识,富钛型钛酸锶钡陶瓷开始引起研究人员的关注。《MaterialsLetters》外国期刊2014年第135卷在《Compositionally inhomogeneous Ti-excessbarium strontium titanate ceramics with a robust dielectric temperaturestability》一文中公开了一种Ti过量摩尔百分比4%的Ba0.75Sr0.25TiO3陶瓷,通过X衍射分析发现,其物相组成中出现富钛相,其室温介电常数低于4000,且未涉及介电损耗。
发明内容
发明目的:本发明的第一目的在于提供一种高介电常数、低介电损耗的细晶富钛型钛酸锶钡基电介质陶瓷材料;本发明第二目的是提供该电介质陶瓷材料的制备方法。
技术方案:为实现上述技术目的,本发明提供一种富钛型钛酸锶钡基电介质陶瓷材料,包括如下质量百分比的组分:
(Ba0.75Sr0.25)Ti1+δO395.9~98.1wt%、Sb2O30.8~1.2wt%、ZnO 0.1~0.3wt%、MnO20.1~0.3wt%、MgO 0.1~0.3wt%,Nd2O30.8~2.0wt%,其中δ=0~0.008。
其中,作为优选,富钛型钛酸锶钡基电介质陶瓷材料包括如下质量百分比的组分:(Ba0.75Sr0.25)Ti1+δO395.9~97.3wt%、Sb2O30.8~1.2wt%、ZnO 0.1~0.3wt%、MnO20.1~0.3wt%、MgO 0.1~0.3wt%,Nd2O31.6~2.0wt%,其中δ=0.002~0.004。
进一步的,具体来说,富钛型钛酸锶钡基电介质陶瓷材料包括如下质量百分比的组分:(Ba0.75Sr0.25)Ti1.002O396.4wt%、Sb2O31.0wt%、ZnO 0.2wt%、MnO20.2wt%、MgO0.2wt%,Nd2O32.0wt%。
本发明进一步提出了上述富钛型钛酸锶钡基电介质陶瓷材料的制备方法,包括以下步骤:
(1)根据分子式(Ba0.75Sr0.25)Ti1~1.008O3,以BaCO3、SrCO3、TiO2为原料按物质的量比0.75:0.25:1~1.008制得第一配料物,将该第一配料物经球磨、烘干、煅烧,预合成(Ba0.75Sr0.25)Ti1~1.008O3粉体;
(2)按上述富钛型钛酸锶钡基电介质陶瓷材料所述的组分比例向步骤(1)得到的(Ba0.75Sr0.25)Ti1~1.008O3粉体中加入Sb2O3、ZnO、MnO2、MgO以及Nd2O3制得第二配料物,将该第二配料物经球磨、烘干、造粒、分筛后,模压成型制得坯体,其中,Sb2O3作为晶粒生长抑制剂。
(3)将步骤(2)得到的坯体经过排胶处理后,然后在1300~1320℃烧结1~4h制得富钛型钛酸锶钡基电介质陶瓷材料。
优选的,步骤(1)和(2)中所述球磨是将第一配料物或第二配料物、磨球以及去离子水混合进行湿法球磨,其中,第一配料物或第二配料物、磨球以及去离子水的质量比为1:5~7:2.5~3.5。
优选的,步骤(1)中所述煅烧的温度为1050~1100℃,煅烧的时间为2~6h。
优选的,步骤(1)所述煅烧采用4~6℃/分钟的升温速率。
优选的,步骤(2)中所述造粒是采用质量百分比浓度为5~10wt%的聚乙烯醇水溶液作为粘结剂,所述粘结剂的加入质量为第二配料物的3~10wt%。
优选的,步骤(3)中所述排胶过程是先在200~250℃条件下保温10~25min,然后在580~620℃条件下保温10~25min。
优选的,步骤(3)所述烧结采用4~6℃/分钟的升温速率。
有益效果:与现有技术相比,本发明的显著优点在于富钛型钛酸锶钡基电介质陶瓷材料为钙钛矿结构单相固溶体,具有高介电常数、低介电损耗的特点,且通过晶粒生长抑制剂Sb2O3的作用,该电介质陶瓷材料可得到细晶结构。同时,本发明的制备方法得到的陶瓷材料气孔率低、致密度高、重复性好。
附图说明
图1为实施例1制备的富钛型钛酸锶钡基电介质陶瓷材料的表面微观形貌图;
图2为实施例2制备的富钛型钛酸锶钡基电介质陶瓷材料的表面微观形貌图;
图3为实施例3制备的富钛型钛酸锶钡基电介质陶瓷材料的表面微观形貌图;
图4为实施例4制备的富钛型钛酸锶钡基电介质陶瓷材料的表面微观形貌图;
图5a)、5b)、5c)、5d)分别为实施例1、2、3、4制备的富钛型钛酸锶钡基电介质陶瓷材料的X射线衍射图谱。
具体实施方式
下面结合具体实施例对本发明进一步说明,具体实施例的描述本质上仅仅是范例,以下实施例基于本发明技术方案进行实施。
本发明提供了一种富钛型钛酸锶钡基电介质陶瓷材料,按质量百分比包括下述组分:(Ba0.75Sr0.25)Ti1+δO395.9~98.1wt%、Sb2O30.8~1.2wt%、ZnO 0.1~0.3wt%、MnO20.1~0.3wt%、MgO 0.1~0.3wt%,Nd2O30.8~2.0wt%,其中δ=0~0.008。
本发明提供了一种制备富钛型钛酸锶钡基电介质陶瓷材料的方法,包括如下步骤:
(1)根据分子式(Ba0.75Sr0.25)Ti1~1.008O3,按照物质的量比0.75:0.25:1~1.008称量起始原料BaCO3、SrCO3和TiO2,制得第一配料物。将该第一配料物与氧化锆磨球以及去离子水按质量比1:5~7:2.5~3.5装入球磨罐,在球磨机中以转速250~350r/min进行湿法球磨3~6h后制得球磨浆,将球磨浆料置于料盘,在110~130℃下烘干,并置于坩埚压实后,在1050~1100℃下煅烧2~6h,控制煅烧的升温速率为4~6℃/min,预合成(Ba0.75Sr0.25)Ti1~1.008O3粉体。
(2)按富钛型钛酸锶钡基电介质陶瓷材料的组分比例向预合成(Ba0.75Sr0.25)Ti1~1.008O3粉体中加入Sb2O3、ZnO、MnO2、MgO以及Nd2O3制得第二配料物,将该第二配料物与氧化锆磨球以及去离子水按质量比1:5~7:2.5~3.5装入球磨罐,在球磨机中以转速250~350r/min进行湿法球磨3~6h后,于110~130℃条件下烘干,加入相当于第二配料物质量3~10wt%的聚乙烯醇水溶液造粒,其中聚乙烯醇水溶液的质量百分比浓度为5~10wt%,然后过40~60目筛,在150~250MPa下模压成型得到Φ10mm片状坯体;将坯体置于氧化锆陶瓷垫板上,先经200~250℃再经580~620℃分别排胶10~25min后,然后1300~1320℃下烧结1~4h,其中控制烧结的升温速率为4~6℃/min,待炉冷却至室温得到瓷料。
实施例1
根据分子式(Ba0.75Sr0.25)Ti1.002O3,按照物质的量比0.75:0.25:1.002称量起始原料BaCO3、SrCO3、TiO2,制备成第一配料物,将该第一配料物与氧化锆磨球以及去离子水按照质量比1:6:3装入尼龙球磨罐,在行星式球磨机中以转速300r/min进行湿法球磨4h,所得球磨浆料置于料盘,在130℃下烘干,将烘干粉料置于氧化铝坩埚压实后,放入箱式电阻炉中并控制升温速率为5℃/min,加热至1080℃后煅烧2h,得到预合成(Ba0.75Sr0.25)Ti1.002O3粉体。
以陶瓷材料总质量为100%计,向97.6wt%(Ba0.75Sr0.25)Ti1.002O3粉体中加入1.0wt%Sb2O3、0.2wt%MgO、0.2wt%ZnO、0.2wt%MnO2和0.8wt%Nd2O3,制备第二配料物,湿法球磨4h后,浆料于130℃烘干,加入相当于第二配料物质量5wt%的聚乙烯醇水溶液造粒,其中聚乙烯醇水溶液的质量百分比浓度为5wt%,过40目分样筛后,在150MPa下模压成型得到Φ10mm片状坯体。
将坯体置于氧化锆陶瓷垫板上,先在200℃下保温15min,然后在600℃保温15min分别进行排胶,控制升温速率为5℃/min于1300℃烧结2h,待炉冷却至室温后得到瓷料。经测试本发明钛酸锶钡基电介质陶瓷材料的室温介电常数为3027,介电损耗为0.71%,其X射线衍射图谱如图5a)谱,其表面微观形貌图如图1所示。本实施例中富钛型钛酸锶钡基电介质陶瓷材料为钙钛矿结构单相固溶体,其平均粒径小于1μm,具有细晶结构。
实施例2
步骤与实施例1基本相同,不同之处在于:加入的(Ba0.75Sr0.25)Ti1.002O3为97.2wt%,Nd2O3为1.2wt%。经测试本实施例中钛酸锶钡基电介质瓷料的室温介电常数为3096,介电损耗为0.45%,其X射线衍射图谱如图5b)所示,其表面微观形貌图如图2所示。本实施例中富钛型钛酸锶钡基电介质陶瓷材料为钙钛矿结构单相固溶体,其平均粒径小于1μm,具有细晶结构。
实施例3
步骤与实施例1基本相同,不同之处在于:加入的(Ba0.75Sr0.25)Ti1.002O3为96.8wt%,Nd2O3为1.6wt%。经测试本实施例钛酸锶钡基电介质陶瓷材料的室温介电常数为3175,介电损耗为0.27%,其X射线衍射图谱如图5c)所示,其表面微观形貌图如图3所示。本实施例中富钛型钛酸锶钡基电介质陶瓷材料为钙钛矿结构单相固溶体,其平均粒径小于1μm,具有细晶结构。
实施例4
步骤与实施例1基本相同,不同之处在于:加入的(Ba0.75Sr0.25)Ti1.002O3为96.4wt%,Nd2O3为2.0wt%。经测试本实施例钛酸锶钡基电介质陶瓷材料的室温介电常数为3442,介电损耗为0.29%,其X射线衍射图谱如图5d)所示,其表面微观形貌图如图4所示。本实施例中富钛型钛酸锶钡基电介质陶瓷材料为钙钛矿结构单相固溶体,其平均粒径小于1μm,具有细晶结构。
实施例5
步骤与实施例1基本相同,不同之处在于:根据分子式(Ba0.75Sr0.25)Ti1.004O3按照物质的量比为0.75:0.25:1.004称量起始原料BaCO3、SrCO3、TiO2。经测试本实施例钛酸锶钡基电介质陶瓷材料的室温介电常数为3472,介电损耗为0.69%。
实施例6
步骤与实施例1基本相同,不同之处在于:根据分子式(Ba0.75Sr0.25)Ti1.008O3按物质的量比为0.75:0.25:1.008称量起始原料BaCO3、SrCO3、TiO2。经测试本实施例钛酸锶钡基电介质陶瓷材料的室温介电常数为3895,介电损耗为0.94%。
实施例7
根据分子式(Ba0.75Sr0.25)TiO3,按照物质的量比0.75:0.25:1称量起始原料BaCO3、SrCO3、TiO2,制得第一配料物,将该第一配料物与氧化锆磨球以及去离子水按照质量比1:5:2.5装入尼龙球磨罐,在行星式球磨机中以转速250r/min进行湿法球磨3h,所得球磨浆料置于料盘,在130℃下烘干,将烘干粉料置于氧化铝坩埚压实后,放入箱式电阻炉并控制升温速率为4℃/min,加热至1050℃后煅烧2h,得到预合成(Ba0.75Sr0.25)TiO3粉体;以陶瓷材料总质量为100%计,向98.1wt%(Ba0.75Sr0.25)TiO3粉体中加入0.8wt%Sb2O3、0.1wt%MgO、0.1wt%ZnO、0.1wt%MnO2、0.8wt%Nd2O3,制得第二配料物,湿法球磨6h后,浆料于110℃烘干,加入相当于第二配料物质量10wt%的聚乙烯醇水溶液造粒,其中,聚乙烯醇水溶液的质量百分比浓度为5wt%,过40目分样筛后,在150MPa下模压成型得到Φ10mm片状坯体;将坯体置于氧化锆陶瓷垫板上,先在200℃再经580℃分别排胶10min后,控制升温速率为6℃/min于1300℃烧结1h,待炉冷却至室温得到陶瓷材料。经测试本实施例钛酸锶钡基电介质陶瓷材料的室温介电常数为3127,介电损耗为0.78%。
实施例8
根据分子式(Ba0.75Sr0.25)Ti1.008O3,按照物质的量比0.75:0.25:1.008称量起始原料BaCO3、SrCO3、TiO2,制得第一配料物。将该第一配料物与氧化锆磨球以及去离子水按照质量比1:7:3.5装入尼龙球磨罐,在行星式球磨机中以转速350r/min进行湿法球磨6h,所得球磨浆料置于料盘,在110℃下烘干,将烘干粉料置于氧化铝坩埚压实后,放入箱式电阻炉并控制升温速率为6℃/min,在1100℃煅烧6h,得到预合成(Ba0.75Sr0.25)Ti1.008O3粉体;以陶瓷材料总质量为100%计,向95.9wt%(Ba0.75Sr0.25)Ti1.008O3粉体中加入1.2wt%Sb2O3、0.3wt%MgO、0.3wt%ZnO、0.3wt%MnO2和2.0wt%Nd2O3,制得第二配料物,湿法球磨3h后得到球磨浆料,浆料于130℃烘干,加入相当于第二配料物质量3wt%的聚乙烯醇水溶液造粒,其中聚乙烯醇水溶液的质量百分比浓度为10wt%,过60目分样筛后,在250MPa下模压成型得到Φ10mm片状坯体;将坯体置于氧化锆陶瓷垫板上,先经250℃再经620℃分别进行排胶25min后,控制升温速率为4℃/min于1320℃烧结4h,待炉冷却至室温得到陶瓷材料。经测试本实施例钛酸锶钡基电介质陶瓷材料的室温介电常数为3264,介电损耗为0.55%。
以上实施例只是对本发明的技术构思起到说明示例作用,并不能以此限制本发明的保护范围,本领域技术人员在不脱离本发明技术方案的精神和范围内,进行修改和等同替换,均应落在本发明的保护范围之内。

Claims (10)

1.一种富钛型钛酸锶钡基电介质陶瓷材料,其特征在于,包括如下质量百分比的组分:
(Ba0.75Sr0.25)Ti1+δO395.9~98.1wt%、Sb2O3 0.8~1.2wt%、ZnO 0.1~0.3wt%、MnO20.1~0.3wt%、MgO 0.1~0.3wt%,Nd2O3 0.8~2.0wt%,其中δ=0.002~0.008。
2.根据权利要求1所述的富钛型钛酸锶钡基电介质陶瓷材料,其特征在于,包括如下质量百分比的组分:
(Ba0.75Sr0.25)Ti1+δO3 95.9~97.3wt%、Sb2O3 0.8~1.2wt%、ZnO 0.1~0.3wt%、MnO20.1~0.3wt%、MgO 0.1~0.3wt%,Nd2O3 1.6~2.0wt%,其中δ=0.002~0.004。
3.根据权利要求1或2所述的富钛型钛酸锶钡基电介质陶瓷材料,其特征在于,包括如下质量百分比的组分:
(Ba0.75Sr0.25)Ti1.002O3 96.4wt%、Sb2O3 1.0wt%、ZnO 0.2wt%、MnO2 0.2wt%、MgO0.2wt%,Nd2O3 2.0wt%。
4.一种根据权利要求1所述的富钛型钛酸锶钡基电介质陶瓷材料的制备方法,其特征在于,包括以下步骤:
(1)根据分子式(Ba0.75Sr0.25)Ti1.002~1.008O3,以BaCO3、SrCO3、TiO2为起始原料按物质的量比0.75∶0.25∶1.002~1.008制得第一配料物,将该第一配料物经球磨、烘干、煅烧,预合成(Ba0.75Sr0.25)Ti1.002~1.008O3粉体;
(2)按权利要求1所述的组分比例向上述(Ba0.75Sr0.25)Ti1.002~1.008O3粉体中加入Sb2O3、ZnO、MnO2、MgO以及Nd2O3制得第二配料物,将该第二配料物经球磨、烘干、造粒、分筛后,模压成型制得坯体;
(3)将步骤(2)得到的坯体经过排胶处理后,然后在1300~1320℃烧结1~4h制得富钛型钛酸锶钡基电介质陶瓷材料。
5.根据权利要求4所述的富钛型钛酸锶钡基电介质陶瓷材料的制备方法,其特征在于,步骤(1)和(2)中所述球磨是将第一配料物或第二配料物、磨球和去离子水混合进行湿法球磨,其中,第一配料物或第二配料物、磨球以及去离子水的质量比为1∶5~7∶2.5~3.5。
6.根据权利要求4所述的富钛型钛酸锶钡基电介质陶瓷材料的制备方法,其特征在于,步骤(1)中所述煅烧的温度为1050~1100℃,煅烧的时间为2~6h。
7.根据权利要求4或6所述的富钛型钛酸锶钡基电介质陶瓷材料的制备方法,其特征在于,步骤(1)所述煅烧采用4~6℃/分钟的升温速率。
8.根据权利要求4所述的富钛型钛酸锶钡基电介质陶瓷材料的制备方法,其特征在于,步骤(2)中所述造粒是采用质量百分比浓度为5~10wt%的聚乙烯醇水溶液作为粘结剂,所述粘结剂的加入质量为第二配料物的3~10wt%。
9.根据权利要求4所述的富钛型钛酸锶钡基电介质陶瓷材料的制备方法,其特征在于,步骤(3)中所述排胶过程是先在200~250℃条件下保温10~25min,再在580~620℃条件下保温10~25min。
10.根据权利要求4所述的富钛型钛酸锶钡基电介质陶瓷材料的制备方法,其特征在于,步骤(3)所述烧结采用4~6℃/分钟的升温速率。
CN201510763312.2A 2015-11-10 2015-11-10 一种富钛型钛酸锶钡基电介质陶瓷材料及其制备方法 Active CN105384436B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510763312.2A CN105384436B (zh) 2015-11-10 2015-11-10 一种富钛型钛酸锶钡基电介质陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510763312.2A CN105384436B (zh) 2015-11-10 2015-11-10 一种富钛型钛酸锶钡基电介质陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN105384436A CN105384436A (zh) 2016-03-09
CN105384436B true CN105384436B (zh) 2017-09-12

Family

ID=55417271

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510763312.2A Active CN105384436B (zh) 2015-11-10 2015-11-10 一种富钛型钛酸锶钡基电介质陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105384436B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107311656B (zh) * 2017-07-04 2021-01-26 广东工业大学 具有巨负电卡效应的反铁电陶瓷材料、其制备方法与用途
CN112341187B (zh) * 2020-10-08 2022-09-13 重庆三峡学院 一种三峡库区滑坡位移监测用钛酸钡压电材料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3567759B2 (ja) * 1998-09-28 2004-09-22 株式会社村田製作所 誘電体セラミック組成物および積層セラミックコンデンサ
CN101101812A (zh) * 2006-07-04 2008-01-09 上海易力禾电子有限公司 一种正温度系数钛酸锶压敏电阻器及其制备方法
CN101774803B (zh) * 2009-01-13 2013-06-05 中山市天键电声有限公司 一种(Ba,Sr)TiO3基陶瓷介质及其制备方法
CN103288444A (zh) * 2012-02-29 2013-09-11 深圳光启创新技术有限公司 一种陶瓷复合材料及其制备的超材料

Also Published As

Publication number Publication date
CN105384436A (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
CN109133915A (zh) 一种高储能钛酸钡基介质材料及其制备方法
CN109650876B (zh) 一种a位高熵钙钛矿氧化物及其制备方法
CN111233470B (zh) 一种具有优异充放电性能的反铁电陶瓷材料及其制备方法
CN107162583A (zh) 基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法
CN103214238A (zh) 一种钛酸锶钡基介电温度稳定型陶瓷电容器材料的制备方法
CN100494117C (zh) 一种低介电损耗CaCu3Ti4O12陶瓷的制备方法
CN109608194A (zh) 一种锆钛酸铅厚膜陶瓷及其制备方法和应用
CN106588006A (zh) 一种高介电性能钛酸锶钡、其制备方法及采用其制备的介电陶瓷
CN105384436B (zh) 一种富钛型钛酸锶钡基电介质陶瓷材料及其制备方法
CN108218423A (zh) 一种x8r型陶瓷电容器介质材料及其制备方法
CN107244912A (zh) 一种新型bczt基储能陶瓷材料及其制备方法和应用
CN108585837A (zh) 一种钛酸铋钠基高温电容器介质陶瓷的制备方法
CN104692797A (zh) 一种钛酸锶钡基电容器瓷料及其制备方法
CN106045499A (zh) 掺锆掺镧钛酸钠铋‑钛酸钡陶瓷的制备方法
CN107285760B (zh) 一种低损耗巨介电常数陶瓷材料的制备方法
CN107500756A (zh) 一种高介电常数低损耗SrTiO3基介质材料及其制备方法
CN112062556B (zh) 一种锆酸钙-锆酸锶-锆酸钡固溶体陶瓷材料及其制备方法
CN101863658A (zh) 钛酸锶钡陶瓷的制备方法
CN116813331A (zh) 钛酸锶陶瓷及其制备方法和应用
CN107129301A (zh) 一种plzt/氧化铝复合陶瓷材料及其制备方法
US7837972B2 (en) Production method of barium titanate
CN105218088B (zh) 一种非化学计量钛酸锶钡基电介质瓷料及制备方法
CN115403372A (zh) 一种高储能特性的钛酸铋钠基复合陶瓷及其制备方法和应用
CN106565234A (zh) 一种超高介电常数介电材料及其制备方法
CN1331803C (zh) (Ba1-x-ySrxYy)TiO3基电介质陶瓷材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221215

Address after: 215000 no.385 Kunjia Road, Kunshan Development Zone, Suzhou City, Jiangsu Province

Patentee after: SUZHOU PANT PIEZOELECTRIC TECH Co.,Ltd.

Address before: 212003, No. 2, Mengxi Road, Zhenjiang, Jiangsu

Patentee before: JIANGSU University OF SCIENCE AND TECHNOLOGY

TR01 Transfer of patent right