CN115665936B - 一种隧道照明节能控制策略生成方法、***、终端及介质 - Google Patents

一种隧道照明节能控制策略生成方法、***、终端及介质 Download PDF

Info

Publication number
CN115665936B
CN115665936B CN202211687635.4A CN202211687635A CN115665936B CN 115665936 B CN115665936 B CN 115665936B CN 202211687635 A CN202211687635 A CN 202211687635A CN 115665936 B CN115665936 B CN 115665936B
Authority
CN
China
Prior art keywords
tunnel
regulation
vehicle
target
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211687635.4A
Other languages
English (en)
Other versions
CN115665936A (zh
Inventor
陈山
任春龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Zhenhan Innovation Intelligent Technology Co ltd
Original Assignee
Sichuan Zhenhan Innovation Intelligent Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Zhenhan Innovation Intelligent Technology Co ltd filed Critical Sichuan Zhenhan Innovation Intelligent Technology Co ltd
Priority to CN202211687635.4A priority Critical patent/CN115665936B/zh
Publication of CN115665936A publication Critical patent/CN115665936A/zh
Application granted granted Critical
Publication of CN115665936B publication Critical patent/CN115665936B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本发明公开了一种隧道照明节能控制策略生成方法、***、终端及介质,涉及隧道照明技术领域,其技术方案要点是:获取目标隧道上行侧的车流量信息,并依据车流量信息模拟分析得到目标隧道在目标周期内的车辆分布密度信息;构建车辆灯光启用率与隧道灯光强度之间的关联函数;基于关联函数和隧道照明调控频次的约束条件,以隧道照明输出功率和车辆灯光功率之和最小为目标建立策略优化模型;将车辆分布密度信息输入策略优化模型,生成得到隧道照明控制策略。本发明考虑了隧道灯光强度对车辆灯光启用的影响,即降低了隧道灯光调控频次,又降低了隧道运行时的能源总消耗,实现了低碳排放运行。

Description

一种隧道照明节能控制策略生成方法、***、终端及介质
技术领域
本发明涉及隧道照明技术领域,更具体地说,它涉及一种隧道照明节能控制策略生成方法、***、终端及介质。
背景技术
传统的隧道照明控制主要在不同时间段控制隧道照明的照明数量和光强度,以此达到节能的目的。而随着隧道交通事故的频发,为改善隧道内路面状况和隧道内视觉享受,以及减轻驾驶员疲劳,现有技术中公开有基于隧道内外的环境变化和车辆速度信息对隧道照明进行智能控制的方法。
然而,由于环境变化影响因素较多以及受道路高低峰影响而导致车辆速度信息波动较大,且不同车辆的行驶速度也存在较大差异,所以采用基于隧道内外的环境变化和车辆速度信息对隧道照明进行智能控制时,隧道照明调控频次过高,不仅会严重影响隧道照明的使用寿命,也会对隧道内正常行驶的驾驶人员产生干扰。此外,上述的隧道照明控制方法在实现过程中将会增大隧道照明的能耗,尤其是车辆在驶过隧道时可能会开启车灯,这就导致隧道运行时的能源总消耗过大,碳排放过高。
因此,如何研究设计一种能够克服上述缺陷的隧道照明节能控制策略生成方法、***、终端及介质是我们目前急需解决的问题。
发明内容
为解决现有技术中的不足,本发明的目的是提供一种隧道照明节能控制策略生成方法、***、终端及介质,考虑了隧道灯光强度对车辆灯光启用的影响,在满足进入隧道而削弱因光强度变化所引起视觉不适的功率值下,以隧道照明和车辆灯光同时启用后的总功率值最小为优化目标求解得到隧道照明控制策略,即降低了隧道灯光调控频次,又降低了隧道运行时的能源总消耗,实现了低碳排放运行。
本发明的上述技术目的是通过以下技术方案得以实现的:
第一方面,提供了一种隧道照明节能控制策略生成方法,包括以下步骤:
获取目标隧道上行侧的车流量信息,并依据车流量信息模拟分析得到目标隧道在目标周期内的车辆分布密度信息;
构建车辆灯光启用率与隧道灯光强度之间的关联函数;
基于关联函数和隧道照明调控频次的约束条件,以隧道照明输出功率和车辆灯光功率之和最小为目标建立策略优化模型;
将车辆分布密度信息输入策略优化模型,生成得到隧道照明控制策略。
进一步的,所述车流量信息的获取过程具体为:
依据隧道长度与隧道限速信息之比计算得到最小隧道行驶时间;
依据最小隧道行驶时间与目标隧道上行侧的公路限速信息之积计算得到采集间隔距离;
以在目标隧道上行侧中选取距离目标隧道的上行入口不小于采集间隔距离的地点作为采集地点;
以最小隧道行驶时间作为采集时间,在采集地点采集车流量信息。
进一步的,所述车辆分布密度信息的模拟分析过程具体为:
依据车流量信息和采集时间确定车辆平均速度,并将车辆平均速度作为车辆从采集地点行驶朝目标隧道的上行入口行驶的预估行驶速度;
结合预估行驶速度、标准制动加速度和隧道限速信息模拟分析得到车辆在目标隧道行驶的时间段;
统计同一时间节点车辆处于目标隧道的数量,得到车辆分布密度信息。
进一步的,所述关联函数的构建过程具体为:
获取车辆在不同隧道灯光强度下行驶的车辆灯光启用数据;
采用深度学习训练模型或采用曲线拟合方法对车辆灯光启用数据处理后,得到表征车辆灯光启用率与隧道灯光强度之间关联关系的关联函数。
进一步的,所述约束条件包括:
单次隧道照明调控的周期不小于调控间隔时间阈值;
以及,相邻隧道照明调控的隧道照明输出功率之差不大于调控间隔功率阈值。
进一步的,所述策略优化模型的表达式具体为:
Figure 317318DEST_PATH_IMAGE001
其中,
Figure 765617DEST_PATH_IMAGE002
表示车辆灯光启用后单元时间内的平均功率;/>
Figure 76513DEST_PATH_IMAGE003
表示目标周期内隧道照明的调控次数;/>
Figure 2880DEST_PATH_IMAGE004
表示第/>
Figure 551673DEST_PATH_IMAGE005
次调控单元时间内的隧道照明输出功率;/>
Figure 647238DEST_PATH_IMAGE006
表示第/>
Figure 445429DEST_PATH_IMAGE005
次调控的周期;/>
Figure 441067DEST_PATH_IMAGE007
表示第/>
Figure 641104DEST_PATH_IMAGE005
次调控的终止时刻;/>
Figure 368889DEST_PATH_IMAGE008
表示第/>
Figure 405109DEST_PATH_IMAGE005
次调控的起始时刻;/>
Figure 938859DEST_PATH_IMAGE009
表示由第/>
Figure 993402DEST_PATH_IMAGE005
次调控单元时间内的隧道照明输出功率所决定的隧道灯光强度;/>
Figure 157668DEST_PATH_IMAGE010
表示由第/>
Figure 196031DEST_PATH_IMAGE005
次调控内的隧道灯光强度所确定车辆灯光启用率;/>
Figure 753045DEST_PATH_IMAGE011
表示隧道长度;/>
Figure 927674DEST_PATH_IMAGE012
表示/>
Figure 997262DEST_PATH_IMAGE013
时刻的车辆分布密度值;
Figure 522921DEST_PATH_IMAGE014
表示调控间隔时间阈值;/>
Figure 867315DEST_PATH_IMAGE015
表示调控间隔功率阈值;/>
Figure 912762DEST_PATH_IMAGE016
表示第/>
Figure 215567DEST_PATH_IMAGE017
次调控单元时间内的隧道照明输出功率;/>
Figure 697364DEST_PATH_IMAGE018
表示隧道照明灯光调控功率的下限值,由隧道内外光强度变化情况决定。
进一步的,所述隧道照明控制策略的生成过程具体为:
通过策略优化模型求解目标周期内调控的周期以及每个调控的周期内隧道照明输出功率的总值;
通过调控隧道照明灯光的数量和/或调控单个隧道照明灯光的实际工作功率,得到满足隧道照明输出功率的总值的隧道照明控制策略。
第二方面,提供了一种隧道照明节能控制策略生成***,包括:
数据采集模块,用于获取目标隧道上行侧的车流量信息,并依据车流量信息模拟分析得到目标隧道在目标周期内的车辆分布密度信息;
函数构建模块,用于构建车辆灯光启用率与隧道灯光强度之间的关联函数;
模型构建模块,用于基于关联函数和隧道照明调控频次的约束条件,以隧道照明输出功率和车辆灯光功率之和最小为目标建立策略优化模型;
策略优化模块,用于将车辆分布密度信息输入策略优化模型,生成得到隧道照明控制策略。
第三方面,提供了一种计算机终端,包含存储器、处理器及存储在存储器并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如第一方面中任意一项所述的一种隧道照明节能控制策略生成方法。
第四方面,提供了一种计算机可读介质,其上存储有计算机程序,所述计算机程序被处理器执行可实现如第一方面中任意一项所述的一种隧道照明节能控制策略生成方法。
与现有技术相比,本发明具有以下有益效果:
1、本发明提供的一种隧道照明节能控制策略生成方法,考虑了隧道灯光强度对车辆灯光启用的影响,在满足进入隧道而削弱因光强度变化所引起视觉不适的功率值下,以隧道照明和车辆灯光同时启用后的总功率值最小为优化目标求解得到隧道照明控制策略,即降低了隧道灯光调控频次,又降低了隧道运行时的能源总消耗,实现了低碳排放运行;
2、本发明通过在目标隧道上行侧选取采集地点进行车流量信息的采集,并依据车流量信息模拟分析得到目标隧道在目标周期内的车辆分布密度信息,减少因实时处理数据所存在的延迟而降低隧道照明调控的准确性的情况,使得隧道照明控制的可靠性更高;
3、本发明既可以通过调控隧道照明灯光的数量来实现隧道照明输出功率的调控,也可以通过调控单个隧道照明灯光的实际工作功率来实现隧道照明输出功率的调控,其调控的灵活性更强。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1是本发明实施例中的流程图;
图2是本发明实施例中的***框图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例1:一种隧道照明节能控制策略生成方法,如图1所示,包括以下步骤:
步骤S1:获取目标隧道上行侧的车流量信息,并依据车流量信息模拟分析得到目标隧道在目标周期内的车辆分布密度信息;
步骤S2:构建车辆灯光启用率与隧道灯光强度之间的关联函数;
步骤S3:基于关联函数和隧道照明调控频次的约束条件,以隧道照明输出功率和车辆灯光功率之和最小为目标建立策略优化模型;
步骤S4:将车辆分布密度信息输入策略优化模型,生成得到隧道照明控制策略。
车流量信息的获取过程具体为:依据隧道长度与隧道限速信息之比计算得到最小隧道行驶时间;依据最小隧道行驶时间与目标隧道上行侧的公路限速信息之积计算得到采集间隔距离;以在目标隧道上行侧中选取距离目标隧道的上行入口不小于采集间隔距离的地点作为采集地点;以最小隧道行驶时间作为采集时间,在采集地点采集车流量信息。
此外,车流量信息还可以通过对车载终端上传的定位信息进行分析后得到,在此处车流量信息的获取方式不受限制。
车辆分布密度信息的模拟分析过程具体为:依据车流量信息和采集时间确定车辆平均速度,并将车辆平均速度作为车辆从采集地点行驶朝目标隧道的上行入口行驶的预估行驶速度;结合预估行驶速度、标准制动加速度和隧道限速信息模拟分析得到车辆在目标隧道行驶的时间段;统计同一时间节点车辆处于目标隧道的数量,得到车辆分布密度信息,可减少因实时处理数据所存在的延迟而降低隧道照明调控的准确性的情况,使得隧道照明控制的可靠性更高。此外,辆分布密度信息也可以对隧道内实时采集的视频图像识别后得到,在此不受限制。
关联函数的构建过程具体为:获取车辆在不同隧道灯光强度下行驶的车辆灯光启用数据;采用深度学习训练模型或采用曲线拟合方法对车辆灯光启用数据处理后,得到表征车辆灯光启用率与隧道灯光强度之间关联关系的关联函数。
约束条件包括但不限于单次隧道照明调控的周期不小于调控间隔时间阈值、相邻隧道照明调控的隧道照明输出功率之差不大于调控间隔功率阈值以及隧道照明和车辆灯光同时启用后的总功率值不小于由隧道内外光强度变化情况决定的隧道照明灯光调控功率的下限值。
策略优化模型的表达式具体为:
Figure 111028DEST_PATH_IMAGE001
其中,
Figure 197933DEST_PATH_IMAGE002
表示车辆灯光启用后单元时间内的平均功率;/>
Figure 685022DEST_PATH_IMAGE003
表示目标周期内隧道照明的调控次数;/>
Figure 654115DEST_PATH_IMAGE004
表示第/>
Figure 809152DEST_PATH_IMAGE005
次调控单元时间内的隧道照明输出功率;/>
Figure 78460DEST_PATH_IMAGE006
表示第/>
Figure 723068DEST_PATH_IMAGE005
次调控的周期;/>
Figure 382719DEST_PATH_IMAGE007
表示第/>
Figure 154497DEST_PATH_IMAGE005
次调控的终止时刻;/>
Figure 950415DEST_PATH_IMAGE008
表示第/>
Figure 562662DEST_PATH_IMAGE005
次调控的起始时刻;/>
Figure 709609DEST_PATH_IMAGE009
表示由第/>
Figure 534346DEST_PATH_IMAGE005
次调控单元时间内的隧道照明输出功率所决定的隧道灯光强度;/>
Figure 997819DEST_PATH_IMAGE010
表示由第/>
Figure 921913DEST_PATH_IMAGE005
次调控内的隧道灯光强度所确定车辆灯光启用率;/>
Figure 618474DEST_PATH_IMAGE011
表示隧道长度;/>
Figure 715743DEST_PATH_IMAGE012
表示/>
Figure 751832DEST_PATH_IMAGE013
时刻的车辆分布密度值;
Figure 643564DEST_PATH_IMAGE014
表示调控间隔时间阈值;/>
Figure 578153DEST_PATH_IMAGE015
表示调控间隔功率阈值;/>
Figure 682376DEST_PATH_IMAGE016
表示第/>
Figure 104130DEST_PATH_IMAGE017
次调控单元时间内的隧道照明输出功率;/>
Figure 697922DEST_PATH_IMAGE018
表示隧道照明灯光调控功率的下限值,由隧道内外光强度变化情况决定。
隧道照明控制策略的生成过程具体为:通过策略优化模型求解目标周期内调控的周期以及每个调控的周期内隧道照明输出功率的总值;通过调控隧道照明灯光的数量和/或调控单个隧道照明灯光的实际工作功率,得到满足隧道照明输出功率的总值的隧道照明控制策略。
实施例2:一种隧道照明节能控制策略生成***,该***用于实现实施例1中所记载的一种隧道照明节能控制策略生成方法,如图2所示,包括数据采集模块、函数构建模块、模型构建模块和策略优化模块。
其中,数据采集模块,用于获取目标隧道上行侧的车流量信息,并依据车流量信息模拟分析得到目标隧道在目标周期内的车辆分布密度信息;函数构建模块,用于构建车辆灯光启用率与隧道灯光强度之间的关联函数;模型构建模块,用于基于关联函数和隧道照明调控频次的约束条件,以隧道照明输出功率和车辆灯光功率之和最小为目标建立策略优化模型;策略优化模块,用于将车辆分布密度信息输入策略优化模型,生成得到隧道照明控制策略。
工作原理:本发明考虑了隧道灯光强度对车辆灯光启用的影响,在满足进入隧道而削弱因光强度变化所引起视觉不适的功率值下,以隧道照明和车辆灯光同时启用后的总功率值最小为优化目标求解得到隧道照明控制策略,即降低了隧道灯光调控频次,又降低了隧道运行时的能源总消耗,实现了低碳排放运行。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种隧道照明节能控制策略生成方法,其特征是,包括以下步骤:
获取目标隧道上行侧的车流量信息,并依据车流量信息模拟分析得到目标隧道在目标周期内的车辆分布密度信息;
构建车辆灯光启用率与隧道灯光强度之间的关联函数;
基于关联函数和隧道照明调控频次的约束条件,以隧道照明输出功率和车辆灯光功率之和最小为目标建立策略优化模型;
将车辆分布密度信息输入策略优化模型,生成得到隧道照明控制策略;
所述策略优化模型的表达式具体为:
Figure QLYQS_1
其中,
Figure QLYQS_13
表示车辆灯光启用后单元时间内的平均功率;/>
Figure QLYQS_5
表示目标周期内隧道照明的调控次数;/>
Figure QLYQS_9
表示第/>
Figure QLYQS_17
次调控单元时间内的隧道照明输出功率;/>
Figure QLYQS_21
表示第/>
Figure QLYQS_19
次调控的周期;
Figure QLYQS_22
表示第/>
Figure QLYQS_11
次调控的终止时刻;/>
Figure QLYQS_15
表示第/>
Figure QLYQS_2
次调控的起始时刻;/>
Figure QLYQS_7
表示由第/>
Figure QLYQS_4
次调控单元时间内的隧道照明输出功率所决定的隧道灯光强度;/>
Figure QLYQS_8
表示由第/>
Figure QLYQS_12
次调控内的隧道灯光强度所确定车辆灯光启用率;/>
Figure QLYQS_16
表示隧道长度;/>
Figure QLYQS_14
表示/>
Figure QLYQS_18
时刻的车辆分布密度值;/>
Figure QLYQS_20
表示调控间隔时间阈值;/>
Figure QLYQS_23
表示调控间隔功率阈值;/>
Figure QLYQS_3
表示第/>
Figure QLYQS_6
次调控单元时间内的隧道照明输出功率;/>
Figure QLYQS_10
表示隧道照明灯光调控功率的下限值,由隧道内外光强度变化情况决定。
2.根据权利要求1所述的一种隧道照明节能控制策略生成方法,其特征是,所述车流量信息的获取过程具体为:
依据隧道长度与隧道限速信息之比计算得到最小隧道行驶时间;
依据最小隧道行驶时间与目标隧道上行侧的公路限速信息之积计算得到采集间隔距离;
以在目标隧道上行侧中选取距离目标隧道的上行入口不小于采集间隔距离的地点作为采集地点;
以最小隧道行驶时间作为采集时间,在采集地点采集车流量信息。
3.根据权利要求1所述的一种隧道照明节能控制策略生成方法,其特征是,所述辆分布密度信息的模拟分析过程具体为:
依据车流量信息和采集时间确定车辆平均速度,并将车辆平均速度作为车辆从采集地点行驶朝目标隧道的上行入口行驶的预估行驶速度;
结合预估行驶速度、标准制动加速度和隧道限速信息模拟分析得到车辆在目标隧道行驶的时间段;
统计同一时间节点车辆处于目标隧道的数量,得到车辆分布密度信息。
4.根据权利要求1所述的一种隧道照明节能控制策略生成方法,其特征是,所述关联函数的构建过程具体为:
获取车辆在不同隧道灯光强度下行驶的车辆灯光启用数据;
采用深度学习训练模型或采用曲线拟合方法对车辆灯光启用数据处理后,得到表征车辆灯光启用率与隧道灯光强度之间关联关系的关联函数。
5.根据权利要求1所述的一种隧道照明节能控制策略生成方法,其特征是,所述约束条件包括:
单次隧道照明调控的周期不小于调控间隔时间阈值;
以及,相邻隧道照明调控的隧道照明输出功率之差不大于调控间隔功率阈值。
6.根据权利要求1所述的一种隧道照明节能控制策略生成方法,其特征是,所述隧道照明控制策略的生成过程具体为:
通过策略优化模型求解目标周期内调控的周期以及每个调控的周期内隧道照明输出功率的总值;
通过调控隧道照明灯光的数量和/或调控单个隧道照明灯光的实际工作功率,得到满足隧道照明输出功率的总值的隧道照明控制策略。
7.一种隧道照明节能控制策略生成***,其特征是,包括:
数据采集模块,用于获取目标隧道上行侧的车流量信息,并依据车流量信息模拟分析得到目标隧道在目标周期内的车辆分布密度信息;
函数构建模块,用于构建车辆灯光启用率与隧道灯光强度之间的关联函数;
模型构建模块,用于基于关联函数和隧道照明调控频次的约束条件,以隧道照明输出功率和车辆灯光功率之和最小为目标建立策略优化模型;
策略优化模块,用于将车辆分布密度信息输入策略优化模型,生成得到隧道照明控制策略;
所述策略优化模型的表达式具体为:
Figure QLYQS_24
其中,
Figure QLYQS_36
表示车辆灯光启用后单元时间内的平均功率;/>
Figure QLYQS_27
表示目标周期内隧道照明的调控次数;/>
Figure QLYQS_32
表示第/>
Figure QLYQS_28
次调控单元时间内的隧道照明输出功率;/>
Figure QLYQS_30
表示第/>
Figure QLYQS_34
次调控的周期;/>
Figure QLYQS_38
表示第/>
Figure QLYQS_33
次调控的终止时刻;/>
Figure QLYQS_37
表示第/>
Figure QLYQS_25
次调控的起始时刻;/>
Figure QLYQS_29
表示由第/>
Figure QLYQS_40
次调控单元时间内的隧道照明输出功率所决定的隧道灯光强度;/>
Figure QLYQS_43
表示由第/>
Figure QLYQS_42
次调控内的隧道灯光强度所确定车辆灯光启用率;/>
Figure QLYQS_46
表示隧道长度;/>
Figure QLYQS_39
表示/>
Figure QLYQS_44
时刻的车辆分布密度值;/>
Figure QLYQS_41
表示调控间隔时间阈值;/>
Figure QLYQS_45
表示调控间隔功率阈值;/>
Figure QLYQS_26
表示第/>
Figure QLYQS_31
次调控单元时间内的隧道照明输出功率;/>
Figure QLYQS_35
表示隧道照明灯光调控功率的下限值,由隧道内外光强度变化情况决定。
8.一种计算机终端,包含存储器、处理器及存储在存储器并可在处理器上运行的计算机程序,其特征是,所述处理器执行所述程序时实现如权利要求1-6中任意一项所述的一种隧道照明节能控制策略生成方法。
9.一种计算机可读介质,其上存储有计算机程序,其特征是,所述计算机程序被处理器执行可实现如权利要求1-6中任意一项所述的一种隧道照明节能控制策略生成方法。
CN202211687635.4A 2022-12-28 2022-12-28 一种隧道照明节能控制策略生成方法、***、终端及介质 Active CN115665936B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211687635.4A CN115665936B (zh) 2022-12-28 2022-12-28 一种隧道照明节能控制策略生成方法、***、终端及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211687635.4A CN115665936B (zh) 2022-12-28 2022-12-28 一种隧道照明节能控制策略生成方法、***、终端及介质

Publications (2)

Publication Number Publication Date
CN115665936A CN115665936A (zh) 2023-01-31
CN115665936B true CN115665936B (zh) 2023-03-28

Family

ID=85023436

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211687635.4A Active CN115665936B (zh) 2022-12-28 2022-12-28 一种隧道照明节能控制策略生成方法、***、终端及介质

Country Status (1)

Country Link
CN (1) CN115665936B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116347714B (zh) * 2023-05-23 2023-08-11 厦门普为光电科技有限公司 具照明自动调整功能的隧道照明控制***
CN116761309B (zh) * 2023-06-14 2024-02-02 贵州中南交通科技有限公司 一种隧道节能智慧化管理***及方法
CN117056866B (zh) * 2023-10-12 2024-01-30 贵州新思维科技有限责任公司 一种多源特征数据融合的隧道智能调光方法及***

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113525223A (zh) * 2021-07-28 2021-10-22 中国第一汽车股份有限公司 一种车灯控制方法、装置、计算机设备和存储介质
CN113923833A (zh) * 2021-10-20 2022-01-11 重庆交通大学 一种基于减速带的低交通量隧道智能节能控制***

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10278668A (ja) * 1997-04-08 1998-10-20 Nissan Motor Co Ltd 車両用照明制御装置
JP4496964B2 (ja) * 2005-01-14 2010-07-07 株式会社デンソー 車両用トンネル検出装置および車両用ライト制御装置
JP5348100B2 (ja) * 2010-09-17 2013-11-20 トヨタ自動車株式会社 前照灯装置、輝度制御方法
CN105188198B (zh) * 2015-08-21 2019-01-29 Tcl集团股份有限公司 隧道行车灯控制方法、***以及移动终端
CN110572912A (zh) * 2019-08-09 2019-12-13 厦门理工学院 一种隧道行车灯光控制方法
CN211139159U (zh) * 2019-08-09 2020-07-31 厦门理工学院 一种车载灯光控制装置及***
CN110774975B (zh) * 2019-11-13 2022-10-14 上海智驾汽车科技有限公司 一种基于图像识别的智能灯光控制方法及装置
CN111885792B (zh) * 2020-08-10 2022-09-20 招商局重庆交通科研设计院有限公司 高寒地区公路隧道照明设计速度的优化方法
CN112165747B (zh) * 2020-09-27 2024-06-07 西安工业大学 一种高速公路隧道入口段led照明智能调控装置
CN113630939B (zh) * 2021-07-30 2023-12-22 中汽创智科技有限公司 一种隧道行驶***、方法、装置、电子设备及存储介质
CN113747637A (zh) * 2021-08-03 2021-12-03 安徽长龙电气集团有限公司 高速公路长隧道入口段夜间照明优化方法
CN115529696A (zh) * 2022-10-11 2022-12-27 西南交通大学 一种基于车辆定位的隧道照明光照强度控制***

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113525223A (zh) * 2021-07-28 2021-10-22 中国第一汽车股份有限公司 一种车灯控制方法、装置、计算机设备和存储介质
CN113923833A (zh) * 2021-10-20 2022-01-11 重庆交通大学 一种基于减速带的低交通量隧道智能节能控制***

Also Published As

Publication number Publication date
CN115665936A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
CN115665936B (zh) 一种隧道照明节能控制策略生成方法、***、终端及介质
CN110775065B (zh) 一种基于工况识别的混合动力汽车电池寿命预测方法
CN113763723B (zh) 基于强化学习与动态配时的交通信号灯控制***及方法
CN111959286B (zh) 一种电动汽车滑行能量回收强度控制方法、装置及介质
CN108828939B (zh) 一种考虑驾驶员操作特性的车速引导方法
CN110775069B (zh) 一种混行模式下车辆驾驶模式识别装置和方法
CN111038488B (zh) 一种混合动力汽车的能量优化控制方法及装置
CN109278806B (zh) 基于站停结果的ato自学习自适应精确站停***及方法
US11685388B2 (en) Method and a control arrangement for determining a control profile for a vehicle
CN113516854B (zh) 一种基于卡警、视频检测器的多路口协调自适应控制方法
CN114727453A (zh) 基于智慧城市的城市道路路灯节能减排控制***
CN104933874A (zh) 一种交通信号灯自适应控制方法及装置
CN113264032A (zh) 一种混合动力车的能量管理方法、装置和***
CN113276829B (zh) 一种基于工况预测的车辆行驶节能优化变权重方法
CN113823076B (zh) 一种基于联网车辆协调控制的即停即走路段缓堵方法
CN106494388B (zh) 一种混合动力汽车能量管理及车速调整装置及方法
CN108572651A (zh) 一种智能化程度高的无人驾驶车辆
CN114435379B (zh) 车辆经济性驾驶控制方法及装置
TWI586570B (zh) 基於駕駛行為之油耗分析系統及方法
KR20200072268A (ko) 차량 운행 패턴 결정 방법
CN112532953B (zh) 一种智慧城市道路照明控制的数据处理方法及***
CN114038188A (zh) 一种路段车辆干扰下的协调自适应控制算法
CN109284540B (zh) 一种基于工况识别的变衰减因子指数预测模型方法
CN111626259A (zh) 一种基于图像处理的结构化道路识别方法
CN115829083B (zh) 区域车辆受交通政策影响的排放评估与优化方法和***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant