CN116217235B - 一种氮化硅质大尺寸高温结构件及其制备方法 - Google Patents

一种氮化硅质大尺寸高温结构件及其制备方法 Download PDF

Info

Publication number
CN116217235B
CN116217235B CN202310098180.0A CN202310098180A CN116217235B CN 116217235 B CN116217235 B CN 116217235B CN 202310098180 A CN202310098180 A CN 202310098180A CN 116217235 B CN116217235 B CN 116217235B
Authority
CN
China
Prior art keywords
silicon nitride
powder
temperature
sintering
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310098180.0A
Other languages
English (en)
Other versions
CN116217235A (zh
Inventor
黄明国
孟范成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Xingxin Aetrospece New Material Co ltd
Original Assignee
Hunan Xingxin Aetrospece New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Xingxin Aetrospece New Material Co ltd filed Critical Hunan Xingxin Aetrospece New Material Co ltd
Priority to CN202310098180.0A priority Critical patent/CN116217235B/zh
Publication of CN116217235A publication Critical patent/CN116217235A/zh
Application granted granted Critical
Publication of CN116217235B publication Critical patent/CN116217235B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明属于陶瓷制备领域,涉及一种大尺寸厚壁氮化硅高温陶瓷部件及其制备方法。该方法是将氮化硅粉体与烧结助剂混合,原料采用α‑氮化硅粉、β‑氮化硅晶须、氧化铝粉、稀土氧化物、硅粉,造粒成型排胶后在低温、低压条件预烧结,随后在高压条件中温烧结,最后在高温低压烧结,其中烧结过程全程采用双层埋粉,内层BN与石墨混合粉,外层SiON与氮化硼、氮化硅混合粉。采用以上工艺制备的大尺寸厚壁(大于30mm)氮化硅高温结构陶瓷:内外颜色均匀、无夹心;烧结体β‑氮化硅晶粒直径1‑1.5um,长径比范围4‑8,嵌于网络结构的四方状氮化锆直径2‑3um;HV硬度大于15GPa,室温抗弯强度大于800MPa,900℃抗弯强度大于600MPa,断裂韧性大于7MPa·m1/2,热膨胀系数2.8‑3.1×10‑6

Description

一种氮化硅质大尺寸高温结构件及其制备方法
技术领域
本发明属于陶瓷制备技术领域,具体涉及一种大尺寸厚壁氮化硅高温陶瓷部件及其制备方法。
背景技术
氮化硅是一种具有优异综合性能的陶瓷,因其较高的力学、高温力学性能、良好的抗热震性以及优良的耐腐蚀性能,目前已广泛应用于航空航天等领域的复杂结构件。Si3N4属于强共价键化合物,依靠固相扩散很难烧结致密,必须添加烧结助剂,借助液相烧结机理来进行致密化。烧结后Si3N4陶瓷的力学性能主要由α-Si3N4和β-Si3N4相的比例及晶间相(玻璃状或部分结晶)的数量和组成决定,这取决于烧结添加剂和烧结工艺。
烧结助剂的组成和含量对Si3N4陶瓷的致密化和力学性能具有重要影响。常用的烧结助剂有金属氧化物(MgO、CaO、Al2O3)、稀土氧化物(Yb2O3、Y2O3、Lu2O3、CeO2)和氟化物(LiF、MgF2、YF3)等。为降低液相的形成温度,改善晶界相的性能,通常采用二元或多元烧结助剂体系。目前,常用的添加剂Y2O3-Al2O3、Y2O3-SiO2、MgO-CeO2等,在液相形成和致密化方面作用较明显,但第二相的结晶化不完全,削弱了材料的高温性能。近些年研究者发现氮化硅中添加Yb2O3对晶界相的晶化和材料强度的提高有一定的作用;添加ZrO2能增韧强化Si3N4基陶瓷材料并提高Si3N4基陶瓷抗氧化性能。如何选择合适的添加剂种类和含量,在保持良好烧结性能的同时使Si3N4基陶瓷具有良好的综合力学和热性能,一直以来都是国内外学者研究的热点。
由于Si3N4在1700℃以后开始发生分解,氮气气氛下的气压烧结是制造高性能氮化硅陶瓷最常用的烧结工艺。然而,由于烧结气氛与氮化硅之间的相互作用,氮化硅的分解及硅的挥发问题导致烧结后的大尺寸厚壁(厚度大于30mm)氮化硅结构件常表现出近表面呈浅色,内层呈深色的夹心现象。这种不均匀的颜色是由于样品内外烧结程度不同导致内外层致密度和微观结构的差异所致。烧结后的夹心现象直接影响到氮化硅陶瓷构件的力学性能和物理性能的恶化,导致在生产氮化硅构件时,不得不减小烧结体的尺寸,从而限制了氮化硅的应用。
制备大尺寸厚壁Si3N4基陶瓷高温结构件时,如何在得到具有优异抗弯强度、高温抗弯强度,较高的硬度和断裂韧性等力学性能的同时,解决大尺寸氮化硅陶瓷烧结后的夹心现象,一直以来都是个难题。针对这种情况,本发明设计了一种多元烧结助剂、双层埋粉和分步烧结的工艺,获得了综合性能良好的大尺寸Si3N4基陶瓷高温结构件的制备方法。
发明内容
本发明的目的在于克服现有大尺寸氮化硅高温结构件在性能和制备上的不足,设计了一种含Zr的多元烧结助剂和分级预烧气压烧结工艺,制备了具有较高的高温抗弯强度,硬度、断裂韧性良好的大尺寸厚壁氮化硅高温结构件,解决了烧结后厚壁氮化硅的夹心问题。
本发明的具体技术方案为:一种氮化硅质大尺寸厚壁高温结构件,陶瓷原料以重量百分比计,厚壁氮化硅高温结构件原料由氮化硅粉体78-82%、β-Si3N46-8%、氧化铝粉3-5%、稀土氧化物6-8%、硅粉1-2%组成
优选地稀土氧化物为氧化钇、氧化镱、氧化镧中的一种或两种与氧化锆的混合物,氧化锆占比稀土氧化物比例为10-25%。
所述氮化硅粉为α-氮化硅粉d50=500nm,α-Si3N4>95%;
所述β-氮化硅为β-Si3N4晶须,d=150-300nm,长度2-4μm;
所述氧化铝粉d50=300nm;
所述氧化镱粉d50=2μm;
所述氧化锆粉为8wt%Y2O3稳定四方ZrO2,d50=1μm;
一种氮化硅质大尺寸厚壁高温结构件的制备方法,具体包括以下步骤:
(1)混料:将氧化铝、稀土氧化物和硅粉按比例用电子天平称量,将称量好的原料倒入聚四氟乙烯球磨罐,并按比例将尺寸不同的氧化锆球磨珠也放入球磨罐中,加入一定量的无水乙醇丙酮混合介质,将装好原料的球磨罐放入行星球磨机中充分混合;按比例用电子天平称量氮化硅粉和氮化硅晶须,加入一定量的无水乙醇丙酮混合介质,配制氮化硅粉和氮化硅晶须混合溶液,将混合好的氧化铝、稀土氧化物和硅粉的溶液与氮化硅粉和氮化硅晶须溶液混合,再按上述球磨工艺充分球磨,混合完成后的原料倒入烧杯中放入真空干燥箱中,使溶剂完全挥发,得到完全干燥的混合粉末;
(2)造粒、成型与排胶:干燥后的粉末倒入研磨钵中,并加入适量提前制备好的PVA溶液,进行充分研磨,得到流动性较好的混合粉末。通过造粒后的具有一定流动性的粉末按一定重量倒入模具中,通过压力试验机进行干压成型,再将样品通过软包套处理,通过冷等静压,得到高密度的初坯样品。成型后的样品放入实验箱式电炉中排胶,后随炉冷却至室温。
(3)烧结埋粉:完成排胶后的样品放入BN坩埚中,再放入气压烧结炉中进行埋粉烧结。为控制烧结气氛,抑制氮化硅的分解,采用如图1所示的双层埋粉方式。内层为BN和石墨的混合粉床,形成含N的还原气氛;外层为Si3N4、BN和SiON的混合粉床,形成含Si的挥发气氛。
(4)烧结工艺:低压升温至设定温度预烧并保温,保温结束后,加大氮气流量增加气体压力,同时快速升到中温烧结阶段并保温,保温结束后继续升温至高温烧结阶段,并保温,停止加热后随气压炉冷却至室温。
本专利原料配方中Si粉、β-Si3N4和晶须ZrO2的作用:Si粉在初烧和中烧阶段与氮气反应形成氮化硅,与液相析出的β-Si3N4一起填充在β-Si3N4晶须之间,构建了相互搭接的β-Si3N4网络结构,这种结构有利于抑制硅挥发导致的微观结构和颜色不均一的问题,同时提升了氮化硅的力学性能。氧化锆的加入不仅起到助烧降低烧结温度的作用,同时帮助解决因烧结温度过高烧结导致的夹心问题,在烧结过程中与氮气反应析出耐高温的四方状ZrN,提高了氮化硅的高温抗弯强度。双层埋粉和多步烧结对于克服大尺寸厚壁氮化硅的夹心现象同时具有重要作用。双层埋粉内层形成含N的还原气氛,外层形成含Si的挥发气氛,可抑制氮化硅的分解。初步烧结阶段低氮气压力可降低液相中的N含量,降低液相粘度,有利于β-Si3N4从液相中沉淀析出,促进心部区域β-Si3N4的充分析出并形成骨架结构,形成的封闭气孔,孔内低的氮气浓度利于在压烧阶段排除,使初坯达到较高致密度。后期中高温烧结阶段,在高温和高氮气压力下,晶粒通过奥斯瓦尔德熟化过程继续长大,气孔排除,得到高致密的Si3N4陶瓷。
作为优选,所述步骤1原料与球的质量比为1:3-1:5,丙酮与无水乙醇的体积比为0.7~1.0:1,以200-300r/min的转速球磨2-6h。80-120℃的设置温度下干燥10-12h。
作为优选,所述步骤2机械压力为40-60MPa,加压速度为1-2KN/s,保压5-10min,冷等静压压力200-220MPa,保压5-10min;以2-3℃/min速率升温到600℃,保温120-180min。
作为优选,所述步骤3埋粉内层为BN和石墨的混合粉床,BN占比为80-90wt%,埋粉厚度为样品高度的1.2-1.5倍,形成含N的还原气氛;外层为5-10wt%Si3N4、60-70wt%BN和20-30wt%SiON的混合粉床,埋粉厚度为样品高度的0.4-0.8倍,形成含Si的挥发气氛。
作为优选,所述步骤4以预烧阶段升温速率2-4℃/min,预烧温度为1550-1580℃,保温时间1-4h,氮气压力0.3-0.5MPa;压烧氮气压力3-5MPa,15-20℃/min升到压烧温度保温,压烧温度为1680-1700℃,保温时间2-4h,该温度下形成β-Si3N4的搭接结构;高温烧结温区1800-1820℃,保温时间4-6h,升温速率2-4℃/min,氮气压力0.3-0.5MPa,β-Si3N4晶粒进一步长大并完成致密化过程。
采用上述方法制得氮化硅厚壁高温结构件微观结构直径1-1.5um,长径比4-8的β-氮化硅晶粒结合玻璃相相互搭接组成网络结构,直径2-3um四方状氮化锆嵌于网络结构,氮化锆与氮化硅晶粒数量占比2-4%。
采用上述方法制得氮化硅厚壁高温结构件,其特征在于,壁厚大于30mm,直径大于100mm,内外颜色均一无夹心,HV硬度大于15GPa,室温抗弯强度大于800MPa,900℃抗弯强度大于600MPa,断裂韧性大于7MPa·m1/2,热膨胀系数2.8-3.1×10-6
附图说明
图1为实施例1、实施例2和对比例1的双层埋粉方式示意图;
图2为实施例1制备的氮化硅陶瓷横截面宏观图;
图3为实施例2制备的氮化硅陶瓷横截面宏观图;
图4为对比例1制备的氮化硅陶瓷横截面宏观图;
图5为对比例2制备的氮化硅陶瓷横截面宏观图;
图6为对比例3制备的氮化硅陶瓷横截面宏观图;
图7为实施例1制备的氮化硅陶瓷的微观结构图。
具体实施方式
为进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,一下结合较佳实例,对依据本发明提出的大尺寸厚壁氮化硅高温结构件制备方法得具体实施方式、步骤、特征详细说明如下。
实施例1:
1.按α-Si3N4:β-Si3N4:Si:Al2O3:ZrO2:Yb2O3=82:6:1:4:1:6的比例,称取500g原料,将Si、Al2O3、ZrO2和Yb2O3粉在乙醇丙酮混合溶剂中(体积比为1:1)以300r/min的转速球磨4h,原料与球的质量比为1:4,混合均匀后获得浆料;将α-Si3N4和β-Si3N4按上述相同球磨工艺混合,将混合好的助剂溶剂与氮化硅溶液(包括氮化硅粉和氮化硅晶须)混合,再按上述球磨工艺充分混合。
2.将上述浆料在80℃的真空干燥箱中干燥12h,得到完全干燥的混合粉末;
3.将上述粉末倒入研磨体中,并加入适量提前制备好的PVA溶液,进行充分研磨,得到流动性较好的混合粉末;
4.将上述造粒料压制成φ100mm的初坯,机械压力为40MPa,加压速度为1KN/s,保压5min,冷等静压压力200MPa,保压5min;
5.成型后的样品放入实验箱式电炉中,以2℃/min速率升温到600℃,保温180min进行脱脂;
6.完成排胶后的样品放入BN坩埚中,采用图1所示的双层埋粉方式,埋粉内层为BN和石墨的混合粉床,BN占比为85wt%,埋粉厚度为样品高度的1.2倍,外层为6wt%Si3N4、70wt%BN和24wt%SiON的混合粉床,埋粉厚度为样品高度的0.6倍。再放入气压烧结炉中进行烧结,以4℃/min升到设定温度预烧并保温,预烧温度为1580℃,保温时间2h,氮气压力0.3MPa;保温结束后,加大氮气流量使其压力增加到4MPa,同时以15℃/min升到压烧温度保温,压烧温度为1700℃,保温时间3h;保温结束后继续升温至1820℃,保温时间6h,氮气压力0.4MPa,随炉冷却至室温。
7.烧结后的氮化硅陶瓷无夹心现象(如图2),性能见表1,其中所有样品硬度测试条件为10Kg载荷、保压15s。
实施例2:
1.按α-Si3N4:β-Si3N4:Si:Al2O3:ZrO2:Yb2O3=80:4:1.5:4.5:2:8的比例,称取500g原料。将Si、Al2O3、ZrO2和Yb2O3粉在乙醇丙酮混合溶剂中(体积比为1:1)以300r/min的转速球磨4h,原料与球的质量比为1:4,混合均匀后获得浆料;将α-Si3N4和β-Si3N4按上述相同球磨工艺混合,将混合好的助剂溶剂与氮化硅溶液(包括氮化硅粉和氮化硅晶须)混合,再按上述球磨工艺充分混合。
2.将上述浆料在80℃的真空干燥箱中干燥12h,得到完全干燥的混合粉末;
3.将上述粉末倒入研磨体中,并加入适量提前制备好的PVA溶液,进行充分研磨,得到流动性较好的混合粉末;
4.将上述造粒料压制成φ100mm的初坯,机械压力为40MPa,加压速度为1KN/s,保压5min,冷等静压压力200MPa,保压5min;
5.成型后的样品放入实验箱式电炉中,以2℃/min速率升温到600℃,保温180min进行脱脂;
6.完成排胶后的样品放入BN坩埚中,采用图1所示的双层埋粉方式,埋粉内层为BN和石墨的混合粉床,BN占比为80wt%,埋粉厚度为样品高度的1.5倍,外层为8wt%Si3N4、70wt%BN和22wt%SiON的混合粉床,埋粉厚度为样品高度的0.6倍。再放入气压烧结炉中进行烧结,以4℃/min升到设定温度预烧并保温,预烧温度为1560℃,保温时间2h,氮气压力0.3MPa;保温结束后,加大氮气流量使其压力增加到4MPa,同时以15℃/min升到压烧温度保温,压烧温度为1680℃,保温时间3h;保温结束后继续升温至1800℃,保温时间5h,氮气压力0.4MPa,随炉冷却至室温。
7.烧结后的氮化硅陶瓷无夹心现象(如图3),性能见表1。其中所有样品硬度测试条件为10Kg载荷、保压15s。
对比例1(未加入β--Si3N4晶须、Si粉和ZrO2烧结助剂):
1.按α-Si3N4:Al2O3:Yb2O3=88:5:7比例,称取500g原料在乙醇丙酮混合溶剂中(体积比为1:1)以300r/min的转速球磨4h,混合均匀后获得浆料;
2.将上述浆料在80℃的真空干燥箱中干燥12h,得到完全干燥的混合粉末;
3.将上述粉末倒入研磨体中,并加入适量提前制备好的PVA溶液,进行充分研磨,得到流动性较好的混合粉末;
4.将上述造粒料压制成φ100mm的初坯,机械压力为40MPa,加压速度为1KN/s,保压5min,冷等静压压力200MPa,保压5min;
5.成型后的样品放入实验箱式电炉中,以2℃/min速率升温到600℃,保温180min进行脱脂;
6.完成排胶后的样品放入BN坩埚中,采用图1所示的双层埋粉方式,埋粉内层为BN和石墨的混合粉床,BN占比为85wt%,埋粉厚度为样品高度的1.2倍,外层为6wt%Si3N4、70wt%BN和24wt%SiON的混合粉床,埋粉厚度为样品高度的0.6倍。再放入气压烧结炉中进行烧结,以4℃/min升到设定温度预烧并保温,预烧温度为1580℃,保温时间2h,氮气压力0.3MPa;保温结束后,加大氮气流量使其压力增加到4MPa,同时以15℃/min升到压烧温度保温,压烧温度为1700℃,保温时间3h;保温结束后继续升温至1820℃,保温时间6h,氮气压力0.4MPa,随炉冷却至室温。
7.烧结后的氮化硅陶瓷有夹心现象(如图4),测试样品条取样区域为非夹心部位,其性能见表1。
对比例2(常规埋粉和常规烧结):
1.按α-Si3N4:β-Si3N4:Si:Al2O3:ZrO2:Yb2O3=82:6:1:4:1:6的比例,称取500g原料,将Si、Al2O3、ZrO2和Yb2O3粉在乙醇丙酮混合溶剂中(体积比为1:1)以300r/min的转速球磨4h,原料与球的质量比为1:4,混合均匀后获得浆料;将α-Si3N4和β-Si3N4按上述相同球磨工艺混合,将混合好的助剂溶剂与氮化硅溶液(包括氮化硅粉和氮化硅晶须)混合,再按上述球磨工艺充分混合。
2.将上述浆料在80℃的真空干燥箱中干燥12h,得到完全干燥的混合粉末;
3.将上述粉末倒入研磨体中,并加入适量提前制备好的PVA溶液,进行充分研磨,得到流动性较好的混合粉末;
4.将上述造粒料压制成φ100mm的初坯,机械压力为40MPa,加压速度为1KN/s,保压5min,冷等静压压力200MPa,保压5min;
5.成型后的样品放入实验箱式电炉中,以2℃/min速率升温到600℃,保温180min进行脱脂;
6.完成排胶后的样品放入BN坩埚中,采用50wt%BN和50wt%石墨的混合粉床进行埋粉烧结,以8℃/min升到1860℃并保温16h,氮气压力为3MPa,随炉冷却至室温。
7.烧结后的氮化硅陶瓷有夹心现象(如图5),测试样品条取样区域为非夹心部位,性能见表1。
对比例3(常规埋粉多步烧结):
1.按α-Si3N4:β-Si3N4:Si:Al2O3:ZrO2:Yb2O3=82:6:1:4:1:6的比例,称取500g原料,将Si、Al2O3、ZrO2和Yb2O3粉在乙醇丙酮混合溶剂中(体积比为1:1)以300r/min的转速球磨4h,原料与球的质量比为1:4,混合均匀后获得浆料;将α-Si3N4和β-Si3N4按上述相同球磨工艺混合,将混合好的助剂溶剂与氮化硅溶液(包括氮化硅粉和氮化硅晶须)混合,再按上述球磨工艺充分混合。
2.将上述浆料在80℃的真空干燥箱中干燥12h,得到完全干燥的混合粉末;
3.将上述粉末倒入研磨体中,并加入适量提前制备好的PVA溶液,进行充分研磨,得到流动性较好的混合粉末;
4.将上述造粒料压制成φ100mm的初坯,再进行200MPa等静压15min,得到生坯;
5.成型后的样品放入实验箱式电炉中,以3℃/min速率升温到600℃,保温180min进行脱脂;
6.完成排胶后的样品放入BN坩埚中,采用50wt%BN和50wt%石墨的混合粉床进行埋粉烧结,再放入气压烧结炉中进行烧结,以4℃/min升到设定温度预烧并保温,预烧温度为1580℃,保温时间2h,氮气压力0.3MPa;保温结束后,加大氮气流量使其压力增加到4MPa,同时以15℃/min升到压烧温度保温,压烧温度为1700℃,保温时间3h;保温结束后继续升温至1820℃,保温时间6h,氮气压力0.4MPa,随炉冷却至室温。
7.烧结后的氮化硅陶瓷有夹心现象(如图6),测试样品条取样区域为非夹心部位,性能见表1。
表1氮化硅陶瓷的性能比较

Claims (5)

1.一种氮化硅质大尺寸厚壁高温结构件的制备方法,其特征在于,具体包括以下步骤:
(1)混料:将氧化铝、稀土氧化物和硅粉按比例用电子天平称量,将称量好的原料倒入聚四氟乙烯球磨罐,并按比例将尺寸不同的氧化锆球磨珠也放入球磨罐中,加入一定量的无水乙醇丙酮混合介质,将装好原料的球磨罐放入行星球磨机中充分混合;按比例用电子天平称量氮化硅粉体和氮化硅晶须,加入一定量的无水乙醇丙酮混合介质,配制氮化硅粉体和氮化硅晶须混合溶液,将混合好的氧化铝、稀土氧化物和硅粉的溶液与氮化硅粉体和氮化硅晶须溶液混合,再按上述球磨工艺充分球磨,混合完成后的原料倒入烧杯中放入真空干燥箱中,使溶剂完全挥发,得到完全干燥的混合粉末;
(2)造粒、成型与排胶:干燥后的粉末倒入研磨钵中,并加入适量提前制备好的PVA溶液,进行充分研磨,得到流动性较好的混合粉末,通过造粒后的具有一定流动性的粉末按一定重量倒入模具中,通过压力试验机进行干压成型,再将样品通过软包套处理,通过冷等静压,得到高密度的初坯样品,成型后的样品放入实验箱式电炉中排胶,后随炉冷却至室温;
(3)烧结埋粉:完成排胶后的样品放入BN坩埚中,再放入气压烧结炉中进行埋粉烧结,为控制烧结气氛,抑制氮化硅的分解,采用双层埋粉方式,内层为BN和石墨的混合粉床,BN占比为80-90wt%,埋粉厚度为样品高度的1.2-1.5倍,形成含N的还原气氛;外层为5-10wt%Si3N4、60-70wt%BN和20-30wt%SiON的混合粉床,埋粉厚度为样品高度的0.4-0.8倍,形成含Si的挥发气氛;
(4)烧结工艺:低压升温至设定温度预烧并保温,保温结束后,加大氮气流量增加气体压力,同时快速升到中温烧结阶段并保温,保温结束后继续升温至高温烧结阶段,并保温,停止加热后随气压炉冷却至室温;
步骤(4)具体为:
以预烧阶段升温速率2-4℃/min,预烧温度为1550-1580℃,保温时间1-4h,氮气压力0.3-0.5MPa;随后以15-20℃/min升到中温烧结温度1680-1700℃保温2-4h,氮气压力3-5MPa;最后以升温速率2-4℃/min升到高温烧结温度1800-1820℃,保温时间4-6h,氮气压力0.3-0.5MPa,完成致密化过程;
以重量百分比计,厚壁高温结构件原料由氮化硅粉体78-82%、β-氮化硅 6-8%、氧化铝粉3-5%、稀土氧化物6-8%、硅粉1-2%组成;
稀土氧化物为氧化钇、氧化镱、氧化镧中的一种或两种与氧化锆的混合物,氧化锆占比稀土氧化物比例为10-25%;
所述氮化硅粉体为α-氮化硅粉d50=500 nm,α-Si3N4>95%;
所述β-氮化硅为β-氮化硅晶须,d=150-300 nm,长度2-4μm。
2.根据权利要求1所述的一种氮化硅质大尺寸厚壁高温结构件的制备方法,其特征在于,所述步骤1原料与球的质量比为1:3-1:5,丙酮与无水乙醇的体积比为0.7~1.0:1,以200-300r/min的转速球磨2-6h,80-120℃的设置温度下干燥10-12h。
3.根据权利要求1所述的一种氮化硅质大尺寸厚壁高温结构件的制备方法,其特征在于,所述步骤2机械压力为40-60MPa,加压速度为1-2KN/s,保压5-10min,冷等静压压力200-220MPa,保压5-10min;以2-3℃/min速率升温到600℃,保温120-180min。
4.根据权利要求1所述的一种氮化硅质大尺寸厚壁高温结构件的制备方法,厚壁高温结构件特征在于:微观结构由直径1-1.5um,长径比4-8的β-氮化硅晶粒结合玻璃相相互搭接组成网络结构,直径2-3um四方状氮化锆嵌于网络结构,氮化锆与氮化硅晶粒数量占比2-4%。
5.根据权利要求1所述的一种氮化硅质大尺寸厚壁高温结构件的制备方法,厚壁高温结构件特征在于,壁厚大于30mm,直径大于100mm,内外颜色均一无夹心,HV硬度大于15GPa,室温抗弯强度大于800MPa,900℃抗弯强度大于600MPa,断裂韧性大于7MPa•m1/2,热膨胀系数2.8-3.1×10-6
CN202310098180.0A 2023-02-10 2023-02-10 一种氮化硅质大尺寸高温结构件及其制备方法 Active CN116217235B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310098180.0A CN116217235B (zh) 2023-02-10 2023-02-10 一种氮化硅质大尺寸高温结构件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310098180.0A CN116217235B (zh) 2023-02-10 2023-02-10 一种氮化硅质大尺寸高温结构件及其制备方法

Publications (2)

Publication Number Publication Date
CN116217235A CN116217235A (zh) 2023-06-06
CN116217235B true CN116217235B (zh) 2024-03-01

Family

ID=86583811

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310098180.0A Active CN116217235B (zh) 2023-02-10 2023-02-10 一种氮化硅质大尺寸高温结构件及其制备方法

Country Status (1)

Country Link
CN (1) CN116217235B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120328A (en) * 1988-01-27 1992-06-09 The Dow Chemical Company Dense, self-reinforced silicon nitride ceramic prepared by pressureless or low pressure gas sintering
US5312785A (en) * 1993-05-18 1994-05-17 The Dow Chemical Company Sintered self-reinforced silicon nitride
US5674793A (en) * 1994-09-20 1997-10-07 Agency Of Industrial Science And Technology, Ministry Of International Trade & Industry Method for producing a high-strength, high-toughness silicon nitride sinter
JP2012218983A (ja) * 2011-04-11 2012-11-12 Hitachi Metals Ltd 窒化珪素質セラミックス焼結体の製造方法および焼成容器
CN106518089A (zh) * 2016-11-25 2017-03-22 中国工程物理研究院材料研究所 一种高性能大尺寸氮化硅陶瓷材料的制备方法
CN113307631A (zh) * 2021-05-13 2021-08-27 广东工业大学 一种无压烧结制备高综合性能氮化硅陶瓷的方法
CN115557792A (zh) * 2022-10-17 2023-01-03 天津大学 具有优异力学性能的高导热氮化硅陶瓷材料及制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120328A (en) * 1988-01-27 1992-06-09 The Dow Chemical Company Dense, self-reinforced silicon nitride ceramic prepared by pressureless or low pressure gas sintering
CN1064260A (zh) * 1991-02-19 1992-09-09 陶氏化学公司 用无压或低压气体烧结法制备的致密自增强氮化硅陶瓷
US5312785A (en) * 1993-05-18 1994-05-17 The Dow Chemical Company Sintered self-reinforced silicon nitride
US5674793A (en) * 1994-09-20 1997-10-07 Agency Of Industrial Science And Technology, Ministry Of International Trade & Industry Method for producing a high-strength, high-toughness silicon nitride sinter
JP2012218983A (ja) * 2011-04-11 2012-11-12 Hitachi Metals Ltd 窒化珪素質セラミックス焼結体の製造方法および焼成容器
CN106518089A (zh) * 2016-11-25 2017-03-22 中国工程物理研究院材料研究所 一种高性能大尺寸氮化硅陶瓷材料的制备方法
CN113307631A (zh) * 2021-05-13 2021-08-27 广东工业大学 一种无压烧结制备高综合性能氮化硅陶瓷的方法
CN115557792A (zh) * 2022-10-17 2023-01-03 天津大学 具有优异力学性能的高导热氮化硅陶瓷材料及制备方法

Also Published As

Publication number Publication date
CN116217235A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
CN107721433B (zh) 氮化硼复相陶瓷及其烧结方法和应用
CN100445235C (zh) 一种氮化铝增强碳化硅陶瓷及其制备方法
WO2017120990A1 (zh) 一种净尺寸复杂形状透明陶瓷件的制备工艺
CN108178634B (zh) 塞隆结合碳化硅陶瓷的制备法
CN111217611B (zh) 一种氮化铝氮化硼复合陶瓷材料及其制备方法
CN108640672A (zh) 一种镁铝尖晶石透明陶瓷的制备方法
CN106904977B (zh) 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法
CN106800420B (zh) 一种碳化硅晶须原位复合刚玉高温陶瓷材料及其制备方法
US9546114B2 (en) SiAlON bonded silicon carbide material
CN105622107B (zh) 一种表硬心韧高性能Si3N4梯度陶瓷球材料的制备方法
CN113943162B (zh) 一种α-SiAlON高熵透明陶瓷材料及其制备方法
US6139791A (en) Method of making in-situ toughened alpha prime SiAlon-based ceramics
CN111393170A (zh) 一种通过多因素优化制备高致密度氮化硅陶瓷的方法及制备的氮化硅陶瓷
CN101734920B (zh) 一种氮化钛多孔陶瓷及其制备方法
CN109336562B (zh) 一种氧化铝基陶瓷复合材料的制备方法
CN116217235B (zh) 一种氮化硅质大尺寸高温结构件及其制备方法
CN104609864B (zh) 一种利用氮化硅铁粉末制备块体陶瓷材料的方法
CN110877980A (zh) 一种高强度碳化硅/氮化硅复相陶瓷及其制备方法
CN114835473B (zh) 一种氧化铝陶瓷及其制备方法
CN112062557A (zh) 氧化锆陶瓷及其制备方法和应用
CN110183229A (zh) 一种具有低温裂纹自愈合能力的Ti2Al(1-x)SnxC陶瓷修复相粉体的制备方法
CN113957294A (zh) 一种CrCoNi中熵合金增强Al基复合材料及其制备方法
CN116903378B (zh) 一种微波低温预处理制备高强度低晶格氧缺陷氮化铝陶瓷的方法
CN108358628B (zh) 一种莫来石-氧化锆复合陶瓷及其制备方法
CN111187072A (zh) 一种具有优异高温性能的多孔氮化硅陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant