CN115442975B - 一种纳米银基柔性电子电路的制备方法 - Google Patents

一种纳米银基柔性电子电路的制备方法 Download PDF

Info

Publication number
CN115442975B
CN115442975B CN202211205807.XA CN202211205807A CN115442975B CN 115442975 B CN115442975 B CN 115442975B CN 202211205807 A CN202211205807 A CN 202211205807A CN 115442975 B CN115442975 B CN 115442975B
Authority
CN
China
Prior art keywords
solution
electronic circuit
nano
nano silver
flexible electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211205807.XA
Other languages
English (en)
Other versions
CN115442975A (zh
Inventor
廖海洋
崔桂新
许增慧
姚登辉
张永起
娄坚婷
袁贝
吕水君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cta Zhejiang Technology Research Institute Co ltd
Original Assignee
Cta Zhejiang Technology Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cta Zhejiang Technology Research Institute Co ltd filed Critical Cta Zhejiang Technology Research Institute Co ltd
Priority to CN202211205807.XA priority Critical patent/CN115442975B/zh
Publication of CN115442975A publication Critical patent/CN115442975A/zh
Application granted granted Critical
Publication of CN115442975B publication Critical patent/CN115442975B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1216Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by screen printing or stencil printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/348Hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6692Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nanotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

本发明公开了一种纳米银基柔性电子电路的制备方法,属于柔性印刷电子电路领域,其特征在于,包括以下步骤:(1)制备纳米银颗粒;(2)制备纳米银基柔性电子电路:将制备的纳米银颗粒分散在醇共溶剂中,超声震荡得到纳米银溶胶;将纳米银溶胶与胶粘剂乳液均匀混合,并在室温缓慢搅拌得到导电胶,将导电胶利用丝网印刷将印花图案均匀印在柔性衬底的表面,然后将印刷图案固化即得纳米银基柔性电子电路;本发明采用一步法完成溶剂蒸发和成型工艺,解决了金属柔性基材往往需要二次高温热处理的痛点,降低了成本和能耗有望实现低成本大规模生产;其次,通过对制备工艺的优化,获得具有良好导电性的纳米银基柔性电子电路。

Description

一种纳米银基柔性电子电路的制备方法
技术领域
本发明属于柔性印刷电子电路领域,具体地,涉及一种采用低温一步法成型纳米银基柔性电子电路的制备方法。
背景技术
随着微电子技术的不断发展,具有多功能集成特性的小型电子设备层出不穷,并应用于社会生活的各个方面(如人体生理信号监测、人机交互***、智能软体机器人技术等)。然而,目前流行的大多数可穿戴电子产品都是刚性的,主要依靠在晶片上制作微集成电路来实现各种电子功能,如智能手表、智能眼镜、运动监控腕带或手镯,但很难与不同几何形状或拓扑的表面贴合,这不符合真正的人性化设计理念。而克服目前刚性集成电路的关键即是发展柔性电子电路。
现有的柔性电子电路方案的分为两种:一种是代替传统的PCB基底,将铜箔线路利用激光焊接于柔性的聚亚酰胺基底上形成柔性PCB板。但这样的工艺造价十分昂贵,所用的基底有严格的耐高温限制造成基底单一。另一种方法是受印刷启发,制备纳米导电浆料或墨水,通过印刷的方式形成图案化的柔性电子电路。但制备导电浆料或墨水时,为了维持纳米金属在浆料/墨水中的稳定性,通常会使用稳定剂来防止纳米金属组分的团聚,从而提高导电浆料/墨水的稳定性。然而,稳定剂是电绝缘体,引入稳定剂的同时也将会影响导电墨水的导电性能。因此,针对提高印制电子电路的导电性能,常需要高温处理,但长时间的高温加热(>250℃)将会对柔性衬底带来毁灭性的损害,同时还有可能对热敏电子元件造成损害。
近年来,有报道发现通过化学试剂可以引发金属纳米颗粒在室温/低温自聚结从而实现纳米金属的烧结过程,研究表明,当纳米金属被阴离子聚合物包覆,在体系中加入含氯体系的溶液处理可以诱发吸附在纳米金属表面的稳定剂剥离达到形成烧结体的目的,但目前使用低温烧结的方法依然是两步法,造成后处理麻烦,工序复杂。
发明内容
本发明目的在于提供一种采用低温一步法制备纳米银基柔性电子电路的方法,以改善高温烧结对基底和元器件损伤的难题以及两步法低温烧结工序和后处理繁琐的问题。
为达到上述目的,本发明所采取的技术方案为:
一种纳米银基柔性电子电路的制备方法,其特征在于,包括以下步骤:
(1)制备纳米银颗粒:
将硝酸银溶解在去离子水中配置成10-20wt.%的前驱液,标记为溶液A;
将稳定剂溶解在去离子水中得到的溶液作为稳定液,紧接着将还原剂溶解在去离子水中作为还原液,将稳定液与还原液均匀混合,标记为溶液B,溶液B中,稳定剂浓度为10-40wt.%;
在15-60℃磁力搅拌下,将溶液B滴入到溶液A中并持续反应0.5-24h,然后将反应液离心,沉淀用NaNO3溶液洗涤,最后将沉淀在20-60℃下真空干燥12-48h,得到纳米银颗粒;
(2)制备纳米银基柔性电子电路:
将步骤(1)制备的纳米银颗粒分散在醇共溶剂中,并超声震荡30-60min后得到0.1-1gml-1的纳米银溶胶备用;
向反应容器中加入双羟乙基丙酸、聚四氢呋喃2000,将反应容器加热至100-150℃保温1-2h,然后将温度下降至60-80℃,向反应容器中加入异佛尔酮二异氰酸酯,反应1-3小时,然后加入双羟基功能氯盐进行扩链,反应4-6h后,加入三乙胺中和,将温度下降至25~50℃,向体系中缓慢加入去离子水,高速搅拌致使体系充分乳化得到胶粘剂乳液备用;上述反应中,双羟基丙酸:聚四氢呋喃2000:双羟基功能氯盐的摩尔比为1:1:0.5,NCO:OH的摩尔比为1~2.8:1;
将纳米银溶胶与胶粘剂乳液均匀混合,并在室温缓慢搅拌15-30min得到导电浆料,将导电浆料利用丝网印刷将印花图案均匀印在柔性衬底的表面,然后将印刷图案在25-80℃固化12-24h,即得纳米银基柔性电子电路。
进一步的设置在于:
步骤(1)中,所述稳定剂为二水合柠檬酸三钠或聚乙烯吡咯烷酮中的任意一种。
步骤(1)中,所述还原剂为七水合硫酸亚铁。
步骤(1)中,稳定剂与还原剂的质量比为0~20比1,优选为5:1。
步骤(1)中,溶液A前驱液浓度为10wt.%,溶液B中,稳定剂浓度为30wt.%;溶液A与溶液B混合的体积比优选为1:1。
步骤(2)中,所述醇共溶剂为去离子水:乙醇:丙三醇:乙二醇按照体积比18-24:8-12:20-50:10-40配置而成。
步骤(2)中,所述双羟基功能氯盐为双1-(2-羟乙基)-3-乙基咪唑氯盐、双1-(2-羟乙基)-3-丁基咪唑氯盐中的任意一种。
步骤(2)中,在扩链反应前,加入稀释剂调节黏度,所述稀释剂为丙酮、乙腈、N,N-二甲基甲酰胺、二甲基亚砜中的任意一种。
步骤(2)中,所述纳米银溶胶与胶粘剂乳液按照质量比1:1均匀混合,所述固化温度为60℃,固化时间24h。
所述柔性衬底无特别限制,可选自聚酯纤维、硅胶、橡胶、天然棉织物、尼龙织物、聚氨酯弹性体中的任意一种。
本发明的有益效果如下:
(1)本发明的一种纳米银基柔性电子电路的制备方法,通过优化纳米银颗粒的制备工艺,进一步制备的纳米银基导电浆料,可实现低温一步法完成溶剂蒸发和电子电路成型,同时,可以有效提高纳米银基柔性电子电路的导电率。
(2)本发明的一种纳米银基柔性电子电路的制备方法,以双羟基功能氯盐为硬段扩链剂,利用-OH将咪唑氯盐结构锚定于聚氨酯胶粘剂的分子骨架中,借助Cl-诱发包覆于纳米银的稳定剂剥离而引发纳米银颗粒聚集行为,实现了一步法完成溶剂蒸发和成型工艺,解决了金属柔性基材往往需要二次高温热处理的痛点,降低了成本和能耗有望实现低成本大规模生产;其次,借助咪唑离子液体的离子可置换性,可以将低温成型后的功能咪唑离子液体胶粘剂中的Cl-更替成其他功能离子,实现对胶粘剂二次功能的定制化开发,获得可靠性良好的纳米银基柔性电子电路。
以下结合附图和具体实施方式对本发明做进一步说明。
附图说明
图1为实施例1制备的纳米银颗粒的XRD;
图2为实施例1制备的纳米银颗粒的红外光谱;
图3为不同稳定剂含量制备的纳米银颗粒的SEM图;
图4为不同稳定剂含量制备的纳米银颗粒的粒径分析图;
图5为不同稳定剂含量制备的纳米银颗粒的稳定性对照图。
图5中:从左至右稳定剂含量依次为0wt.%、10wt.%、20wt.%、30wt.%、40wt.%。
具体实施方式
实施例1
(1)制备纳米银颗粒
配置溶液A:将硝酸银完全溶解在去离子水中配置成10wt.%前驱液(记为溶液A)。
配置溶液B:按稳定剂与还原剂质量比5:1的比例,分别配置稳定液和还原液。首先,将稳定剂二水合柠檬酸三钠溶解在去离子水中作为稳定液,紧接着将还原剂七水合硫酸亚铁溶解在去离子水中作为还原液,然后将稳定液和还原液均匀混合,记为溶液B,溶液B中,二水合柠檬酸三钠的浓度为30wt.%。
在25℃磁力搅拌下,按照溶液A与溶液B体积比为1:1,用恒压滴液漏斗将溶液B滴入到A溶液中并持续反应1h,将反应液经6000rpm离心15min,将沉淀用1M的NaNO3溶液洗涤三次,最后将沉淀在30℃下真空干燥48h,即可得到提纯后的纳米银颗粒。
制备的纳米银颗粒,其XRD和红外光谱如图1~图2所示。
(2)制备纳米银基柔性电子电路:
将上述制备的纳米银颗粒分散在醇共溶剂(去离子水:乙醇:丙三醇:乙二醇=20:10:30:20,V/V)中,并超声震荡60min后得到0.3g ml-1的纳米银溶胶备用。
向反应容器中加入双羟乙基丙酸、聚四氢呋喃2000,将反应容器加热至120℃保温1h除去醇中的水分,将温度下降至80℃,将反应容器中再加入异佛尔酮二异氰酸酯和一滴二月桂酸二丁基锡,反应2h后,加入丙酮调节黏度,然后加入双1-(2-羟乙基)-3-乙基咪唑氯盐进行扩链,反应继续持续4h后,加入三乙胺中和,将温度下降至25℃,向体系中缓慢加入大量的去离子水,高速搅拌致使体系充分乳化得到胶粘剂乳液待用;上述反应中,双羟基丙酸:四氢呋喃2000:双1-(2-羟乙基)-3-乙基咪唑氯盐的摩尔比为1:1:0.5,NCO:OH的摩尔比为1.25:1。
将前述制备的纳米银溶胶和胶粘剂乳液按质量比1:1均匀混合,并在室温缓慢搅拌30min得到纳米银基导电浆料,将导电浆料利用丝网印刷技术将印刷图案均匀印在柔性衬底表面,然后将印刷图案在60℃固化24h即可获得纳米银基柔性电子电路。
替换例1
根据实施例1的制备方法,区别在于:改变溶剂B中的稳定剂含量,并检测不同稳定剂含量对制备的纳米银颗粒的粒径、稳定性及导电性的影响。
表1、
序号 稳定剂(wt.%) 粒径 稳定性 导电性
实施例1-1 0 5000nm 极差 120×10-5Ω·m
实施例1-2 10 1000nm 76×10-5Ω·m
实施例1-3 20 200nm 较差 21×10-5Ω·m
实施例1-4 30 30nm 较好 2.3×10-5Ω·m
实施例1-5 40 10nm 1.3×10-5Ω·m
表中:稳定剂(wt.%)为稳定剂在溶液B中的质量浓度。
结合表1、图3~图5所示:
(1)、当不添加稳定剂时,所制备的纳米银颗粒发生剧烈的团聚现象,导致稳定性极差,随着稳定剂含量的升高,纳米银颗粒的粒径得以改善,其稳定性也随着优化。
(2)、当不添加稳定剂时,所制备的纳米银颗粒发生剧烈的团聚现象,导致稳定性极差,制备的纳米银基柔性电子电路的导电率亦较差,随着稳定剂含量的升高,纳米银颗粒的粒径和稳定性得以改善,制备的纳米银基柔性电子电路的导电率有明显提升。
替换例2
根据实施例1的制备方法,区别在于:调整印刷图案的固化温度,并测试其对纳米银基柔性电子电路的导电性影响,如表2所示:
表2、
序号 固化温度 导电性
实施例2-1 25 62×10-5Ω·m
实施例2-2 40 16×10-5Ω·m
实施例2-3 60 2.3×10-5Ω·m
实施例2-4 80 1.2×10-5Ω·m
分析:
如表2所示,当固化温度为较低,仅为室温时,电导率较低,温度升高,有利于纳米银印刷电路导电性的提升。
对比例
将本发明实施例1的制备工艺,与现有技术进行对照,如表3所示。
表3、本发明与现有技术的应用效果对照
序号 成型方式 成型步骤
本发明实施例1 低温(60℃) 一步
现有技术1(CN111117367A) 紫外光(昂贵) 两步
现有技术2(CN113689972A) 高温(120℃) 两步
现有技术3(CN107513310A) 高温(150℃) 两步
现有技术4(CN107135602A) 高温(100℃) 两步
分析:
如表3所示:与现有技术相比,本发明实现了低温一步法完成溶剂蒸发和电子电路成型,解决金属柔性基材需要二次高温热处理的痛点,同时降低成本和能耗。

Claims (10)

1.一种纳米银基柔性电子电路的制备方法,其特征在于,包括以下步骤:
(1) 制备纳米银颗粒:
将硝酸银溶解在去离子水中配置成10-20 wt.%的前驱液,标记为溶液A;
将稳定剂溶解在去离子水中得到的溶液作为稳定液,紧接着将还原剂溶解在去离子水中作为还原液,将稳定液与还原液均匀混合,标记为溶液B,溶液B中,稳定剂浓度为10-40wt.%;
在15-60℃磁力搅拌下,将溶液B滴入到溶液A中并持续反应0.5-24 h,然后将反应液离心,沉淀用NaNO3溶液洗涤,最后将沉淀在20-60℃下真空干燥12-48 h,得到纳米银颗粒;
(2) 制备纳米银基柔性电子电路:
将步骤(1)制备的纳米银颗粒分散在醇共溶剂中,并超声震荡30-60 min后得到0.1-1g ml-1的纳米银溶胶备用;
向反应容器中加入双羟乙基丙酸、聚四氢呋喃2000,将反应容器加热至100-150℃保温1-2 h,然后将温度下降至60-80℃,向反应容器中加入异佛尔酮二异氰酸酯,反应1-3小时,然后加入双羟基功能氯盐进行扩链,反应4-6h后,加入三乙胺中和,将温度下降至25~50℃,向体系中缓慢加入去离子水,高速搅拌致使体系充分乳化得到胶粘剂乳液备用;上述反应中,双羟基丙酸:聚四氢呋喃2000:双羟基功能氯盐的摩尔比为1:1:0.5, NCO:OH的摩尔比为1~2.8:1;
将纳米银溶胶与胶粘剂乳液均匀混合,并在室温缓慢搅拌15-30min得到导电浆料,将导电浆料利用丝网印刷将印花图案均匀印在柔性衬底的表面,然后将印刷图案在25-80℃固化12-24 h,即得纳米银基柔性电子电路。
2.根据权利要求1所述的一种纳米银基柔性电子电路的制备方法,其特征在于:步骤(1)中,所述稳定剂为二水合柠檬酸三钠或聚乙烯吡咯烷酮中的任意一种。
3.根据权利要求1所述的一种纳米银基柔性电子电路的制备方法,其特征在于:步骤(1)中,所述还原剂为七水合硫酸亚铁。
4.根据权利要求1所述的一种纳米银基柔性电子电路的制备方法,其特征在于:步骤(1)中,稳定剂与还原剂的质量比为0~20比1。
5.根据权利要求4所述的一种纳米银基柔性电子电路的制备方法,其特征在于:步骤(1)中,稳定剂与还原剂的质量比为5:1。
6.根据权利要求4所述的一种纳米银基柔性电子电路的制备方法,其特征在于:步骤(1)中,溶液A前驱液浓度为10 wt.%,溶液B中稳定剂浓度为30 wt.%;溶液A与溶液B混合的体积比为1:1。
7.根据权利要求1所述的一种纳米银基柔性电子电路的制备方法,其特征在于:步骤(2)中,所述双羟基功能氯盐为双1-(2-羟乙基)-3-乙基咪唑氯盐、双1-(2-羟乙基)-3-丁基咪唑氯盐中的任意一种。
8.根据权利要求1所述的一种纳米银基柔性电子电路的制备方法,其特征在于:步骤(2)中,扩链反应前,加入稀释剂调节黏度,所述稀释剂为丙酮、乙腈、N,N-二甲基甲酰胺、二甲基亚砜中的任意一种。
9.根据权利要求1所述的一种纳米银基柔性电子电路的制备方法,其特征在于:步骤(2)中,所述纳米银溶胶与胶粘剂乳液按照质量比1:1均匀混合,所述固化温度为60℃,固化时间24 h。
10.根据权利要求1所述的一种纳米银基柔性电子电路的制备方法,其特征在于:步骤(2)中,所述柔性衬底为聚酯纤维、硅胶、橡胶、天然棉织物、尼龙织物、聚氨酯弹性体中的任意一种。
CN202211205807.XA 2022-09-30 2022-09-30 一种纳米银基柔性电子电路的制备方法 Active CN115442975B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211205807.XA CN115442975B (zh) 2022-09-30 2022-09-30 一种纳米银基柔性电子电路的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211205807.XA CN115442975B (zh) 2022-09-30 2022-09-30 一种纳米银基柔性电子电路的制备方法

Publications (2)

Publication Number Publication Date
CN115442975A CN115442975A (zh) 2022-12-06
CN115442975B true CN115442975B (zh) 2024-04-30

Family

ID=84250970

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211205807.XA Active CN115442975B (zh) 2022-09-30 2022-09-30 一种纳米银基柔性电子电路的制备方法

Country Status (1)

Country Link
CN (1) CN115442975B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102277036A (zh) * 2011-09-06 2011-12-14 天津大学 丝网印刷纳米银导电墨水及其制备方法
CN106102333A (zh) * 2016-07-28 2016-11-09 东南大学 一种柔性导电线路室温焊接方法
WO2018098852A1 (zh) * 2016-12-01 2018-06-07 南京大学 可低温固化的纳米金属墨水及其制备方法和应用
CN109076702A (zh) * 2016-03-22 2018-12-21 杨军 基材上无溶剂印刷电路的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012171936A1 (de) * 2011-06-14 2012-12-20 Bayer Technology Services Gmbh Silberhaltige wässrige tinten-formulierung zur herstellung von elektrisch leitfähigen strukturen und tintenstrahldruckverfahren zur herstellung solcher elektrisch leitfähigen strukturen
US10772218B2 (en) * 2017-10-03 2020-09-08 The University Of Western Ontario React-on-demand (ROD) fabrication method for high performance printed electronics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102277036A (zh) * 2011-09-06 2011-12-14 天津大学 丝网印刷纳米银导电墨水及其制备方法
CN109076702A (zh) * 2016-03-22 2018-12-21 杨军 基材上无溶剂印刷电路的方法
CN106102333A (zh) * 2016-07-28 2016-11-09 东南大学 一种柔性导电线路室温焊接方法
WO2018098852A1 (zh) * 2016-12-01 2018-06-07 南京大学 可低温固化的纳米金属墨水及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
纳米银导电墨水的制备及导电性研究;王可;张文聪;詹益昌;谢辉;王悦辉;;电子元件与材料;20181207(第11期);全文 *

Also Published As

Publication number Publication date
CN115442975A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
CN103551586B (zh) 一种导电银浆用微米球形银粉的制备方法
CN107345840B (zh) 一种基于载银纳米纤维的柔性力敏传感器的制备方法
CN108084800A (zh) 银纳米线导电油墨及电极的制备方法
CN115442975B (zh) 一种纳米银基柔性电子电路的制备方法
CN113237418B (zh) 一种具有多重灵敏度的柔性传感器的制备方法及灵敏度调控方法
CN113506648B (zh) 一种Ca-B-Si体系LTCC用内层金导体浆料
CN110783025A (zh) 一种抗氧化的导电铜纳米线膜及其制备方法和应用
CN112746297A (zh) 一种在绝缘基材表面直接电镀金属的方法
CN113709997A (zh) 一种柔性导电膜及电路板的制备方法
CN107778995A (zh) 一种含有甲酸铜的高稳定性无颗粒型铜基导电墨水及其制备方法和应用
CN108084794B (zh) 超支化聚合物稳定的纳米银喷印导电墨水的制备方法及应用
CN110922812B (zh) 低温高导纳米银导电油墨及其制备方法与应用
US11724532B2 (en) Particle-free adhesive gold inks
KR101514743B1 (ko) 패턴이 형성된 금속 나노와이어 투명전극 제조방법 및 이에 따라 제조되는 패턴이 형성된 금속 나노와이어 투명전극
CN103624249B (zh) 一种高振实密度银粉的制备方法
KR20110128584A (ko) 나노와이어를 포함하는 투명 도전체 및 이의 제조방법
CN113787747B (zh) 一种3d打印的可穿戴设备及其制备方法
CN202857129U (zh) 一种印刷电路板导电层的金属钯层结构
CN110781600B (zh) 一种易于电极图案化的纳米银线柔性透明导电膜及其图案化方法
TWI786257B (zh) 導電性膏、硬化物、導電性圖案、衣服及可延伸膏
KR20170030707A (ko) 금속입자를 이용한 무전해 동도금 방법
CN112521801A (zh) 有机-无机复合金属导电颗粒及其制备方法、水性喷墨打印用导电墨水和图案化电子织物
KR102665090B1 (ko) 마이크로 히터 제작을 위한 투명전극 제작 공정 방법
CN111479396A (zh) 一种织物基高导电性线路的制备方法
CN214960345U (zh) 用于柔性电路板卷对卷生产工艺的热处理装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant