CN116334108B - 一种新型抗噬菌体元件及其应用 - Google Patents

一种新型抗噬菌体元件及其应用 Download PDF

Info

Publication number
CN116334108B
CN116334108B CN202210879453.0A CN202210879453A CN116334108B CN 116334108 B CN116334108 B CN 116334108B CN 202210879453 A CN202210879453 A CN 202210879453A CN 116334108 B CN116334108 B CN 116334108B
Authority
CN
China
Prior art keywords
phage
seq
novel anti
resistance
chassis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210879453.0A
Other languages
English (en)
Other versions
CN116334108A (zh
Inventor
郭云学
王晓雪
汤开浩
古嘉瑜
林世团
林兼仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Sea Institute of Oceanology of CAS
Original Assignee
South China Sea Institute of Oceanology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Sea Institute of Oceanology of CAS filed Critical South China Sea Institute of Oceanology of CAS
Priority to CN202210879453.0A priority Critical patent/CN116334108B/zh
Publication of CN116334108A publication Critical patent/CN116334108A/zh
Application granted granted Critical
Publication of CN116334108B publication Critical patent/CN116334108B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/78Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Pseudomonas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/10Enterobacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01001Phosphorylase (2.4.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/010116-Phosphofructokinase (2.7.1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/38Pseudomonas
    • C12R2001/385Pseudomonas aeruginosa
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种新型抗噬菌体元件及其应用。所述的新型抗噬菌体元件,核苷酸序列如SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4、SEQ ID NO.5或SEQ ID NO.6所示。本发明中发现的新型的抗噬菌体元件不但可以扩充噬菌体抗性元件库,增强对抗噬菌体元件成员的认识,还可以将其用于改造大肠杆菌,以增强对不同噬菌体的抗性,具有极强的发酵工业应用价值。

Description

一种新型抗噬菌体元件及其应用
技术领域
本发明属于生物领域,具体涉及一种新型抗噬菌体元件及其应用。
背景技术
噬菌体是侵染细菌的病毒,也是生物圈中丰度最高的生命形式。宿主细菌特别是致病菌和环境菌在与噬菌体博弈的过程中进化出了多种多样且设计精妙的抗噬菌体元件。比较经典的抗噬菌体元件包括修饰限制***和CRISPR-Cas***。修饰限制***在75%的细菌基因组中广泛存在的修饰限制***,它们通常由DNA甲基转移酶,限制性内切酶和靶标识别模块组成,可以快速识别和降解特定的噬菌体来源的核苷酸。CRISPR-Cas***在宿主细菌被噬菌体侵染时,会将自身的CRISPR序列整合进噬菌体基因组,在后续感染过程中,宿主菌的凋亡蛋白酶能够对其特异性序列进行快速地检测以及剪切,以达到抗噬菌体效果。此外,近几年研究比较关注的抗噬菌体元件还包括逆转录子***、毒素-抗毒素***等,可以在噬菌体侵染宿主细菌的各个不同阶段发挥抑制作用,其中涉及噬菌体的吸附、注入侵染、复制、释放等过程。泛基因组测序技术的快速发展使得更多的新抗噬菌体元件被发现,这些元件通常由相邻的两个或多个基因成簇存在。此外,相关研究发现,编码防御***的基因在可变基因组岛中频繁出现或与移动遗传元件相关。最近研究发现,海洋弧菌中内源性可移动遗传元件介导细菌的抗噬菌体进化,单个细菌基因组中的防御元件可以高达6到12个,表明噬菌体防御元件的保护是可累积的,防御元件占可变非核心基因组的90%以上,这也就解释了为什么很多相似细菌基因组最大的差别在于可移动遗传元件的组成和数量。引起大家关注的是,这些可移动遗传元件在细菌间的传播速度也相当快。基于抗噬菌体元件的广泛存在和快速传播的特点,可对其进行技术推广应用。CRISPR-Cas9基因编辑技术对医疗产业的影响巨大,然而虽然不同类型的抗噬菌体元件逐渐被发现,但关于其在发酵工业以及噬菌体治疗过程中的应用报道仍旧缺乏。
发酵工业中烈性噬菌体污染通常采用常规的方法进行预防,比如轮换菌种、通风质量、筛选噬菌体受体突变的抗性菌株等,但是这些方法治标不治本,而且在有新的噬菌体存在时仍然会导致生产受损。此外,环境中存在多种多样的温和噬菌体,它们侵染宿主后,将其基因组整合到宿主基因组中,沉默下来,在特定环境刺激性进入裂解循环,这种温和噬菌体的污染很难被察觉,但会降低生产效率,部分可能会导致生产失败。高效抗噬菌体的新元件的发现和改造不但可以为发酵工业开发基于噬菌体-宿主互作的抗噬菌体产品提供理论依据和资源,也可以开发针对抗噬菌体元件的相关医疗药剂,在辅助噬菌体治疗抗生素耐药菌方面具有重要的现实意义。
噬菌体时时刻刻都在寻找宿主细菌并试图完成侵染过程,可谓是无孔不入。在工业发酵生产上,工程菌株特别是大肠杆菌容易被噬菌体污染,而污染后的噬菌体如果烈性不强,甚至会整合到宿主基因组,以温和噬菌体形式与宿主共存,很难被检测出来。它们像定时炸弹一样存在,随时可能会被激活进而进入裂解循环,杀死宿主,造成巨大的经济损失。此外,噬菌体是抗生素抗性基因、宿主正常代谢干扰基因的重要传播者,是制约生产进程的主要因素之一。宿主细菌在与噬菌体的斗争过程中进化出了多种多样的抵抗噬菌体遗传元件,但多数是通过高通量筛选的方法鉴定的,缺乏***性认知。如果想开发利用这些抗噬菌体元件,辅助发酵工业生产过程,就需要对它们抵抗噬菌体侵染的功能和机制进行详细的研究。
发明内容
本发明的目的是提供一类新类型的抗噬菌体元件,其可以增强底盘细胞抗噬菌体侵染的效果。
本发明是挖掘一类新类型的抗噬菌体元件,检测它的抗噬菌体效果,分析它分布的广度,并将不同来源的该元件转入大肠杆菌,检测对不同大肠杆菌噬菌体的抗性情况,以实现通过对底盘细胞的改造达到增强底盘细胞抗噬菌体侵染的效果,从而实现了本发明的目的。
本发明的新型抗噬菌体元件,其核苷酸序列如SEQ ID NO.1、SEQ ID NO.2、SEQ IDNO.3、SEQ ID NO.4、SEQ ID NO.5或SEQ ID NO.6所示。
本发明的第二个目的是提供一种含有上述新型抗噬菌体元件的底盘细胞。
本发明的第三个目的是提供上述新型抗噬菌体元件在提高底盘细胞抗噬菌体侵染中的应用。
本发明的第四个目的是提供一种提高底盘细胞抗噬菌体侵染的方法,其是将上述新型抗噬菌体元件转入大肠杆菌中,增强宿主对噬菌体的抗性。
所述的底盘细胞可以是大肠杆菌、致病菌铜绿假单胞菌、沙门氏菌、弧菌。
所述的噬菌体可以是噬菌体PAP8、PAO-L5、QDWS、PAP-L5、大肠杆菌噬菌体T1、T4、T5、T7、EEP、λ或M13。
本发明聚焦发现的一种分布广泛的全新的抗噬菌体元件,评估它的抗噬菌体效果,通过将其转入到大肠杆菌实现对底盘细胞的改造,增强宿主对噬菌体的抗性。
噬菌体污染在实验室和发酵工业中经常发生,而且一些温和噬菌体把自己基因组整合进宿主基因组,很难被发现并检测出来。实验室噬菌体污染问题的预防改善主要用清理相关用具,更换菌株等方法。而发酵工业中噬菌体污染通常采用净化生产环境、菌种轮换等手段进行预防,但都没有高效持久的解决方案。本发明创造发现了一种新型的抗噬菌体遗传元件,具有良好的抗噬菌体效果。这种新型的抗噬菌体元件在不同细菌中分布广泛,比如致病菌铜绿假单胞菌、沙门氏菌、弧菌、大肠杆菌等,表明它们对不同来源的噬菌体极有可能具有抗噬菌体效果。工业发酵中大肠杆菌是最容易被噬菌体污染的工程菌,我们将不同来源的KKP抗噬菌体元件引入大肠杆菌中,能够增强大肠杆菌抗噬菌体侵染的效果。而且不同来源的KKP元件对不同的噬菌体抗性不一,如果将其进行组合设计,极有可能开发出对不同大肠杆菌噬菌体都有抗性的超强抗噬菌体工程菌,为从源头解决工业发酵噬菌体污染提供切实可行的方案。
综上,本发明中发现的新型的抗噬菌体元件不但可以扩充噬菌体抗性元件库,增强对抗噬菌体元件成员的认识,还可以将其用于改造大肠杆菌,以增强对不同噬菌体的抗性,具有极强的发酵工业应用价值。
附图说明:
图1是pfkA,pfkB和PfpC三个基因组成的KKP遗传元件。
图2是将KKP整合***铜绿假单胞菌PAO1基因组中的过程。
图3是铜绿假单胞菌中的三组分基因簇抗噬菌体效果,其中-KKP是不含有Pf6的PAO1,而+KKP是整合KKP三组分基因簇的PAO1。
图4是KKP三组分基因簇广泛分布于多个不同细菌的原噬菌体。
图5是携带不同来源KKP的大肠杆菌具有较强的抗大肠杆菌噬菌体侵染能力。
具体实施方式:
以下实施例是对本发明的进一步说明,而不是对本发明的限制。
实施例1:
1、对共存于铜绿假单胞菌MPAO1的两个丝状原噬菌体Pf4和Pf6的基因组进行比较分析,发现Pf6携带有由两个激酶(PfkA和PfkB)和一个磷酸化酶(PfpC)组成的一个三组分遗传元件(图1),简称为KKP(kinase-kinase-phosphotase),其核苷酸序列如SEQ ID NO.1所示。本发明按照相同的方法对来源于Shewanella sp.W3-18-1、Escherichiacoli15EC039、Escherichia coli strainSalmonellaenterica subsp.enterica serovar Typhi str.CT18、Vibrio tasmaniensis10N.222.48.A2中的KKP三组分基因簇也进行了实验,它的KKP三组分基因簇序列如SEQ IDNO.2、SEQ ID NO.3、SEQ ID NO.4、SEQ ID NO.5、SEQ ID NO.6所示。
2、由于KKP无法从MPAO1基因组中敲除,我们用如下方法将其整合到不含有Pf6的与MPAO1基因组高度相似的PAO1基因组(图2)。
具体操作如下:
A、从-80℃冰箱接种铜绿假单胞菌MPAO1于LB平板上,37℃恒温过夜培养,挑取MPAO1,接菌至LB液体培养基,37℃恒温震荡培养至OD600约为1。
B、将1ml的菌液在12000rpm的转速下离心1min,收集菌体。采用天根的细菌基因组提取试剂盒(货号:DP302-02)对细菌的基因组DNA进行提取。
C、采用引物对KKP-F1/R1、KKP-F3/R3和KKP-F4/R4,以MPAO1基因组DNA为模板。采用引物对KKP-F2/R2,以质粒pEX18Gm为模板。用Takara公司的Primer Star试剂(货号:AL52850A)进行PCR扩增(条件为95℃,10min;95℃,30s,60℃,30s,72℃,90s,35循环),对PCR产物进行琼脂糖凝胶电泳,然后用Omega公司的胶回收试剂盒(货号:D2500-02)进行回收。
D、将载体pEx18Ap采用EcoRI和HindIII进行双酶切,然后进行琼脂糖凝胶电泳和胶回收(如上回收PCR片段)。
E、将回收的载体和上述PCR片段采用诺唯赞公司的One Step多片段克隆试剂盒(货号:C113-01),按照说明书进行连接。
F、将连接好的连接产物转化进营养缺陷型的大肠杆菌WM3064感受态细胞(培养的时候要在培养基中加入0.3mM二氨基丙烯酸),对正确的转化子采用pEX18Ap-F/R引物对进行PCR验证,并送公司进行测序。由此得到含有重组质粒的WM3064菌株。
G、将含有重组质粒的WM3064菌株(供体菌)和不携带Pf6的铜绿假单胞菌PAO1(受体菌)培养至600nm的吸光度~1.0。将4mL的供体菌与1mL的受体菌进行混合,用LB培养基洗涤3次,每次3000rpm离心5min。最后一次用100μL LB进行悬浮,滴在含0.3mM二氨基丙烯酸和1.5%琼脂的LB固体平板上,将平板放在25℃静置培养8h。将细菌梯度稀释后涂布与含有30μg/ml庆大霉素和1.5%琼脂的LB固体平板上,挑选成功结合转移的受体菌株。将成功进行接合转移,并含有***质粒的单交换菌株在37℃用无盐LB培养基(配方:1%蛋白胨,0.5%酵母提取物,溶于蒸馏水)培养,然后用引物PfkC-F和PfkA-R进行PCR验证。接下来对验证正确的菌株,进行双交换筛选,采用含有10%蔗糖和1.5%琼脂的无盐LB固体培养基进行筛选。将得到的菌株进行庆大霉素抗性的筛选,对于失去庆大霉素抗性的菌株采用引物对conf-F/R进行PCR验证,并进行DNA测序。由此得到整合有三组分基因簇的改造PAO1。
3、采用实验室保存的铜绿假单胞菌的噬菌体对其进行侵染实验,采用双层琼脂平板法,将过夜的37℃培养的PAO1和整合有三组分基因簇的改造PAO1进行1%稀释,然后培养至OD600约为1;此时将3ml菌液与10ml R-top培养基(温度约55℃)(配方:1%胰蛋白胨,0.1%酵母粉,1%NaCl,0.8%琼脂)混合平铺于LB平板,在超净台静置10min,用于4种铜绿假单胞菌噬菌体PAP8,PAO-L5,QDWS和PAP-L5点板操作。将噬菌体按101~108梯度稀释,各吸取5μl进行点板,37℃恒温过夜培养,根据噬菌斑多少和强弱检测噬菌体抗性。结果KKP对噬菌体PAP8,PAO-L5,QDWS和PAP-L5均呈现抗性(图3)。
4、采用生物信息学方法进行预测,发现该三组分基因簇广泛分布于多种细菌的不同原噬菌体中,包括海洋希瓦氏菌W3-18-1(P4原噬菌体)、沙门氏菌enterica serovarTyphi str.CT18(P4原噬菌体)、大肠杆菌MPEC4969(P2原噬菌体)、大肠杆菌15EC039(P2原噬菌体),弧菌10N.222.48.A2(P2原噬菌体)(图4)。
5、通过基因合成的方法,将上述步骤4中的四个三组分基因簇进行合成,分别克隆进pHERD20T载体。载体采用的酶切位点为NcoI和HindIII,转化用的是大肠杆菌K12菌株MG1655。用步骤3中同样的双层琼脂平板法,将实验室保存的大肠杆菌噬菌体T1,T4,T5,T7,EEP,λ和M13进行抗噬菌体的检测。只是本次用0.3%的***糖诱导三组分基因簇的表达,诱导时间为3h(图5),从图5可以看出,三组分基因簇能提高菌株对噬菌体的侵染。
表1本发明中使用的引物
ATGTTTCAAAGGCTATTGCAAAAACACCTTGCCAGAGGAATTCTTGGCAGAAAAATGTTATCTATCGACAAAGGTTCTATTGCCTTAGCTTCAGATCTAGGTCTGAAGAGAACTGAGAATCAAGACAGAACCGCTTTAATGAAATTTAGATCTTCAACAGCTTCGTATACTGTCATAGCCGTAGTTGATGGAATGGGTGGTATGAGAGATGGGGAGAAGTCTGCTGAAATAGCTATTTCAACTTTCTTGTGCTCTATTATGGAAAATGTTCATTTGGGTTCTGAACATGCAATAATGCAAGCCACGATGACTGCCAATAACGCTGTATTCGAATTTACAAATGGTAAAGGTGGAAGTACCTTATCCGCAATTTTATTAGCTAGCGACGGCACTCATATGACCGTTAATGTCGGGGACAGTCGAATTTATGCAAAGGAGTCTATCTTTGGCAAAGTAATTAGACTTACCGTTGATGATTCGTTAGCGGAAACCGTTGGAGGAAGCGGTACAGAATTATTGCAGTTCATAGGTATGGGGGAAGGAATTAGACCACACGTAGTTCCGCTGCCACTTGAAGCTAAGCAAGTATATCTGACAACTGATGGTGTCCATTACATTGAACCAAACACATTGTCTGATATTATAAAACATGCAGAAAAAATCACTCAGGTTGTAGAGCGGTTGATAGCAACTGCACGTTGGTGTGGAGGCCCAGATAACGCTACAGTTAGTGCTCTTGATTTAGAGCTATTAAACTTTGAGGAGTCCCTGGATGATGCCTCGATAGTGCAAATATCTGATCCACATAGCTCTACACAATTCATATTCCCCCAATTTCAGTTGGAAAGTGAAGTATCTCTCCCAGAGACAAGTGTTCAAACTCAAAATAATTCTATTAATACAGCTCAATCTGAGAAATCGGCTGCTCCTAGCAGAACCTCAACTTTGGTCGAAGAAAAAGAATCGATTACTGAAACAGTCAAAGTTGAAGCTAAAACCCCGCCTAAGAGAAAGAAACGTCAATCAAAGAAGGCTGTTGATCATCTAGATTCCGCAGATGAAGTACAAATTAAGATGACCATTTTTGATGAAGCAGGTTGCGAAAGTCATGAGGTTGAAGATGATGATTCCAAGTAGATATGAACTC TGTGGTAACAACGATACTGGTGGTATGGGTGACATTCTCTATTGCAAAGACAAACATTTACAACGCGATGTCATAAT TAAACTCTTAAAAGGTGATGCTGAACAACGAAGGTTAATTGACGAGCAAAAATCTCTTATTCAGCTCCGTTCTAAAC ATGTAGTTCAATTGTACGACGTAGTTAATATTGATAATCAATCCGGTTTAGTATTAGAGTTTATTAAAGGCGAGGAC CTCAAAAATGGTCTTTATGAGTCGAATATGAAAGGACTCATAGAAGTATTGTGGCAAGTTGCGTGCGGTTTATCTGA CATACATAAGGCAGGAATTATTCATCGTGATATCAAACCAAACAATATTCGTCGAGATAACATCGGAGTTATCAAGG TCTTTGATTTTGGGCTTTCGAGAAAACTTGATAGCGCTAAAACACATAGTGTCATTGGTACTGTGGGGTATATGGCA CCTGAATTATGGAAATGTGGTGAAGTTGAGTTTACCACAGCTGTAGATGTTTATGCCTTCGGTATTACGGCAATGGC TCTTTCAAATGCTATTGTCCCAAGAGAACTTTTAGAGTTCCCTCCTCGTTGCGCTAACAATGGTTGGGTTAAAAATA GTTTACCAAGCTTAGATTCGGATATTGCAGAGATTCTAGAGCGATGCCTAGAATACAAACCAGAGGCTCGCCCCACA ATCGATCAGGTTGAAAAAATACTAAGAAAGCATCTCCTGAAAGACAAACACAAAGGTCTTATTGTGATGGGGAATGA AGTTAGAGAGCTTAATAATCAAAATAGACGTGCTAAGATTTCATCTATTCATGGTAATAATTTAAATGGTGAAATTA CCATTGAATATGATAGTTATGAATTTAAAGTTGCTGCTATCGGTGGTTCGGTAACAGTAAATAATGAAGTGATCAAA GTCGGTTATATCCTGCCAGGTGCTTCCGTTATTACTCTAGGTTCCGACTCTAATCGGCGTTTTGTTACTTTCGATAT ATCTAACCCAGAGGTGGTTTCATGATCACATCGAATACTCTGATCGGTGGCCGTTATATGGTTCACCAACACATTGGTGCTGGCGGTATGCAAGATGTTTATCTGGCGCTAGATCAATTCCTCGGTAATTATGTCGCACTTAAGACGCCTCAGCCTGGCCAGAAAACCAGACGATTCCAAGCTAGTGCTGTAATTGCAGGTAGAGTAAATCACCACAATGTAGCCAAGACATTAGATTACTTTGAAGAAAATGGAAATGTTTACCTAATTGAGGAATTTGTTAAAGGTGAAACTCTTGAAGATAAGATTAAGCAGAGAAAATTCCTTGATCCTCATCTAGCCGCTAGAACTATACACCTATTAGCAAAGGGGGTCAGAGCCTCACACATTCAAGGAGTAATACACAGAGATTTGAAGCCAAGTAATATTATGGTTGACTCTAGTACTGGTATCGAAGAGCTAAAGATTACCGATTTTGGTATTGCAACTTTTACCGACGAAGTATTTCAAGAAGAGGCCGACTCCGGCGATATTACTCGTTCCACTTCTGGGACAGTGAAAGGTGCTCTTCCATTTATGGCACCTGAAATGATGTTTCGTAAAAAAGGGGATAGTATTACTCCGGCCTTAGATATTTGGTCAATTGGGGCGATGATGTTCAAAATACTAACAGGTGAGTACCCATTTGGTGTTTTTCTCGATGCTGCTGTGAATGTCAAAACAAGAAATAGGCTAGATTGGCCTGCTTTTATGACTTCTAACGCACAGTTTTCCCCATTATGCAGGGAACTTCAGAAGATAATAGATAGCTGTTTGGAGTATGAACCAACCAAACGCCCTACGGCTGATGCTCTTGTGAAAATGTGCCAAAATTTGTGCTATCAAACTTCTGAACGTTTTGAAGCGACGGTTACGAGGATGATTCAAAACGGATATAGTGGCTTTGCTTCAAACCCTCAACATAGCGTATTTTTTAGTATCCATAGCATCTACGGAGCTTCTAGGGTTAATAGTGGAAGTAAAATTACGTACTCAAAGTTTCCGGGCACCCCTAATTTTAGAGCTCACCCAGTCATTATCTTAAATTAA
GTGAGCCGTGATTCTTACGAAATCCTTCATGAGCATATTCACGGATGGCTACATCGAAAAAATATAGCATCCTCAGTGCGTCGTGTCTCAACCTTACCAGTGGCTATAGCTACTGATATTGGGTTGGTACGGAAGGAAAACCAAGATAGGGTTGCTATATTGAAATTCCGCCCAAGTAGCAAAGCTAAAGATATCGTTGTTGTTGCGTTAGCCGATGGTATGGGGGGGATGGAGGGGGGTGCCAATGCAGCATCTTTAACTTTATCTACATTTTTTACTGAAATAATAAGAAATTCTCATTTACCAATACGTTCTTGTCTTGAGAAAGCTGTGCTACAAGCGAATGATTCTGTTTTGAATGTATATAAGGGTAATGGAGGGGCGACATTATCAGCGATAGCTTTAGAAGATGATGATAATATTACCGCAGTAAATGTAGGTGATAGCCGTATTTATTATGTCTCGCATGAAGAAACTACTCAGTTGAGCGAGGACGATACTTTAGTTGCCTTAGCCAAAAAGTATAATAATCATCTAAATATGGATCCACAGGATATTGATTTACGCTTTGGTGGCGAATTAGTACAATTTATAGGCATAGATGGCACATTGGAAATACACTTTCATCATATCCAAGCCTTGGAGAGTGGCGTAATTATTTTAAGTTCTGATGGTGCGCATTCTATCGGTAAGGATAATTTAAGAAAGTTATATGTGCACTCGGCGAATCTAGGTGTTTATTCTAGGCGGGTTATTGATCTTGCTAGTTGGTTTGGTGGTTTCGACAATGCAAGTATAGCAGTTATAGACCTTTTTAATACTCTAAAAGAGTTAGATGTTTCATCTGGAGATGTAATAAATCTCTGGGATCCATTTGGTGAATTAAAAGTCATTAGCGTGCCGAATAAGTCATCTTCATTAGAGCCTTTAAATACAGTTGAGCTTGAAAAAAATAATAAAGGCACTTCTGGTGTTAGAAAAGTGTCAAACAAAAAAAATACTGATTCAGTCGTTAGCGATATAAACAAAGCAACAACAAAAAGAAAGGCAAGAACAAAAAATAAGAATAAATCTCTTCAGGAATTAGATGAGAAAAAAAATGGGTTAAATAAAAATAATAGACTTGATTGTATTTCACAACTTGACATGTCATTCCTTGAAAGGAATTCAATAAAAGGAGATGGTGATGATGAGTGATTTTCTCCCAGAAAGATATCAAGTGGT TGGGGATCCTGATTTAGGGGGATTCGGTAGTGTAATCAAATGCCGCGATTCTCATCTTGAGAGATTTGTTGCAATAA AGACTATAAATGATCCATCAGATACAGAGCGAATGAAAGACGAGTTGGCTGCTCTAATGACACTACGTTCAAAACAT GTTGTTGAACTGTTTGATGTGATTAATTATGCTGAAGGCAATCTTGCAATTGTTGAAGAGTTTATCGATGGTCCATC GTTGAATGAAGTTAATAATAAAATTACTACAGTAGGGGAGCTTATTAAGATTTTGTGGCAAATAGCATCAGGTATTT GCGAGATACATGAACATGATATCATTCATCGTGATATAAAGCCTGGGAATATGAAGATTGATAAAGAAGGGCTTGTA AAAATATATGATTTTGGCTTGTCAAGAAAAATAGATAATGCAAAAACAATTGGGTTTAAAGGTACCCCAATTTTTGC AGCTCCTGAGTTGTATTTGCAGAACGTAGACTTTACTAAAGCAATTGATACATATGCCTTTGCTGTTACAGCAATGT GCTTAGCTAAAACCCCTGTCCCAGATGAATTGACCCGTTACCCTAAGATTCTGACATCTAATCCATTTGATTTGTCG GTAATAAAATTACCAAGTATTGTAAAGGAATTGTTTTTCAAATGTCTTGATGCAAATCCTCAAGCTAGGCCCCCTAT GAAAGATGTTTGCGATGTTTTGAAAAAAATATTATTGCACAACTCTCATCGAGCATTGCTTATATCTGATAATAAAA AACCAGTAGTGCTCTCAGCTACACACAAGACGGAGTCTTATAACAATCCAGGGGTGGGTAGTGTGGAAATTACTTAC TCTGGTTCCGAGTTTTATATTTCAGATATATCAGGGGATGTCTATGTTAATAACATTAGGGCTAAAAAACGAAATTT ATTGCCTAGCTCATGCGTGATAATACTTGGCCCTGCCGGAAGAACAACTACAAAACGTATATTTATCACATTTGATC TTTCTCATCCGGAGGTTGTGTTATGATTGAGTTGGTTCCTGGGACTAATATAAATCGTTATACTATTATCAGCGAAATTGGTGAGGGGGGGATGCAAAAGGTTTACCTTGCGAATGATAAGATATTAAATAGGCAAGTTGCTCTTAAGACCCCTAAAAATAAGTCTGCTGAAAAACGATTCCATAGAAGTGCTATTTTAGCATCTAGGGTCAACCATCCTAACGTCGCTAAAACATTAGATTATTTTGCCGAAGATGGACGTGAATTTTTAACGGAGGAATTTATCGATGGAGTAGATCTGGATAAAGCATTGTTGAGTAGCTATACAAGTGTTGATCCTTACTTGACTGCAAAGATATTTCATAACTTAGCGAAGGCTCTTTCGGCTTCCCATCATGTGGATGTAATACATCGAGACCTCAAACCTTCTAACATAATGGTTATTGGAGGAGTTAGTGCTACAGGTGTTAAAATCACCGATTTTGGAATTTCAAAAATGGCCGGTGATGAAATTGATGAGGCCGCAAAGAATGGGCAAGGATCGATTACTTCATCTCAAACAGCTATGGGGGCATTGCCATATATGGCCCCGGAAATTATACAAAGTCAGGGGCAAGTTTCAAAACCATCTGATGTCTGGGCATTAGGTGCGATGATGTTCAGAATCCTCACGGGAGAGTATCCTTTTGGATTAGGGTATATGGCTATTCCGAACATCTTATCTGGAAAGCATACTCAATATCCTGATTTTATTAAGTCAAATAAGCAGTTTGCTCCGCTGGCAAATGAAATTATAGATATAATTGAAAAATGTTTAAATCTAGACCCTTCTAAACGCCCCACTGCAGATGAGCTCGTGTCATTATGTGGTCAATTATGCTATCCGGTTTGTAATAGAGAAGAAGGAGTAATAGGTGATACTAGACTAGCTTATGGTTTCATTCGTATACCAAACCAACCACAAGTATTTTTTCATTACGATAGTGTGTATGGTAGTAAACCAGTGAGTAATGATAAGGTGATTTTTTCAAAGTTCTTGGGAGGGGGCCATGACCGGGCTCATCCAGTTATCAAGGCTAAGTAG
GTGAGCCGTGATTCTTACGAAATCCTTCATGAGCATATTCACGGATGGCTACATCGAAAAAATATAGCATCCTCAGTGCGTCGTGTCTCAACCTTACCAGTGGCTATAGCTACTGACATTGGGTTGGTACGGAAGGAAAACCAAGATAGGGTTGCTATATTGAAATTCCGCCCAAGTAGCAAAGCTAAAGATATCGTTGTTGTTGCGTTAGCCGATGGTATGGGGGGGATGGAGGGGGGTGCCAATGCAGCATCTTTAACTTTATCTACATTTTTTACTGAAATAATAAGAAATTCTCATTTACCAATACGTTCTTGTCTTGAGAAAGCTGTGCTACAAGCGAATGATTCTGTTTTGAATGTATATAAGGGTAATGGAGGGGCGACATTATCAGCGATAGCTTTAGAAGATGATGATAATATTACCGCAGTAAATGTAGGTGATAGCCGTATTTATTATGTCTCGCATGAAGAAACTACTCAGTTGAGCGAGGACGATACTTTAGTTGCCTTAGCCAAAAAGTATAATAATCATCTAAATATGGATCCACAGGATATTGATTTACGCTTTGGTGGTGAATTAGTACAATTTATAGGCATAGATGGCACATTGGAAATACACTTTCATCATATCCAAGCCTTGGAGAGTGGCGTAATTATTTTAAGTTCTGATGGTGCGCATTCTATCGGTAAGGATAATTTAAGAAAGTTATATGTGCACTCGGCGAATCTAGGTGTTTATTCTAGGCGGGTTATTGATCTTGCTAGTTGGTTTGGTGGTTTCGACAATGCAAGTATAGCAGTTATAGACCTTTTTAATACTCTAAAAGAGTTAGATGTTTCATCTGGAGATGTAATAAATCTCTGGGATCCATTTGGTGAATTAAAAGTCATTAGCGTGCCGAATAAGTCATCTTCATTAGAGCCTTTAAATACAGTTGAGCTTGAAAAAAATAATAAAGGCACTTCTGGTGTTAGAAAAGTGTCAAACAAAAAAAATACTGATTCAGTCGTTAGCGATATAAACAAAGCAACAACAAAAAGAAAGGCAAGAACAAAAAATAAGAATAAATCTCTTCAGGAATTAGATGAGAAAAAAAATGGGTTAAATAAAAATAATAGACTTGATTGTATTTCACAGCTTGACATGTCATTCCTTGAAAGGAATTCAATAAAAGGAGATGGTGATGATGAGTGATTTTCTCCCAGAAAGATATCAAGTGGTTGGGGATCCTGATTTAGGGGGATTTGGTAGTGTAATCAAATGCCGCGATTCTCATCTTGAGAGATTTGTTGCAATAAAGACTATAAATGATCCATCAGATACAGAGCGAATGAAAGACGAGTTGGCTGCTCTAATGACACTACGTTCAAAACATGTTGTTGAACTGTTTGATGTGATTAATTATGCTGAAGGCAATCTTGCAATTGTTGAAGAGTTTATCGATGGTCCATCGTTGAATGAAGTTAATAATAAAATTACTACAGTAGGGGAGCTTATTAAGATTTTGTGGCAAATAGCATCAGGTATTTGCGAGATACATGAACATGATATCATTCATCGTGATATAAAGCCTGGGAATATGAAGATTGATAAAGAAGGGCTTGTAAAAATATATGATTTTGGCTTGTCAAGAAAAATAGATAATGCAAAAACAATTGGGTTTAAAGGTACCCCAATTTTTGCAGCTCCTGAGTTGTATTTGCAGAACGTAGACTTTACTAAAGCAATTGATACATATGCCTTTGCTGTTACAGCAATGTGCTTAGCTAAAACCCCTGTCCCAGATGAATTGACCCGTTACCCTAAGATTCTGACATCTAATCCATTTGATTTGTCGGTAATAAAATTACCAAGTATTGTAAAGGAATTGTTTTTCAAATGTCTTGATGCAAATCCTCAAGCTAGGCCCCCTATGAAAGATGTTTGCGATGTTTTGAAAAAAATATTATTGCACAACTCTCATCGAGCATTGCTTATATCTGATAATAAAAAACCAGTAGTGCTCTCAGCTACACACAAGACGGAGTCTTATAACAATCCAGGGGTGGGTAGTGTGGAAATTACTTACTCTGGTTCCGAGTTTTATATTTCAGATATATCAGGGGATGTCTATGTTAATAATATTAGGGCTAAAAAACGAAATTTATTGCCTAGCTCATGCGTGATAATACTTGGCCCTGCCGGAAGAACAACTACAAAACGTATATTTATCACATTTGATCTTTCTCATCCGGAGGTTGTGTTATGATTGAGTTGGTTCCTGGGACTAATATAAATCGTTATACTATTATCAGCGAAATTGGTGAGGGGGGGATGCAAAAGGTTTACCTTGCGAATGATAAGATATTAAATAGGCAAGTTGCTCTTAAGACCCCTAAAAATAAGTCTGCTGAAAAACGATTCCATAGAAGTGCTATTTTAGCATCTAGGGTCAACCATCCTAACGTCGCTAAAACATTAGATTATTTTGCCGAAGATGGACGTGAATTTTTAACGGAGGAATTTATCGATGGAGTAGATCTGGATAAAGCATTGTTGAGTAGCTATACAAGTGTTGATCCTTACTTGACTGCAAAGATATTTCATAACTTAGCGAAGGCTCTTTCGGCTTCCCATCATGTGGATGTAATACATCGAGACCTCAAACCTTCTAACATAATGGTTATTGGAGGAGTTAGTGCTACAGGTGTTAAAATCACCGATTTTGGAATTTCAAAAATGGCCGGTGATGAAATTGATGAGGCCGCAAAGAATGGGCAAGGATCGATTACTTCATCTCAAACAGCTATGGGGGCATTGCCATATATGGCCCCGGAAATTATACAAAGTCAGGGGCAAGTTTCAAAACCATCTGATGTCTGGGCATTAGGTGCGATGATGTTCAGAATCCTCACGGGAGAGTATCCTTTTGGATTAGGGTATATGGCTATTCCGAACATCTTATCTGGAAAGCATACTCAATATCCTGATTTTATTAAGTCAAATAAGCAGTTTGCTCCGCTGGCAAATGAAATTATAGATATAATTGAAAAATGTTTAAATCTAGACCCTTCTAAACGCCCCACTGCAGATGAGCTCGTGTCATTATGTGGTCAATTATGCTATCCGGTTTGTAATAGAGAAGAAGGAGTAATAGGTGATACTAGACTAGCTTATGGTTTCATTCGTATACCAAACCAACCACAAGTATTTTTTCATTACGATAGTGTGTATGGTAGTAAACCAGTGAGTAATGATAAGGTGATTTTTTCAAAGTTCTTGGGAGGGGGCCATGACCGGGCTCATCCAGTTATCAAGGCTAAGTAG
ATGTTTACAGAACGACTTGCTCGCTGGTTAGCTCGTTCTTCGGCCAAAAGCGGCATTAACCGGCCAGAAGACCTCAACGCTGTCCTTAGCACGGATATAGGACTGGTTAGAGCTGAGAATCAGGATCTAATAGCCGCGATTAGAGTTAACACTCCGTCAAACGTTGGCAATCCTTTTTTTGCAATGGCGTTATTAGATGGCATGGGTGGAATGCAAGATGGAAAGCAATGCGCAACAATTGCTTTATCAACTTTATTCTATTCTTTGATTAAGTTTAGAAGTGATCCTCCCGAGTCTCGGTTATTAAAAGCGACTTTAGAAGCAAACTCCGTTGTATATGACTATGCAAAAGGACATGGCGGTTCAACATTATCCGCTGTAATTATTGAAAATGGGTCTGCTCCTGTAATTGTCAACGTTGGCGACAGTCGAATATATAGCTTTTCTCTGGACTGTGGACTTACAGCAATTAGCAGTGATGACTCTCTAGAAGCATTGGGTGGCAGAGGGCGCGGATTACTCCAGTTTATAGGAATGGGGGAATCTATAAAGCCTCATATCAATATCTTAGATAAAAATCATAAAAATATAATATTGACATCCGATGGAACTCATTTCATTTCTCATTCAGCATTCGAAGAGTTATTAAGTCATTCATCTGATTTTTCTACATCAGCGCAGAGAATAGCTCAATATGTTCAATGGTGCGGTGCGAAAGATAACGCTTCATTTGGAATTATTAATTGCAATGATATAGAAAACAGCCTCAACTCCCATAAAGATATTGGTGTAGAGTTATGGGACCCTCATGGGAATCTACATATCATGTGGATGAAAAATTATCCTGCAGCGCAGAATTACTTCTCTCAAAATATAGTGGATGATCAAGATAAAGAACCTTCACCTATTATAGACGATGATGGTTTTGAAAATAAAAAAACACTAAACAATCCTTCAACAAAAAATCTAGAATTAGATTCTGAAACACCACAAAGAGAGCTATTCTCAAACGAATCCCCAGAAAAATCTCAAGATCCATCCATTACAAGCAAAGCAATCAAACAAAGAAAAAACAAAGATAAAAAGAAAGCTATTGAAAAGATCAAAAAAGACCAATCTGTAATGATAAATATCAAGGATGAGGAAA ACAAAAATGAAGATTAATCACGTCCTACCAGAAAGATATTCATTAAAGAGCACTGAACTCGGTGGTGGCATGGGGGACATTTTAATATGTAAGGATAATCATTTAGATAGAGATGTAATTGTAAAGTTGTTAAAGGATGGAGAAGAAGAGAGACGTTTACTAGATGAACAGAAAGCGCTACTCAAACTTCGTTCTAAACATGTAGTACAACTTTATGATTTAATTGACATAACAGTCTCCGAAAAAACTAAAAAAGGATTAGTTCTGGAGTATATTAACGGAGTGGATTTAAATTATAACCCGTCAGAAAGTCACCCCGAAAAACTAAAGAAATTATGGCAGATAGCATGCGGGTTAAGTGACATCCACTCTGCTAAAGTAATTC ACAGAGATATAAAGCCCAATAATATTAGAGTAGACGAGAATAAAATTGTTAAAATATTAGATTTTGGTTTAGCAAGGACCTCAGGCACAGAAGCATTCACTCATTCTGTTATTGGAACCTTAGGATATATGGCTCCTGAACTATGGAAGAGAAAAAACATTAGTTTCGATCAAAAAATTGATGTTTATGCATATGGTGTCCTCGTTTTAGATTTATTCGGCATAGAAAAACCAGATGAATTATACGAACATCCCCCGGCCGCGATAACCAATATACCTGAATTAGGAAAGATACTTCCAAAGGACTTAGCCAGAACTTTCATTAGTTGCTTAAGCCATGACAAATATGCTCGACCGGCAATGTCTTCGGTTAGAGATCAAATAGCTAAATACCTATTAAAAGATAGACACCGTGCCCTCTTCGTCCTGAATGGAAAGAAATATGAAATAAATGCTAAAAATAAAAGTGTTACGATCACTTGGGGTACTAGTGGAAGTATGGAAATAGTATATGATGGTTTCGACTTTAAAGTAGGTAATTTTTCAGGAAGTGCGACAATTAATAACCAACAAGTGATAACAAATAAAGTATTTCCTAGCTGCAGTGTAATTACTCTTATAAATGAAAAATCTAGAAGCTTTGTCACCTTTGATATATCTAGACCGGAGGTAATATCATGATTGAAGTCGGAAGAATCATTGCAGAACGCTATAAGATTTTATCTTATGTTGGTAAAGGTGGGATGCAAGACGTATATAAAGTTTTAGATCTAAAGCTGGATTTAGATTTAGCTTTAAAGACTCCACTTCCTGGTTTGGAAAGCAAAAGATTTCTTAAAAGTGCCAAAATCGCTGCAAAAATAAACCATCACAATATAGCAAAAACCTTTGATTATGTTGAAGATAATGGCAATATATTTTTAGCGGAAGAATTTGTTGAAGGTGAAAACCTTGAGGAAAAATTGCGCCACTTTGATTTTTTAGACCCACATTATGGCGCTTGTATACTACATAACCTTGCTAAAGGAATAATGGCATCTCATAAAGCAGATGTTATTCATAGAGATTTAAAACCGAGTAATGTAATGGTGTCTGGCGGAGTACAAATTTCGAATCTAAAAATTACAGATTTTGGAATAGCTACGCTAACACAAGAACTTTTTGATGAAGCTGCTGCCAGTGGTGACCTAACAAGATCGACCTCTGGTACGATAAAAGGTGCTTTACCCTTCATGTCTCCTGAATTAATGTTTGGTAAAAAGGGTAAACCTATAGAAGCATCAACTGATATTTGGCCATTAGGTGCAATGATGTTTAAATTATTAACAGGAGACTATCCATTTGGCGTTTATTTAGATGCTGCTGTTAATGTTAAAACAAAAAATAGAATGGAATGGCCAACCTTTATGACTGCCAATCCACAATATCAAAGTTTATCACAAGATCTACAAAAAATTGTAGATAAGTGCTTAAGTTATGACTCGGACAAGAGGCCTACAGCTGAAACGCTTGTTAAGGCATGTGAAACCCTTTGTTATTTATCCGAAGAACGTCATGTCGGTCGCGTCAATAATCTTATTCAAGGAGGGATAAGTGGATTTATTGATGGGACACCTTCTAACTCCTTTTTTAGTATGGAAAGTGTATACGGTTCGAGGTACCCAAACACCTCAACAAGAAATACTGTTTGTTATTCCACTTTTGATGGACACCCATGGCCTAGAGCACACCCTGTAATTCTTTGGAAAGATTGA
ATGCAAGATATATTAACAAAAAGGCTAAATAGACCTGTAAATGGGAACCGGTCATCCGTTGTACATGAAGTCGGAGCGACGTTAGCGACAACTGTCGGGCTTATCAGAACTGAAAATGAAGATCGGGCAATTTCTGCTCGTTTCTATAGTTCAAAAATGGAGCGCTACATATACTTTTATATTCTTAGTGATGGTATGGGAGGTATGGTTAATGGGGGGCTTGCCGCAACTCACACTGTCTCAATGTTTTTAAGCTCTATAATACCTCTTATCGAGTCAGGCATTGAAATAGATCAAGCGATACAACAGTCTGTGTTTTCTGCTCATCAGATCGTTTCCGAATCAACAAACGGTAAAGGTGGAGCAACTTTATCAGCTATAGTCAGCCATGAACCAGGTGAATTCTTTACCGTCAATGTTGGTGATAGTCGAATTTATCAATGCACAACAAGCAATTCTATTTTTCAAATCACTGAAGATGACGATGTAAAAAGCTTCCTCGAAAAACTCAACGGAATCGAACTAAACAGCCTAATAACGAAGAGAAATGGTCTAACAAAGTATATAGGCATGGAGGGAGAATTAGAGGTCACTGTTGAGTCATGCTCTGCACTCTGCGATTTGTTAGTTATTTCTGATGGTATAAGCCAAATTGGAGAAGCTAACTTAGTTGGCCTATATGAAAATAAGACAACCGATAGTGAATTCGTTCAACGTTGTATACATTTGTCCAATTGGCTTGGCGGTCATGATAACGCAACAGCAATCTATGCTTCTTTGGCAAACCTAACATATCACCCAGAAACTACCGAAGTCACCCATAACTGCCTTGAAGTTTGGGATTGCCATGGTTACATCATTATTCCCTTAGCACAACTACCTTCGAAAGGTAGACACCCAAAAGAAAAAACGAAAAAAGTACGAAAAAAAACAGCTGCGAAAAAAATAATAAAAAGTGATAAAGAAGACTCTCGCAACGATTATAACCTAGAGATAAATCAAAAATCATTATTCTCATCTGACGATGTCGGAGAGATTTCGCCTGATAATAACAGTGTATTTGATGAAGGTGCAGGACTTGACCTAGCCAAAATCGAAGATAATAAAAATAATCTAGATAAATAGAATTAAACGTTGGTGACAATTATGGCTAGTACAAGATATGAATACCTAAAACACATAGACGATGGCGGTTATGGTAGTGTCTCTCTTTATAGAGATATATTCCTTGATCGTGAAGTCGCAATAAAAACAATCCCCATTAGTAAGAAGAACAATACGATTGAGGAAGTAAACCTACTCAAATCAATTGCGTCTAAGCATGTTGTTGGATTGTATGACGTTATTCAAACCCAAACTAACATTGAAATATATCAAGAATACTTAGATGGGGAAGATCTAGCTAGCAAAGTAGGTCAGTGTCATGGCCCAGAATTTTTGAGCCTTGCCTATCAGCTAGCATCTGGACTACGTGATATACATTCATCAGGAATATGTCACCGAGATATAAAGTTGGATAATGCGAAATTTGACAAACAAGGTGTACTTAAAATTTTTGATTTTGGTGTATCTCGTATCGGTGATCCGCACCAAACCGTAAATGGTCATGGTACATTAGAATACCTAGCTCCTGAAGCCTTTGGATTATACACGCAAGACTCCGTTGTACTTTCATTTGCGGTCGATATCTATGCACTTGGAGTGACCTTACACAAACTTGCATTTTCGGGTATATGTAAATTCAATAAAACGCTTAATCCGCAACCAGAAAGCCCTCGATTTGCTGAGCTTGGCTTTTGTTCAAAGCTAACATCACTCTTAAATAAATGTGTTTCAGAAAATAAAACGGAGAGACCCTCAGCAAACAGTTTAGTTGCTGAATTACAAAGAGAGCTCCTACGAAATAAACATACTGGTTTGTTTGTTGCACCGAAAGGCTCCCATAATATTGACCAAGCTCATCCAAAAACAAGAATTAAAATTTCTGATGACTTGTCAATTATTATCAATTACAACGGATACGACTTTTATGTTACTAAAGTTGAAGGACATGTTTATATAAATAATGAAATTGTAGATGTGGGTAAGGTGCTTTATGGAGCATGCGTCCTGACATTTGTTCGAGATGCCAATAACCGTTTCTTTGTTTCGTTTTCTTCATCTCATCCGGAGATAGTATTATGAGTCATATTCACAAACCTAACGACATCATTGCAGATCGATACGTGATCGAAAATTATATCGACGAAGGTGGTATGCAACAAGTCTACTCAGCGATAGACAAAAACATTGGACGAAAAGTCGCTTTAAAGACACCAAAAAATGATTCGGCTAGCCTGAGATTTAAAAGTACCGCAATTTGTAGTGCTCGTGTTATTCACCCTAACGTGGCGAAAACTCTAGATTACTTTGGCTTTGATAAACGCGAATACTTAATTGAAGAACTTATTGACGGAAAAGATTTAAACACTGTATTCAGAAATAATTTCTCATATTTAGATCCATGTCTCGTTGCCTTCATAGGACATCATCTATCAAAAGCAGTAGCTGCATCTCATAGCGCAGACGTCGTCCAT AGGGATCTCAAACCAAGTAACATTATGATTGTAGGGGGCGAGAAGTTTAGAGATATTAAAGTCACTGACTTTGGTATTGCAAAACTTGTTGATGATGAAATCAACGAGGTTTTTTCTGATACCGAAAATGTTGAAAGCTCCATTGCTGGCTCAAAAACACTCGTTGGTGCTCTACCTTATATGGCCCCAGAAATTGTTTTAAACAAAACAAAAGCTGGAAAACATATTGATATTTGGTCAATAGGTGCAATTATGTATTTCCTACTAACAGGAAAAACACCTTTCACATCGCAATTTGCCCAAATCGTCATTAACTATCATACTCAGAAATCTATCGATCCAATCCTTCATATGGATACATCTCGCCATTTAAACCCGTTAGGCAATCAATTACTAGGCATTATCAAAAGTTGCTTGGATTACGACTATTCAAATCGTCCAAATTCTGAGCAATTAGTTCAAATGTTTTCTTCCCTTTGTTACCCTATTCAAGAAAGAAAATATGGACATATCAAGTATCGACGAGGCACACATGGTTGGGGCTTCATTAAAAACATAGGCCCTAACGATACATTTTATCATACTGAAGAAGTTTTTGGACTTCAGGCTTCCCATAGTGAGCGAGTGTGCTTCTCTGAGTACCCTGGATTACCTCAAGCAAGGGCATTTCCAATTATTCGCTGTAAATAA。

Claims (4)

1.新型抗噬菌体元件,其特征在于,核苷酸序列如SEQ ID NO.1所示。
2.一种含有权利要求1所述的新型抗噬菌体元件的底盘细胞,所述的底盘细胞是致病菌铜绿假单胞菌PAO1。
3.权利要求1所述的新型抗噬菌体元件在提高底盘细胞抗噬菌体侵染中的应用,所述的底盘细胞是致病菌铜绿假单胞菌PAO1,所述的噬菌体是噬菌体PAP8、PAO-L5、QDWS、PAP-L5。
4.一种提高底盘细胞抗噬菌体侵染的方法,其特征在于,是将权利要求1所述的新型抗噬菌体元件转入底盘细胞中,增强宿主对噬菌体的抗性,所述的底盘细胞是致病菌铜绿假单胞菌PAO1,所述的噬菌体是噬菌体PAP8、PAO-L5、QDWS、PAP-L5。
CN202210879453.0A 2022-07-25 2022-07-25 一种新型抗噬菌体元件及其应用 Active CN116334108B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210879453.0A CN116334108B (zh) 2022-07-25 2022-07-25 一种新型抗噬菌体元件及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210879453.0A CN116334108B (zh) 2022-07-25 2022-07-25 一种新型抗噬菌体元件及其应用

Publications (2)

Publication Number Publication Date
CN116334108A CN116334108A (zh) 2023-06-27
CN116334108B true CN116334108B (zh) 2024-03-26

Family

ID=86882757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210879453.0A Active CN116334108B (zh) 2022-07-25 2022-07-25 一种新型抗噬菌体元件及其应用

Country Status (1)

Country Link
CN (1) CN116334108B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899450A (zh) * 2010-04-27 2010-12-01 中国科学院水生生物研究所 烈性噬藻体PaV-LD基因组及制备方法和应用
CN108410840A (zh) * 2018-04-03 2018-08-17 大连理工大学 一种铜绿假单胞菌噬菌体内溶素及其编码基因与应用
CN111849848A (zh) * 2020-07-23 2020-10-30 江南大学 一种抗噬菌体的大肠杆菌底盘细胞的构建及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899450A (zh) * 2010-04-27 2010-12-01 中国科学院水生生物研究所 烈性噬藻体PaV-LD基因组及制备方法和应用
CN108410840A (zh) * 2018-04-03 2018-08-17 大连理工大学 一种铜绿假单胞菌噬菌体内溶素及其编码基因与应用
CN111849848A (zh) * 2020-07-23 2020-10-30 江南大学 一种抗噬菌体的大肠杆菌底盘细胞的构建及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Excisionase in Pf filamentous prophage controls lysis-lysogeny decision-making in Pseudomonas aeruginosa;Yangmei Li等;《Mol Microbiol .》;第111卷(第2期);第495-513页 *
Fine structure analysis of lipopolysaccharides in bacteriophage-resistant Pseudomonas aeruginosa PAO1 mutants;Libera Latino等;《Microbiology (Reading) . 》;第163卷(第6期);第848-855页 *
细菌抗噬菌体防御***研究进展;贡嘉澳等;《生命科学仪器》;第20卷(第02期);第17-26页 *

Also Published As

Publication number Publication date
CN116334108A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
Smith et al. Comparative genomics of Shiga toxin encoding bacteriophages
Shariat et al. CRISPRs: molecular signatures used for pathogen subtyping
Asadulghani et al. The defective prophage pool of Escherichia coli O157: prophage–prophage interactions potentiate horizontal transfer of virulence determinants
Forsberg et al. Functional metagenomics-guided discovery of potent Cas9 inhibitors in the human microbiome
Weigele et al. Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and Synechococcus
Pope et al. Cluster K mycobacteriophages: insights into the evolutionary origins of mycobacteriophage TM4
Tao et al. Unexpected evolutionary benefit to phages imparted by bacterial CRISPR-Cas9
Summer et al. Divergence and mosaicism among virulent soil phages of the Burkholderia cepacia complex
Chénard et al. Viruses infecting a freshwater filamentous cyanobacterium (Nostoc sp.) encode a functional CRISPR array and a proteobacterial DNA polymerase B
Kot et al. DPS–a rapid method for genome sequencing of DNA-containing bacteriophages directly from a single plaque
Willner et al. From deep sequencing to viral tagging: recent advances in viral metagenomics
Park et al. Evolution of the Stx2-encoding prophage in persistent bovine Escherichia coli O157: H7 strains
Amy et al. Identification of large cryptic plasmids in Clostridioides (Clostridium) difficile
Kvitko et al. φX216, a P2-like bacteriophage with broad Burkholderia pseudomallei and B. mallei strain infectivity
Yoshida-Takashima et al. Genome sequence of a novel deep-sea vent epsilonproteobacterial phage provides new insight into the co-evolution of Epsilonproteobacteria and their phages
Garin-Fernandez et al. Looking for the hidden: Characterization of lysogenic phages in potential pathogenic Vibrio species from the North Sea
Demina et al. Virus-host interactions and genetic diversity of Antarctic sea ice bacteriophages
CN116334108B (zh) 一种新型抗噬菌体元件及其应用
Merabishvili et al. Digitized fluorescent RFLP analysis (fRFLP) as a universal method for comparing genomes of culturable dsDNA viruses: application to bacteriophages
Owen et al. Detection of bacteriophages: sequence-based systems
US20210403995A1 (en) High-throughput methods to characterize phage receptors and rational formulation of phage cocktails
Hendrix Phage evolution
Zhang et al. Unexplored diversity and ecological functions of transposable phages
Muntyan et al. BACTERIOPHAGES OF SINORHIZOBIUM MELILOTI NATIVE TO ALFALFA ORIGIN OF DIVERSITY AT THE CAUCASUS
Koert et al. Evidence for shared ancestry between Actinobacteria and Firmicutes bacteriophages

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant