CN116082742B - 一种紫外光辐照交联的聚乙烯绝缘料及其制备方法 - Google Patents

一种紫外光辐照交联的聚乙烯绝缘料及其制备方法 Download PDF

Info

Publication number
CN116082742B
CN116082742B CN202211606245.XA CN202211606245A CN116082742B CN 116082742 B CN116082742 B CN 116082742B CN 202211606245 A CN202211606245 A CN 202211606245A CN 116082742 B CN116082742 B CN 116082742B
Authority
CN
China
Prior art keywords
lldpe
antioxidant
insulating material
crosslinked polyethylene
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211606245.XA
Other languages
English (en)
Other versions
CN116082742A (zh
Inventor
李小红
李小丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Fengchi Industrial Co ltd
Original Assignee
Chongqing Fengchi Industrial Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Fengchi Industrial Co ltd filed Critical Chongqing Fengchi Industrial Co ltd
Priority to CN202211606245.XA priority Critical patent/CN116082742B/zh
Publication of CN116082742A publication Critical patent/CN116082742A/zh
Application granted granted Critical
Publication of CN116082742B publication Critical patent/CN116082742B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2453/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/06Crosslinking by radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及到塑料技术领域,具体涉及到一种紫外光辐照交联的聚乙烯绝缘料及其制备方法。其制备原料重量百分比计包括:第一LLDPE 90‑98%;第二LLDPE1‑5%;聚烯烃弹性体1‑3%;引发剂0.5‑1%;交联剂0.5‑1%;抗氧剂0.1‑0.3%;辅助抗氧剂0.1‑0.3%。本发明聚乙烯绝缘料交联以后耐温等级提高,从热塑性转换为热固性,应用于电线电缆中具有良好的耐高温性能,并且适用于高压电线电缆中,耐击穿能力强。

Description

一种紫外光辐照交联的聚乙烯绝缘料及其制备方法
技术领域
本发明涉及到塑料技术领域,具体涉及到一种紫外光辐照交联的聚乙烯绝缘料及其制备方法。
背景技术
随着中国电力行业的快速发展,高压技术的实现和应用,对电能载体的要求也越来越严格,绝缘塑料作为电线电缆等电能载体的重要制备原料也需要具备更好的耐高温、耐击穿性能,同时还要考虑较低的生产成本和简洁的制备工艺,便于大规模工业化生产,以满足基建需要。
现有技术CN102643472A公开了一种中高压电力电缆用可化学交联聚乙烯绝缘塑料及制备方法,通过多元复配抗氧剂和过氧化物吸收改性提高了材料的挤出性和成缆性,但是产品仍然是热塑性塑料,耐高温性能差,使用寿命短;现有技术CN106366487A公开了一种用于高压电线中的耐磨、耐油绝缘护套材料的生产方法,通过对工艺中各个组分在配比、处理等方面的合理控制,使得制备出的电缆料抗拉强度高、稳定性好、且具有良好的耐磨、耐油、耐水性能,但制备工艺复杂,不利于大规模工业化生产。
发明内容
针对上述技术问题,一方面提供了一种紫外光辐照交联的聚乙烯绝缘料,其制备原料以重量百分比计包括:
第一LLDPE 90-98%,第二LLDPE1-5%,聚烯烃弹性体1-3%,引发剂0.5-1%,交联剂0.5-1%,抗氧剂0.1-0.3%,辅助抗氧剂0.1-0.3%。
优选的,所述第一LLDPE在190℃/2.16kg下的熔融指数为1-3g/10min。
优选的,所述第二LLDPE在190℃/2.16kg下的熔融指数为4-10g/10min。
优选的,所述引发剂选自安息香、安息香双甲醚、安息香***、安息香异丙醚、安息香丁醚、二苯基乙酮、α,α-二甲氧基-α-苯基苯乙酮、α,α-二乙氧基苯乙酮、α-羟烷基苯酮、α-胺烷基苯酮、芳酰基膦氧化物、双苯甲酰基苯基氧化膦、二苯甲酮、2,4-二羟基二苯甲酮、米蚩酮、硫代丙氧基硫杂蒽酮、异丙基硫杂蒽酮中的一种或几种的组合。
进一步优选的,所述引发剂为二苯甲酮。
优选的,所述交联剂选自过氧化二异丙苯、过氧化苯甲酰、二叔丁基过氧化物、过氧化氢二异丙苯、三羟甲基丙烷三甲基丙烯酸酯中的一种或几种的组合。
进一步优选的,所述交联剂为三羟甲基丙烷三甲基丙烯酸酯。
优选的,所述抗氧剂为酚类抗氧剂。
优选的,所述辅助抗氧剂为磷酸酯类抗氧剂。
优选的,所述聚烯烃弹性体为SEBS热塑性弹性体。
优选的,所述紫外光辐照交联的聚乙烯绝缘料的制备原料以重量百分比计还包括无机填料0.2-1%。
进一步优选的,所述无机填料选自云母粉、云母粉、滑石粉、膨润土、高岭土、气相二氧化硅、二氧化钛中的一种或几种。
更优选的,所述无机填料为二氧化钛。
申请人在实验过程中发现采用1-3g/10min低熔指的LLDPE(线性低密度聚乙烯)和5g/10min高熔指的LLDPE共同作用可以使聚乙烯绝缘料具有良好的加工性能,并且紫外光照交联后耐高温效果好,力学性能佳,猜测可能的原因是:LLDPE中含有较多的短支链,在发生交联固化反应时短支链对融融状态转化为结晶状态的阻碍力较小,形成的结晶状态规整度较高,在高温环境下破坏结晶规整度高的分子结构需要较高的能量,因此本申请的绝缘料可以承受较高的温度环境。除此之外LLDPE基础树脂中含有较多的短支链结构,处于无定形相中的短支链能够相互之间缠结在一起充当连接分子链的作用,采用二苯甲酮作为引发剂,在紫外光照后发生固化交联,多条分子短支链形成交联密度高的交联网络,高的交联密度可以导致外力在无定型相中被分散,交联网络受到外力时均匀变形的能力增强,受力后材料结构稳定,不易变形。但是1-3g/10min熔指的LLDPE在混合器中不易搅拌均匀,粘度较大需要较大的剪切力,通过引入4-10g/10min熔指的LLDPE可以降低加工时的粘度,使其剪切时容易熔融变形,易于挤出加工。
申请人进一步发现,通过引入SEBS聚烯烃弹性体和二氧化钛,可以提高绝缘聚乙烯的抗水树性,原因可能是,引入的SEBS可以改善交联后聚乙烯绝缘料的柔韧性,减少聚乙烯绝缘料的力学破坏,同时引入的二氧化钛可以提高聚乙烯的亲水性,使水分难以在绝缘料中扩散,从而抑制水树枝的引发,延长绝缘料的使用寿命。
本发明另一方面提供了一种紫外光辐照交联的聚乙烯绝缘料的制备方法,包括如下步骤:
S1、将制备原料按照重量百分比加入混合器中,高速搅拌,混合均匀;
S2、制备原料搅拌完成后转入双螺杆挤出机中挤出,出料即得。
优选的,所述步骤S2中挤出的聚乙烯绝缘料包裹导线芯,在紫外线辐照设备中光交联既得电缆。
有益效果
1.通过1-3g/10min低熔指的LLDPE和5g/10min高熔指的LLDPE在(90-98):(1-5)的比例下组合,降低了绝缘料的加工难度并提高了耐高温性能。
2.通过限定引发剂的种类为二苯甲酮,进一步提高了绝缘料在使用时的交联密度,从而提高材料的结构稳定性和使用寿命。
3.通过添加0.2-1%的无机填料,提高绝缘料力学强度的同时进一步提高材料的绝缘性能。
4.通过限定聚烯烃弹性体的种类为SEBS聚烯烃弹性体和无机填料的种类为二氧化钛,提高绝缘料的抗水树性。
5.通过优化原料选取和制备工艺,使制得的绝缘料交联以后耐温等级提高,从热塑性转换为热固性,应用于电线电缆中具有良好的耐高温性能,并且适用于高压电线电缆中,耐击穿能力强。
具体实施方式
为使本发明的目的、技术方案和技术效果更加清晰,以下结合具体实施例,对本发明作进一步的解释说明。
在本发明的实施例中,所述第一LLDPE优选使用北欧化工生产的FM5340型LLDPE,在190℃/2.16kg下熔融指数为1.3g/10min。
在本发明的实施例中,所述第二LLDPE优选使用美国沙伯基础生产的RG50035型LLDPE,在190℃/2.16kg下熔融指数为5g/10min。
在本发明的实施例中,所述聚烯烃弹性体优选为SEBS热塑性弹性体,优选使用美国科腾生产的G1641H型SEBS热塑性弹性体。
在本发明的实施例中,所述引发剂优选为二苯甲酮,优选使用天津福晨生产的二苯甲酮。
在本发明的实施例中,所述交联剂优选为三羟甲基丙烷三甲基丙烯酸酯,优选使用上海光易生产的EM331型三羟甲基丙烷三甲基丙烯酸酯。
在本发明的实施例中,所述抗氧剂优选为酚类抗氧剂,优选使用德国巴斯夫生产的受阻酚类抗氧剂1098。
在本发明的实施例中,所述环辅助抗氧剂优选为磷酸酯类抗氧剂,优选使用德国巴斯夫生产的亚磷酸酯抗氧剂168。
在本发明的实施例中,所述填料优选为二氧化钛,优选使用晟鹏化工生产的二氧化钛。
实施例
实施例1
一种紫外光辐照交联的聚乙烯绝缘料,其制备原料以重量百分比计包括:
第一LLDPE92%,第二LLDPE4%,SEBS热塑性弹性体1.5%,二苯甲酮1%,三羟甲基丙烷三甲基丙烯酸酯1%,抗氧剂1098 0.1%,抗氧剂168 0.1%,二氧化钛0.3%。
上述紫外光辐照交联的聚乙烯绝缘料的制备方法包括如下步骤:
S1、将第一LLDPE、第二LLDPE、SEBS热塑性弹性体、二苯甲酮、三羟甲基丙烷三甲基丙烯酸酯、抗氧剂1098、抗氧剂168、二氧化钛加入混合器中,高速搅拌,得到混合均匀的物料;
S2、将物料转入双螺杆挤出机中挤出,出料即得。
实施例2
一种紫外光辐照交联的聚乙烯绝缘料,实施例2的实施方式同实施例1,不同的是,实施例2中不添加第二LLDPE,第一LLDPE添加量为96%。
实施例3
一种紫外光辐照交联的聚乙烯绝缘料,实施例3的实施方式同实施例1,不同的是,实施例3中引发剂为湖北启牛生产的二苯基乙酮。
实施例4
一种紫外光辐照交联的聚乙烯绝缘料,实施例4的实施方式同实施例1,不同的是,实施例4中无机填料为上海赢创生产的R812S型气相二氧化硅。
性能测试
将实施例1-4所得聚乙烯绝缘料通过液压机制成直径4mm、厚度3mm的圆形薄片,在120000mJ/cm2的380nm波长LED光源下200℃交联辐照固化20s,根据JB/T 10437-2004《电线电缆用可交联聚乙烯绝缘料》的测试要求,对上述实施例中的绝缘料进行测试,测试结果如下表1所示。
表1性能测试结果

Claims (5)

1.一种紫外光辐照交联的聚乙烯绝缘料,其特征在于,其制备原料以重量百分比计包括:
第一LLDPE 90-98%,第二LLDPE1-5%,聚烯烃弹性体1-3%,引发剂0.5-1%,交联剂0.5-1%,抗氧剂0.1-0.3%,辅助抗氧剂0.1-0.3%;
所述第一LLDPE的熔融指数为1-3g/10min;
所述第二LLDPE的熔融指数为4-10g/10min;
所述聚烯烃弹性体为SEBS热塑性弹性体;
其制备原料以重量百分比计还包括无机填料0.2-1%,所述无机填料为二氧化钛;
所述引发剂为二苯甲酮。
2.根据权利要求1所述的紫外光辐照交联的聚乙烯绝缘料,其特征在于,所述交联剂选自过氧化二异丙苯、过氧化苯甲酰、二叔丁基过氧化物、过氧化氢二异丙苯、三羟甲基丙烷三甲基丙烯酸酯中的一种或几种的组合。
3.根据权利要求1所述的紫外光辐照交联的聚乙烯绝缘料,其特征在于,所述抗氧剂为酚类抗氧剂。
4.根据权利要求1所述的紫外光辐照交联的聚乙烯绝缘料,其特征在于,所述辅助抗氧剂为磷酸酯类抗氧剂。
5.一种根据权利要求1-4任一项所述的紫外光辐照交联的聚乙烯绝缘料的制备方法,其特征在于,包括如下步骤:
S1、将制备原料按照重量百分比加入混合器中,高速搅拌,混合均匀;
S2、制备原料搅拌完成后转入双螺杆挤出机中挤出,出料即得。
CN202211606245.XA 2022-12-14 2022-12-14 一种紫外光辐照交联的聚乙烯绝缘料及其制备方法 Active CN116082742B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211606245.XA CN116082742B (zh) 2022-12-14 2022-12-14 一种紫外光辐照交联的聚乙烯绝缘料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211606245.XA CN116082742B (zh) 2022-12-14 2022-12-14 一种紫外光辐照交联的聚乙烯绝缘料及其制备方法

Publications (2)

Publication Number Publication Date
CN116082742A CN116082742A (zh) 2023-05-09
CN116082742B true CN116082742B (zh) 2024-06-14

Family

ID=86187712

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211606245.XA Active CN116082742B (zh) 2022-12-14 2022-12-14 一种紫外光辐照交联的聚乙烯绝缘料及其制备方法

Country Status (1)

Country Link
CN (1) CN116082742B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111393737A (zh) * 2020-04-02 2020-07-10 成都鑫成鹏高分子科技股份有限公司 一种紫外光交联聚乙烯绝缘料及其制备方法
CN112321925A (zh) * 2020-10-16 2021-02-05 广东聚石化学股份有限公司 一种紫外光交联聚乙烯电缆料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111393737A (zh) * 2020-04-02 2020-07-10 成都鑫成鹏高分子科技股份有限公司 一种紫外光交联聚乙烯绝缘料及其制备方法
CN112321925A (zh) * 2020-10-16 2021-02-05 广东聚石化学股份有限公司 一种紫外光交联聚乙烯电缆料及其制备方法

Also Published As

Publication number Publication date
CN116082742A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
CN101781419B (zh) 20kV电缆用硅烷交联聚乙烯绝缘材料及其制备方法
AU2004206275B2 (en) Cable with recyclable covering layer
CN110498997B (zh) 一种聚丙烯基高压直流电缆料及其制备方法
CN111393785B (zh) 一种抗氧剂接枝型高压直流电缆交联聚乙烯绝缘材料及其制备方法
CN110938254A (zh) 一种led紫外光交联彩色聚乙烯电缆料及其制备方法
CN104823246A (zh) 减少过氧化物在可交联的基于乙烯的聚合物组合物中渗移的方法
US9920186B2 (en) Crosslinked polyethylene resin composition
CN106750930A (zh) 一种电线电缆用阻燃热塑性橡胶材料及其制备方法
CN111051398A (zh) 乙烯-乙酸乙烯酯的反应性混炼
CN115746445A (zh) 一种无卤低烟阻燃聚烯烃护套料及其制备方法
CN114031837A (zh) 一种高压电缆用可交联聚乙烯绝缘材料、制备方法及其用途
CN116082742B (zh) 一种紫外光辐照交联的聚乙烯绝缘料及其制备方法
CN109485989B (zh) 一种光伏电缆用电缆料及其制备方法
CN1903925A (zh) 电力电缆用交联聚乙烯绝缘塑料
CN117024948A (zh) 一种耐高温线缆护套用tpu基材及其制备方法
CN114989524B (zh) 一种交联粘结型导体屏蔽材料及其制备方法
CN111961334A (zh) 一种弹性体绝缘汽车用电缆
CN115772080A (zh) 一种丙烯酸修饰山梨糖醇水树抑制剂的制备方法和应用
CN110982186A (zh) 一种电器连接线绝缘层及其制备方法
CN109942933A (zh) 一种抑制空间电荷的直流电缆绝缘料及其制备方法
CN113817257B (zh) 一种防铜害的二步法硅烷交联聚乙烯绝缘料及其制备方法
CN102321346A (zh) 一种可辐照交联耐高温无卤阻燃聚酯弹性体材料及其制备方法
CN114957848A (zh) 一种高效的紫外光交联黑色低烟无卤电缆料及其制备方法和应用
CN103824642B (zh) 具有耐湿老化性的柔性电力电缆
CN106633402A (zh) 一种低压配电箱绝缘材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant