CN115383122A - 一种2:17型烧结钐钴永磁体的氢碎制备方法 - Google Patents

一种2:17型烧结钐钴永磁体的氢碎制备方法 Download PDF

Info

Publication number
CN115383122A
CN115383122A CN202211023204.8A CN202211023204A CN115383122A CN 115383122 A CN115383122 A CN 115383122A CN 202211023204 A CN202211023204 A CN 202211023204A CN 115383122 A CN115383122 A CN 115383122A
Authority
CN
China
Prior art keywords
hydrogen
alloy
powder
temperature
samarium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211023204.8A
Other languages
English (en)
Other versions
CN115383122B (zh
Inventor
王帅
雍辉
胡季帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Science and Technology
Original Assignee
Taiyuan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Science and Technology filed Critical Taiyuan University of Science and Technology
Priority to CN202211023204.8A priority Critical patent/CN115383122B/zh
Publication of CN115383122A publication Critical patent/CN115383122A/zh
Application granted granted Critical
Publication of CN115383122B publication Critical patent/CN115383122B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明涉及一种2:17型烧结钐钴永磁体的氢碎制备方法,属于磁性材料制备技术领域,解决钐钴合金吸氢及脱氢难、磁体取向差的技术问题,包括以下步骤:S1、称取钐钴永磁体合金原料,制备合金铸锭或者速凝薄带合金片并机械破碎,得到合金颗粒;S2、将合金颗粒与催化剂CuF2粉末混合,氢碎处理后制得氢碎粉末;S3、氢碎粉末经过气流磨制粉制得钐钴合金粉末;S4、钐钴合金粉末经磁场取向成型、冷等静压压制成型,制得生坯;S5、生坯经烧结固溶和时效处理制得2:17型烧结钐钴永磁体。本发明提供的制备方法有效降低了钐钴合金的吸放氢压力和温度,易于操作控制和产业化,并且降低了能耗,制备出的烧结钐钴磁体磁性能优异。

Description

一种2:17型烧结钐钴永磁体的氢碎制备方法
技术领域
本发明属于磁性材料制备技术领域,具体涉及一种2:17型烧结钐钴永磁体的氢碎制备方法。
背景技术
稀土永磁材料自20世纪60年代问世以来,以其优秀的磁性能而备受青睐,在科研、生产和应用方面都得到了迅速发展。其中作为第二代稀土永磁材料的2:17型钐钴永磁材料,因具有优异的磁性能、高的居里温度、良好的温度稳定性以及出色的抗氧化和抗腐蚀性等特点,被广泛应用于国防军工、航空航天、高精度仪表、医疗器械、微波器件、传感器、各种磁性传动装置、高端电机等众多领域。
氢破碎作为稀土永磁材料的高效制粉方法已广泛应用于烧结Nd-Fe-B永磁材料的制备,通过氢***理,钕铁硼合金速凝薄带与氢发生反应生成氢化物,由于氢化物生成时晶格膨胀,所产生的巨大应力使NdFeB晶体内产生许多微裂纹,材料变得疏松乃至成为粗粉末,经过进一步气流磨制粉,可以形成单晶颗粒,有效提高了终态磁体取向,改善了磁体综合磁性能。而2:17型烧结钐钴合金铸锭由于存在吸放氢困难等问题,因此生产上普遍采用机械破碎+球磨/气流磨的方法来制备合金粉末。由于机械破碎+球磨/气流磨制粉破碎效果较差,使许多钐钴合金粉末颗粒不能破碎为单晶,导致钐钴磁体取向度差,磁性能降低。
现有技术中,专利“一种钐钴系烧结材料的制备方法”(授权公告号:CN102651263B)是采用将合金铸带进行氢化歧化反应,再经气流磨制粉来制备磁粉,其目的是保证晶粒完整,降低粉末氧化,从而保证了磁体的磁性能。专利“一种烧结钐钴永磁体材料及其制备方法”(授权公告号:CN104637642B)是在熔炼炉中对铸锭进行吸氢,再进行气流磨制粉,从而节约了生产步骤,降低能耗。另外,专利“一种钐钴永磁材料的制备方法”(授权公告号:CN105304249B),是对两种成分合金铸锭分别吸氢及脱氢,再分别进行气流磨制粉,之后再进行混粉来制备钐钴永磁体。
发明内容
为了克服现有技术的不足,解决钐钴合金吸氢及脱氢难、磁体取向差的技术问题,本发明提供一种利用催化剂促进氢碎制粉来制备2:17型烧结钐钴磁体的方法,从而降低能耗,提高氢碎效率,改善磁体取向度,有效提高2:17型钐钴磁体的综合磁性能。
为了实现以上目的,本发明通过以下技术方案予以实现。
一种2:17型烧结钐钴永磁体的氢碎制备方法,包括以下步骤:
S1、首先,按照如下成分及其重量百分比称取钐钴永磁体合金原料:(Sm1-xRex):25%~26.5%,Fe:6.5%~22.5%,Zr:2.0%~3.5%,Cu:3.5%~5.5%,其余为Co;其中,0≤x≤0.4,Re为Pr、Nd、Gd、Dy、Tb、Er、Y、Ho中的一种或几种;
然后,将称取的钐钴永磁体合金原料在中频感应熔炼炉中熔炼,制得合金铸锭;或者将称取的钐钴永磁体合金原料在真空速凝薄带炉中熔炼,制得速凝薄带合金片;
最后,将合金铸锭或者速凝薄带合金片机械破碎为粒径为0.5mm~3mm的合金颗粒;
S2、将步骤S1制备的合金颗粒采用催化氢碎的方法制成平均粒径为10μm~500μm的氢碎粉末,所述催化氢碎的方法包括以下步骤:
S2-1、将步骤S1制备的合金颗粒与催化剂CuF2粉充分混合,混粉时间为0.5h~1h;其中合金颗粒与催化剂CuF2粉的质量百分比为:90%~99%合金颗粒,其余为催化剂CuF2粉末;
S2-2、将步骤S2-1制备的混合粉末在氢碎炉中依次进行活化处理与循环吸放氢处理,制得氢碎粉末;
S3、采用气流磨的方法将步骤S2制备的氢碎粉末制成平均粒径为2.5μm~5μm的钐钴合金粉末;
S4、将步骤S3制备的钐钴合金粉末在空气氛围中称重,然后在大于1.5T磁场下取向成型,最后再在230MPa压力下进行冷等静压压制成型,制得生坯;
S5、首先,将步骤S4制得的生坯在1205℃~1220℃温度条件中烧结0.5h~2h;然后,将烧结后的坯料随炉冷却到1140℃~1190℃进行固溶处理,保温时间为2h~10h,固溶处理后快速风冷至室温;最后,坯料再次加热至800℃~850℃,保温8h~20h后控温冷却到400℃,保温1h后风冷至室温,制得2:17型烧结钐钴永磁体。
进一步地,在所述步骤S1中,制得的合金铸锭的厚度为8mm~12mm,制得的速凝薄带合金片的厚度为0.5mm~1mm。
进一步地,在所述步骤S2-1中,混粉过程是在高纯氮气气氛保护下进行的。
进一步地,在所述步骤S2-2中,循环吸氢温度为20℃~80℃,吸氢氢气压力为0.2MPa~1MPa,吸氢时间1h~2h;循环放氢温度为20℃~80℃;吸放氢循环次数为1次~3次。
进一步地,在所述步骤S2-2中,脱氢后合金粉末的氢含量为500ppm~2000ppm。
进一步地,在所述步骤S5中,烧结升温过程中在400℃保温0.5h~1h,进一步脱去磁体中残余氢气。
进一步地,在所述步骤S5中,控温冷却降温速度为0.5℃/min~1℃/min。
与现有技术相比本发明的有益效果为:
1、本发明通过采用催化氢碎法,将钐钴合金颗粒与催化剂CuF2粉末混合后进行氢碎。CuF2粉末的加入不仅可以加速氢分子在合金颗粒表面解离成氢原子,进而促进合金颗粒吸氢,还可以与钐钴合金发生氧化还原反应生成稀土氟化物,进而促进氢碎过程,有效降低了钐钴合金的吸放氢温度及吸氢压力,从而降低能耗,提升了吸氢效率;
2、本发明利用催化氢碎法,使合金可以形成Sm2Co17Hx和SmCo5Hy间隙化合物,引起晶格膨胀破碎,形成单晶颗粒,有利于磁体成型过程中取向,提高了磁体剩磁和磁能积;
3、本发明通过添加催化剂CuF2粉末,使其在氢碎过程中与钐钴合金发生氧化还原反应,生成Cu单质,并且Cu单质均匀分布,在之后热处理过程中可以改善晶界处胞状组织结构及胞壁处Cu元素分布,从而可以提高钐钴磁体的膝点磁场和内禀矫顽力。
总之,本发明提供的制备方法易于操作控制和产业化,制备出的烧结钐钴磁体性能优异。
附图说明
图1为本发明使用催化氢碎法制备钐钴磁体的工艺流程图。
具体实施方式
本发明提供了一种2:17型烧结钐钴永磁体的氢碎制备方法,包括以下步骤:
S1、首先,按照如下成分及其重量百分比称取钐钴永磁体合金原料:(Sm1-xRex):25%~26.5%,Fe:6.5%~22.5%,Zr:2.0%~3.5%,Cu:3.5%~5.5%,其余为Co;其中,0≤x≤0.4,Re为Pr、Nd、Gd、Dy、Tb、Er、Y、Ho中的一种或几种;
然后,将称取的钐钴永磁体合金原料在中频感应熔炼炉中熔炼,制得合金铸锭;或者将称取的钐钴永磁体合金原料在真空速凝薄带炉中熔炼,制得速凝薄带合金片;
最后,将合金铸锭或者速凝薄带合金片机械破碎为粒径为0.5mm~3mm的合金颗粒;
熔炼制备的合金铸锭或速凝薄带合金片中均包含了2:17H相和1:5H相,其中2:17H相有相对较高的Fe、Co含量,1:5H相含有相对较高的稀土含量,其均可以在后续吸氢过程中吸收一定的H原子,生成间隙氢化物,并且发生晶格膨胀,使合金易粉碎,因此,合金铸锭或速凝薄带合金片均可以用做氢碎的基础合金。将合金铸锭或者速凝薄带合金片机械破碎为粒径为0.5~3mm的合金颗粒,将更有利于合金吸放氢破碎。
S2、将步骤S1制备的合金颗粒采用催化氢碎的方法制成平均粒径为10μm~500μm的氢碎粉末,所述催化氢碎的方法包括以下步骤:
S2-1、将步骤S1制备的合金颗粒与催化剂CuF2粉充分混合,混粉时间为0.5h~1h;其中合金颗粒与催化剂CuF2粉的质量百分比为:90%~99%合金颗粒,其余为催化剂CuF2粉末;
CuF2粉末不仅能加速氢分子在合金颗粒表面解离成氢原子来促进合金颗粒吸氢,还可以与钐钴合金发生氧化还原反应生成稀土氟化物来促进氢碎过程;此外,CuF2粉末还能与钐钴合金发生氧化还原反应,生成单质Cu。单质Cu可以在热处理过程中改善晶界处胞状组织结构及胞壁处Cu元素分布,从而提高磁体膝点磁场和内禀矫顽力;
S2-2、将步骤S2-1制备的混合粉末在氢碎炉中依次进行活化处理与循环吸放氢处理,制得氢碎粉末;
活化处理的目的是使合金颗粒可以最大限度的循环吸放氢。当充入一定量的氢气时,受金属原子作用,H-H键解离,原子态的氢进入合金内部晶格间隙生成氢化物Sm2Co17Hx和SmCo5Hy,引起晶格膨胀破碎,再配合之后的气流磨制粉,可以制备出接近单晶颗粒的合金粉末。
S3、采用气流磨的方法将步骤S2制备的氢碎粉末制成平均粒径为2.5μm~5μm的钐钴合金粉末。
S4、将步骤S3制备的钐钴合金粉末在空气氛围中称重,然后在大于1.5T磁场下取向成型,最后再在230MPa压力下进行冷等静压压制成型,制得生坯;由于加入了催化氢碎方法,因此更容易形成单晶合金粉末,有利于粉末磁场取向成型,提高磁体取向度。
S5、首先,将步骤S4制得的生坯在1205℃~1220℃温度条件中烧结0.5h~2h;然后,将烧结后的坯料随炉冷却到1140℃~1190℃进行固溶处理,保温时间为2h~10h,固溶处理后快速风冷至室温;最后,坯料再次加热至800℃~850℃,保温8h~20h后控温冷却到400℃,保温1h后风冷至室温,制得2:17型烧结钐钴永磁体。
进一步地,在所述步骤S1中,制得的合金铸锭的厚度为8mm~12mm,制得的速凝薄带合金片的厚度为0.5mm~1mm,有利于合金获得理想的显微组织结构和相组成,使其在后续过程中更好地进行氢破碎。
进一步地,在所述步骤S2-1中,混粉过程是在高纯氮气气氛保护下进行的,防止合金颗粒氧化。
进一步地,在所述步骤S2-2中,循环吸氢温度为20℃~80℃,吸氢氢气压力为0.2MPa~1MPa,吸氢时间1h~2h;循环放氢温度为20℃~80℃;吸放氢循环次数为1次~3次。由于加入催化剂CuF2粉末,钐钴合金颗粒可以在较低的温度和压力下吸氢,并且放氢温度也较低。通过进行循环吸放氢,可以使合金颗粒更加充分有效破碎。
进一步地,在所述步骤S2-2中,脱氢后合金粉末的氢含量为500ppm~2000ppm,可以在后续称料、磁场取向成型、冷等静压过程中防止钐钴合金粉末氧化,从而避免磁体因为氧含量过高而造成的磁性能变差。此外,500 ppm ~2000ppm的较低氢含量可以在400℃烧结保温中完全排除,从而不影响最终磁体的性能。
进一步地,在所述步骤S5中,烧结升温过程中在400℃保温0.5h~1h,进一步脱去磁体中残余氢气。
进一步地,在所述步骤S5中,控温冷却降温速度为0.5℃/min~1℃/min。控温冷却降温速度保持0.5~1℃/min缓慢冷却,可以使Cu元素向胞壁处富集,从而提高胞壁对畴壁的钉扎力,有利于磁体获得高矫顽力。
以下实施例用于说明本发明,但不用来限制本发明的范围。若未特别指明,实施例均按照常规实验条件。
实施例1
一种2:17型烧结钐钴永磁体的氢碎制备方法,包括以下步骤:
S1、首先,按照如下成分及其重量百分比称取钐钴永磁体合金原料:Sm:25%、Fe:15%、Zr:3%、Cu:3.5%、Co:53.5%;然后,将称取的钐钴永磁体合金原料在中频感应熔炼炉中熔炼制得厚度约为10mm的合金铸锭;最后,将合金铸锭机械破碎为粒径为0.5mm~3mm的合金颗粒;
S2、将步骤S1制备的合金颗粒采用催化氢碎法制成平均粒径为10μm~500μm的氢碎粉末,所述催化氢碎法制粉包括以下步骤:
S2-1、将步骤S1制备的合金颗粒与催化剂CuF2粉充分混合,混粉时间为1h;其中合金颗粒与催化剂CuF2粉的质量百分比为:95%合金颗粒,5%催化剂CuF2粉末;
S2-2、将步骤S2-1制备的混合粉末在氢碎炉中依次进行活化处理与循环吸放氢处理,循环吸氢温度为60℃,吸氢氢气压力为0.2MPa,吸氢时间1.5h;循环放氢温度为80℃;吸放氢循环次数为2次,制得氢碎粉末;
S3、采用气流磨的方法将步骤S2制备的氢碎粉末制成平均粒径为3.8μm的钐钴合金粉末;
S4、将步骤S3制备的钐钴合金粉末在空气氛围中称重,然后在大于1.5T磁场下取向成型,最后再在230MPa压力下进行冷等静压压制成型,制得生坯;
S5、首先,将步骤S4制得的生坯在1210℃温度条件中烧结1h;然后,烧结后的坯料随炉冷却到1170℃进行固溶处理,保温时间为4h,固溶处理后快速风冷至室温;最后,坯料再次加热至820℃,保温15h后以0.5℃/min速度冷却到400℃,保温1h后风冷至室温,得到2:17型烧结钐钴永磁体。
本实施例1制备的2:17型烧结钐钴永磁体磁性能为:剩磁Br=10.77kGs,磁能积(BH)m=27.63MGOe,内禀矫顽力Hcj=38.17kOe。
实施例2
一种2:17型烧结钐钴永磁体的氢碎制备方法,包括以下步骤:
S1、首先,按照如下成分及其重量百分比称取钐钴永磁体合金原料:Sm:26.5%、Fe:6.5%、Zr:3.5%、Cu:3.5%、Co:60%;然后,将称取的钐钴永磁体合金原料在中频感应熔炼炉中熔炼制得厚度约为10mm的合金铸锭;最后,将合金铸锭机械破碎为粒径为0.5mm~3mm的合金颗粒;
S2、将步骤S1制备的合金颗粒采用催化氢碎法制成平均粒径为10μm~500μm的氢碎粉末,所述催化氢碎法制粉包括以下步骤:
S2-1、将步骤S1制备的合金颗粒与催化剂CuF2粉充分混合,混粉时间为1h;其中合金颗粒与催化剂CuF2粉的质量百分比为:90%合金颗粒,10%催化剂CuF2粉末;
S2-2、将步骤S2-1制备的混合粉末在氢碎炉中依次进行活化处理与循环吸放氢处理,循环吸氢温度为50℃,吸氢氢气压力为0.7MPa,吸氢时间1h;循环放氢温度为70℃;吸放氢循环次数为1次,制得氢碎粉末;
S3、采用气流磨的方法将步骤S2制备的氢碎粉末制成平均粒径为4.2μm的钐钴合金粉末;
S4、将步骤S3制备的钐钴合金粉末在空气氛围中称重,然后在大于1.5T磁场下取向成型,最后再在230MPa压力下进行冷等静压压制成型,制得生坯;
S5、首先,将步骤S4制得的生坯在1220℃温度条件中烧结1h;然后,烧结后的坯料随炉冷却到1180℃进行固溶处理,保温时间为4h,固溶处理后快速风冷至室温;最后,坯料再次加热至830℃,保温10h后以0.5℃/min速度冷却到400℃,保温1h后风冷至室温,得到2:17型烧结钐钴永磁体。
本实施例2制备的2:17型烧结钐钴永磁体磁性能为:剩磁Br=9.38kGs,磁能积(BH)m=20.1MGOe,内禀矫顽力Hcj=36.83kOe。
实施例3
一种2:17型烧结钐钴永磁体的氢碎制备方法,包括以下步骤:
S1、首先,按照如下成分及其重量百分比称取钐钴永磁体合金原料:Sm:25.5%、Fe:20%、Zr:2.5%、Cu:4%、Co:48%;然后,将称取的钐钴永磁体合金原料在真空速凝薄带炉中熔炼制得厚度约为0.6mm的速凝薄带合金片;最后,将速凝薄带合金片机械破碎为粒径为0.5mm~3mm的合金颗粒;
S2、将步骤S1制备的合金颗粒采用催化氢碎法制成平均粒径为10μm~500μm的氢碎粉末,所述催化氢碎法制粉包括以下步骤:
S2-1、将步骤S1制备的合金颗粒与催化剂CuF2粉充分混合,混粉时间为0.5h;其中合金颗粒与催化剂CuF2粉的质量百分比为:99%合金颗粒,1%催化剂CuF2粉末;
S2-2、将步骤S2-1制备的混合粉末在氢碎炉中依次进行活化处理与循环吸放氢处理,循环吸氢温度为80℃,吸氢氢气压力为1MPa,吸氢时间2h;循环放氢温度为80℃;吸放氢循环次数为3次,制得氢碎粉末;
S3、采用气流磨的方法将步骤S2制备的氢碎粉末制成平均粒径为3.5μm的钐钴合金粉末;
S4、将步骤S3制备的钐钴合金粉末在空气氛围中称重,然后在大于1.5T磁场下取向成型,最后再在230MPa压力下进行冷等静压压制成型,制得生坯;
S5、首先,将步骤S4制得的生坯在1205℃温度条件中烧结1h;然后,烧结后的坯料随炉冷却到1150℃进行固溶处理,保温时间为10h,固溶处理后快速风冷至室温;最后,坯料再次加热至830℃,保温12h后以1℃/min速度冷却到400℃,保温1h后风冷至室温,得到2:17型烧结钐钴永磁体。
本实施例3制备的2:17型烧结钐钴永磁体磁性能为:剩磁Br=11.75kGs,磁能积(BH)m=32.84MGOe,内禀矫顽力Hcj=29.5kOe。
实施例4
一种2:17型烧结钐钴永磁体的氢碎制备方法,包括以下步骤:
S1、首先,按照如下成分及其重量百分比称取钐钴永磁体合金原料Sm:20%、Gd:5.3%、Fe:15.5%、Zr:2.8%、Cu:5%、Co:51.4%;然后,将称取的钐钴永磁体合金原料在真空速凝薄带炉中熔炼制得厚度约为1mm的速凝薄带合金片;最后,将速凝薄带合金片机械破碎为粒径为0.5mm~3mm的合金颗粒;
S2、将步骤S1制备的合金颗粒采用催化氢碎法制成平均粒径为10μm~500μm的氢碎粉末,所述催化氢碎法制粉包括以下步骤:
S2-1、将步骤S1制备的合金颗粒与催化剂CuF2粉充分混合,混粉时间为0.5h;其中合金颗粒与催化剂CuF2粉的质量百分比为:97%合金颗粒,3%催化剂CuF2粉末;
S2-2、将步骤S2-1制备的混合粉末在氢碎炉中依次进行活化处理与循环吸放氢处理,循环吸氢温度为70℃,吸氢氢气压力为0.7MPa,吸氢时间1.5h;循环放氢温度为70℃;吸放氢循环次数为2次,制得氢碎粉末;
S3、采用气流磨的方法将步骤S2制备的氢碎粉末制成平均粒径为3.6μm的钐钴合金粉末;
S4、将步骤S3制备的钐钴合金粉末在空气氛围中称重,然后在大于1.5T磁场下取向成型,最后再在230MPa压力下进行冷等静压压制成型,制得生坯;
S5、首先,将步骤S4制得的生坯在1210℃温度条件中烧结1h;然后,烧结后的坯料随炉冷却到1180℃进行固溶处理,保温时间为4h,固溶处理后快速风冷至室温;最后,坯料再次加热至830℃,保温10h后以0.5℃/min速度冷却到400℃,保温1h后风冷至室温,得到2:17型烧结钐钴永磁体。
本实施例4制备的2:17型烧结钐钴永磁体磁性能为:剩磁Br=10.3kGs,磁能积(BH)m=24.56MGOe,内禀矫顽力Hcj=37.13kOe。
实施例5
一种2:17型烧结钐钴永磁体的氢碎制备方法,包括以下步骤:
S1、首先,按照如下成分及其重量百分比称取钐钴永磁体合金原料:Sm:22%、Pr:3%、Dy:0.4%、Fe:17%、Zr:2.5%、Cu:5.5%、Co:49.6%;然后,将称取的钐钴永磁体合金原料在真空速凝薄带炉中熔炼制得厚度约为0.8mm的速凝薄带合金片;最后,将速凝薄带合金片机械破碎为粒径为0.5mm~3mm的合金颗粒;
S2、将步骤S1制备的合金颗粒采用催化氢碎法制成平均粒径为10μm~500μm的氢碎粉末,所述催化氢碎法制粉包括以下步骤:
S2-1、将步骤S1制备的合金颗粒与催化剂CuF2粉充分混合,混粉时间为0.5h;其中合金颗粒与催化剂CuF2粉的质量百分比为:99%合金颗粒,1%催化剂CuF2粉末;
S2-2、将步骤S2-1制备的混合粉末在氢碎炉中依次进行活化处理与循环吸放氢处理,循环吸氢温度为80℃,吸氢氢气压力为0.8MPa,吸氢时间2h;循环放氢温度为80℃;吸放氢循环次数为2次,制得氢碎粉末;
S3、采用气流磨的方法将步骤S2制备的氢碎粉末制成平均粒径为4.2μm的钐钴合金粉末;
S4、将步骤S3制备的钐钴合金粉末在空气氛围中称重,然后在大于1.5T磁场下取向成型,最后再在230MPa压力下进行冷等静压压制成型,制得生坯;
S5、首先,将步骤S4制得的生坯在1215℃温度条件中烧结1h;然后,烧结后的坯料随炉冷却到1180℃进行固溶处理,保温时间为8h,固溶处理后快速风冷至室温;最后,坯料再次加热至830℃,保温15h后以0.5℃/min速度冷却到400℃,保温1h后风冷至室温,得到2:17型烧结钐钴永磁体。
本实施例5制备的2:17型烧结钐钴永磁体磁性能为:剩磁Br=11.03kGs,磁能积(BH)m=28.79MGOe,内禀矫顽力Hcj=21.58kOe。
实施例6
一种2:17型烧结钐钴永磁体的氢碎制备方法,包括以下步骤:
S1、首先,按照如下成分及其重量百分比称取钐钴永磁体合金原料:Sm:25.5%、Fe:18%、Zr:2.5%、Cu:4.5%、Co:49.5%;然后,将称取的钐钴永磁体合金原料在真空速凝薄带炉中熔炼制得厚度约为0.5mm的速凝薄带合金片;最后,将速凝薄带合金片机械破碎为粒径为0.5mm~3mm的合金颗粒;
S2、将步骤S1制备的合金颗粒采用催化氢碎法制成平均粒径为10μm~500μm的氢碎粉末,所述催化氢碎法制粉包括以下步骤:
S2-1、将步骤S1制备的合金颗粒与催化剂CuF2粉充分混合,混粉时间为0.5h;其中合金颗粒与催化剂CuF2粉的质量百分比为:98%合金颗粒,2%催化剂CuF2粉末;
S2-2、将步骤S2-1制备的混合粉末在氢碎炉中依次进行活化处理与循环吸放氢处理,循环吸氢温度为60℃,吸氢氢气压力为0.8MPa,吸氢时间2h;循环放氢温度为70℃;吸放氢循环次数为3次,制得氢碎粉末;
S3、采用气流磨的方法将步骤S2制备的氢碎粉末制成平均粒径为4.1μm的钐钴合金粉末;
S4、将步骤S3制备的钐钴合金粉末在空气氛围中称重,然后在大于1.5T磁场下取向成型,最后再在230MPa压力下进行冷等静压压制成型,制得生坯;
S5、首先,将步骤S4制得的生坯在1210℃温度条件中烧结1h;然后,烧结后的坯料随炉冷却到1150℃进行固溶处理,保温时间为10h,固溶处理后快速风冷至室温;最后,坯料再次加热至830℃,保温12h后以1℃/min速度冷却到400℃,保温1h后风冷至室温,得到2:17型烧结钐钴永磁体。
本实施例6制备的2:17型烧结钐钴永磁体磁性能为:剩磁Br=11.34kGs,磁能积(BH)m=30.37MGOe,内禀矫顽力Hcj=35.6kOe。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (7)

1.一种2:17型烧结钐钴永磁体的氢碎制备方法,其特征在于,包括以下步骤:
S1、首先,按照如下成分及其重量百分比称取钐钴永磁体合金原料:(Sm1-xRex):25%~26.5%,Fe:6.5%~22.5%,Zr:2.0%~3.5%,Cu:3.5%~5.5%,其余为Co;其中,0≤x≤0.4,Re为Pr、Nd、Gd、Dy、Tb、Er、Y、Ho中的一种或几种;
然后,将称取的钐钴永磁体合金原料在中频感应熔炼炉中熔炼,制得合金铸锭;或者将称取的钐钴永磁体合金原料在真空速凝薄带炉中熔炼,制得速凝薄带合金片;
最后,将合金铸锭或者速凝薄带合金片机械破碎为粒径为0.5mm~3mm的合金颗粒;
S2、将步骤S1制备的合金颗粒采用催化氢碎的方法制成平均粒径为10μm~500μm的氢碎粉末,所述催化氢碎的方法包括以下步骤:
S2-1、将步骤S1制备的合金颗粒与催化剂CuF2粉充分混合,混粉时间为0.5h~1h;其中合金颗粒与催化剂CuF2粉的质量百分比为:90%~99%合金颗粒,其余为催化剂CuF2粉末;
S2-2、将步骤S2-1制备的混合粉末在氢碎炉中依次进行活化处理与循环吸放氢处理,制得氢碎粉末;
S3、采用气流磨的方法将步骤S2制备的氢碎粉末制成平均粒径为2.5μm~5μm的钐钴合金粉末;
S4、将步骤S3制备的钐钴合金粉末在空气氛围中称重,然后在大于1.5T磁场下取向成型,最后再在230MPa压力下进行冷等静压压制成型,制得生坯;
S5、首先,将步骤S4制得的生坯在1205℃~1220℃温度条件中烧结0.5h~2h;然后,将烧结后的坯料随炉冷却到1140℃~1190℃进行固溶处理,保温时间为2h~10h,固溶处理后快速风冷至室温;最后,坯料再次加热至800℃~850℃,保温8h~20h后控温冷却到400℃,保温1h后风冷至室温,制得2:17型烧结钐钴永磁体。
2.根据权利要求1所述的一种2:17型烧结钐钴永磁体的氢碎制备方法,其特征在于:在所述步骤S1中,制得的合金铸锭的厚度为8mm~12mm,制得的速凝薄带合金片的厚度为0.5mm~1mm。
3.根据权利要求1所述的一种2:17型烧结钐钴永磁体的氢碎制备方法,其特征在于:在所述步骤S2-1中,混粉过程是在高纯氮气气氛保护下进行的。
4.根据权利要求1所述的一种2:17型烧结钐钴永磁体的氢碎制备方法,其特征在于:在所述步骤S2-2中,循环吸氢温度为20℃~80℃,吸氢氢气压力为0.2MPa~1MPa,吸氢时间1h~2h;循环放氢温度为20℃~80℃;吸放氢循环次数为1次~3次。
5.根据权利要求1所述的一种2:17型烧结钐钴永磁体的氢碎制备方法,其特征在于:在所述步骤S2-2中,脱氢后合金粉末的氢含量为500ppm~2000ppm。
6.根据权利要求1所述的一种2:17型烧结钐钴永磁体的氢碎制备方法,其特征在于:在所述步骤S5中,烧结升温过程中在400℃保温0.5h~1h。
7.根据权利要求1所述的一种2:17型烧结钐钴永磁体的氢碎制备方法,其特征在于:在所述步骤S5中,控温冷却降温速度为0.5℃/min~1℃/min。
CN202211023204.8A 2022-08-25 2022-08-25 一种2:17型烧结钐钴永磁体的氢碎制备方法 Active CN115383122B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211023204.8A CN115383122B (zh) 2022-08-25 2022-08-25 一种2:17型烧结钐钴永磁体的氢碎制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211023204.8A CN115383122B (zh) 2022-08-25 2022-08-25 一种2:17型烧结钐钴永磁体的氢碎制备方法

Publications (2)

Publication Number Publication Date
CN115383122A true CN115383122A (zh) 2022-11-25
CN115383122B CN115383122B (zh) 2023-07-14

Family

ID=84121852

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211023204.8A Active CN115383122B (zh) 2022-08-25 2022-08-25 一种2:17型烧结钐钴永磁体的氢碎制备方法

Country Status (1)

Country Link
CN (1) CN115383122B (zh)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853045A (en) * 1987-02-27 1989-08-01 U.S. Philips Corporation Method for the manufacture of rare earth transition metal alloy magnets
WO2011009105A1 (en) * 2009-07-16 2011-01-20 Woodward Bewley Technology Development Llc Novel alloy and method of making and using same
CN102039407A (zh) * 2009-10-14 2011-05-04 三环瓦克华(北京)磁性器件有限公司 减少烧结钕铁硼磁体烧结过程中的有害气体的方法
CN102360909A (zh) * 2011-06-16 2012-02-22 安徽大地熊新材料股份有限公司 一种钕铁硼磁体的制备方法
CN102634714A (zh) * 2012-04-19 2012-08-15 重庆大学 添加铜元素的镁铝系储氢合金及制备方法
WO2013104264A1 (zh) * 2012-01-12 2013-07-18 北京工业大学 氢化钐纳米粉改性制备高磁能积钐-钴基永磁体的方法
WO2013107274A1 (zh) * 2012-01-16 2013-07-25 北京工业大学 纳米Cu粉掺杂制备高矫顽力SmCoFeCuZr高温永磁体的方法
DE102012017418A1 (de) * 2012-08-30 2014-03-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Wiedergewinnung von Neodym oder Neodymoxid aus einem Ausgangsgemisch
US20150364251A1 (en) * 2013-02-05 2015-12-17 Intermetallics Co., Ltd. Sintered magnet production method
CN105931777A (zh) * 2016-05-31 2016-09-07 宁波宁港永磁材料有限公司 一种高韧性钐钴永磁体的制备方法
CN111180191A (zh) * 2020-01-15 2020-05-19 太原科技大学 一种制备高性能烧结钕铁硼磁体的方法
CN112071543A (zh) * 2020-08-05 2020-12-11 四川大学 一种高矫顽力稀土永磁体及其制备方法
CN112582124A (zh) * 2019-09-27 2021-03-30 河北泛磁聚智电子元件制造有限公司 烧结钐钴磁体的制备方法
CN113130199A (zh) * 2021-04-20 2021-07-16 中国计量大学 一种高电阻率烧结钐钴磁体及其制备方法
CN113205955A (zh) * 2021-04-30 2021-08-03 太原科技大学 一种高性能烧结钐钴磁体的制备方法
CN113421760A (zh) * 2021-06-11 2021-09-21 太原科技大学 一种低烧结温度高膝点磁场钐钴磁体的制备方法
CN113571323A (zh) * 2021-07-09 2021-10-29 太原科技大学 一种2:17型烧结钐钴永磁体的制备方法
CN113903587A (zh) * 2021-09-15 2022-01-07 太原科技大学 一种高温2:17型烧结钐钴磁体的制备方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853045A (en) * 1987-02-27 1989-08-01 U.S. Philips Corporation Method for the manufacture of rare earth transition metal alloy magnets
WO2011009105A1 (en) * 2009-07-16 2011-01-20 Woodward Bewley Technology Development Llc Novel alloy and method of making and using same
CN102039407A (zh) * 2009-10-14 2011-05-04 三环瓦克华(北京)磁性器件有限公司 减少烧结钕铁硼磁体烧结过程中的有害气体的方法
CN102360909A (zh) * 2011-06-16 2012-02-22 安徽大地熊新材料股份有限公司 一种钕铁硼磁体的制备方法
WO2013104264A1 (zh) * 2012-01-12 2013-07-18 北京工业大学 氢化钐纳米粉改性制备高磁能积钐-钴基永磁体的方法
WO2013107274A1 (zh) * 2012-01-16 2013-07-25 北京工业大学 纳米Cu粉掺杂制备高矫顽力SmCoFeCuZr高温永磁体的方法
CN102634714A (zh) * 2012-04-19 2012-08-15 重庆大学 添加铜元素的镁铝系储氢合金及制备方法
DE102012017418A1 (de) * 2012-08-30 2014-03-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Wiedergewinnung von Neodym oder Neodymoxid aus einem Ausgangsgemisch
US20150364251A1 (en) * 2013-02-05 2015-12-17 Intermetallics Co., Ltd. Sintered magnet production method
CN105931777A (zh) * 2016-05-31 2016-09-07 宁波宁港永磁材料有限公司 一种高韧性钐钴永磁体的制备方法
CN112582124A (zh) * 2019-09-27 2021-03-30 河北泛磁聚智电子元件制造有限公司 烧结钐钴磁体的制备方法
CN111180191A (zh) * 2020-01-15 2020-05-19 太原科技大学 一种制备高性能烧结钕铁硼磁体的方法
CN112071543A (zh) * 2020-08-05 2020-12-11 四川大学 一种高矫顽力稀土永磁体及其制备方法
CN113130199A (zh) * 2021-04-20 2021-07-16 中国计量大学 一种高电阻率烧结钐钴磁体及其制备方法
CN113205955A (zh) * 2021-04-30 2021-08-03 太原科技大学 一种高性能烧结钐钴磁体的制备方法
CN113421760A (zh) * 2021-06-11 2021-09-21 太原科技大学 一种低烧结温度高膝点磁场钐钴磁体的制备方法
CN113571323A (zh) * 2021-07-09 2021-10-29 太原科技大学 一种2:17型烧结钐钴永磁体的制备方法
CN113903587A (zh) * 2021-09-15 2022-01-07 太原科技大学 一种高温2:17型烧结钐钴磁体的制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BULYK, I.I.等: "Hydrogenation-Disproportionation in Samarium–Cobalt Ferromagnetic Alloys Based on Sm2(Co, Fe, Cu, Zr)17", 《MATERIALS SCIENCE 》 *
CHAO WANG等: "High temperature properties improvement and microstructure regulation of Sm2Co17-based permanent magnet", 《MATERIALS SCIENCE》 *
HANDSTEIN, A等: "HDDR of Sm-Co alloys using high hydrogen pressures", 《JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS》 *
YI, JH等: "Development of samarium–cobalt rare earth permanent magnetic materials", 《RARE METALS》 *
周相龙等: "高磁能积2∶17型钐钴永磁材料的新进展", 《中国材料进展》 *
雍辉等: "镁基储氢合金的研究现状", 《金属功能材料》 *

Also Published As

Publication number Publication date
CN115383122B (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
CN108364736B (zh) 一种钕铁硼永磁材料及其制备方法
CN102651263B (zh) 一种钐钴系烧结材料的制备方法
CN101266856A (zh) 耐蚀性优异的高性能R-Fe-B系烧结磁体及其制造方法
CN104599801A (zh) 一种稀土永磁材料及其制备方法
CN113205955B (zh) 一种高性能烧结钐钴磁体的制备方法
CN102650004B (zh) 一种钐钴系烧结材料的制备方法
CN103280290A (zh) 含铈低熔点稀土永磁液相合金及其永磁体制备方法
CN103794323A (zh) 一种应用高丰度稀土生产的商用稀土永磁体及其制备方法
CN111640549B (zh) 一种高温度稳定性烧结稀土永磁材料及其制备方法
CN104575901A (zh) 一种添加铽粉的钕铁硼磁体及其制备方法
CN104681268A (zh) 一种提高烧结钕铁硼磁体矫顽力的处理方法
CN112582124A (zh) 烧结钐钴磁体的制备方法
CN105489331A (zh) 一种稀土钴基材料的制备方法
CN104575902A (zh) 一种添加铈的钕铁硼磁体及其制备方法
WO2011082595A1 (zh) 一种微细球形nd-fe-b粉的制备方法
CN104575903A (zh) 一种添加Dy粉末的钕铁硼磁体及其制备方法
CN101265529A (zh) 块状纳米晶SmCo系永磁材料的制备方法
CN102290180A (zh) 稀土永磁材料及其制备方法
CN113421760B (zh) 一种低烧结温度高膝点磁场钐钴磁体的制备方法
CN112582121A (zh) 超高性能烧结钐钴磁体的制备方法
CN112216460A (zh) 纳米晶钕铁硼磁体及其制备方法
CN111477446A (zh) 一种钕铁硼系烧结磁体及其制备方法
CN108666064B (zh) 一种添加vc的烧结稀土永磁材料及其制备方法
CN113571323A (zh) 一种2:17型烧结钐钴永磁体的制备方法
CN116612956A (zh) 一种具有核壳结构的含铈钕铁硼磁体及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20221125

Assignee: Shanxi Yi'ansheng Testing Technology Service Co.,Ltd.

Assignor: TAIYUAN University OF SCIENCE AND TECHNOLOGY

Contract record no.: X2023980054700

Denomination of invention: A hydrogen crushing preparation method for 2:17 type sintered samarium cobalt permanent magnets

Granted publication date: 20230714

License type: Common License

Record date: 20231229