CN115261662B - 一种高熵合金CuSnZnAlCd/C碳基复合材料及其制备方法和应用 - Google Patents

一种高熵合金CuSnZnAlCd/C碳基复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN115261662B
CN115261662B CN202210966038.9A CN202210966038A CN115261662B CN 115261662 B CN115261662 B CN 115261662B CN 202210966038 A CN202210966038 A CN 202210966038A CN 115261662 B CN115261662 B CN 115261662B
Authority
CN
China
Prior art keywords
carbon
cusnznalcd
composite material
entropy alloy
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210966038.9A
Other languages
English (en)
Other versions
CN115261662A (zh
Inventor
王思哲
王珺
宋浩杰
贾晓华
杨进
冯雷
邵丹
李永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202210966038.9A priority Critical patent/CN115261662B/zh
Publication of CN115261662A publication Critical patent/CN115261662A/zh
Application granted granted Critical
Publication of CN115261662B publication Critical patent/CN115261662B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1026Alloys containing non-metals starting from a solution or a suspension of (a) compound(s) of at least one of the alloy constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0084Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ carbon or graphite as the main non-metallic constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • H01M4/463Aluminium based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种高熵合金CuSnZnAlCd/C碳基复合材料的制备方法,包括:步骤一、将铜源、锌源、锡源、铝源和镉源以相同摩尔比加入装有5~10mL无水乙醇的试剂瓶中,在室温下隔绝空气搅拌,获得浓度为1~10mmol/L的CuSnZnAlCd前驱体溶液;步骤二、将碳纸在等离子体清洗机中处理5~30min;步骤三、将步骤一制备的高熵前驱体溶液取10μL~100μL滴定于步骤二得到的碳纸上并真空干燥;步骤四、将步骤三得到的碳纸置于管式炉中,在氩氢混合气气氛中,加热至700~1200℃退火1~5h,得到高熵合金CuSnZnAlCd/C复合材料。高熵合金CuSnZnAlCd/C复合材料通过高熵电子性能协同调节(复合效应)和亲锂成核(低成核势垒)的协同作用来调节锂离子(Li+)的均匀沉积,使Li+均匀沉积在电极表面从而抑制锂枝晶生长,实现稳定的电化学性能。

Description

一种高熵合金CuSnZnAlCd/C碳基复合材料及其制备方法和 应用
技术领域
本发明属于功能材料技术领域,涉及锂电池电极材料,具体涉及一种高熵合金CuSnZnAlCd/C碳基复合材料及其制备方法和应用。
背景技术
随着全球对低碳经济、改善生态环境以及缓解能源危机需求的增大,新能源电池的市场及应用前景发展态势迅猛。其中锂金属(3860mAh·g-1)由于其高理论能量密度以及最低的电化学电位而被视为潜在的高能量密度锂金属材料,然而,金属锂作为负极仍面临着一些应用问题亟需解决。其中金属锂与传统电解液会产生不良副反应;在反应过程中不均匀形核位置的锂枝晶生长可能会导致电池短路甚至***;副反应和锂枝晶问题将加速电解液的消耗,并造成低库仑效率和较差的循环性能。
因此,要实现高能量密度和安全运行的锂金属电池(LMBs)商业化目标,必须致力于缓解甚至根除锂枝晶生长问题。在结构化设计方面,碳基Li负极的结构设计或表面处理可以在一定程度上减轻锂枝晶生长。同时,通过“功能化设计”利用亲锂性材料以调控Li+的沉积,实现负极表面Li+的均匀分布也可以抑制锂枝晶的生长。但在实际应用中,结构及功能化设计时亲锂材料电子/离子导电性差、二元含锂合金反应活性高、体积变化大、能量密度低和成本较高,针对上述问题,可以更多地考虑三元/多组分锂合金,通过多组分相互补充。那么使用具有高稳定性的亲锂高熵合金纳米颗粒来构建“多组分互补”是解决这个问题的最佳途径。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种高熵合金CuSnZnAlCd/C碳基复合材料及其制备方法和应用,制备出电化学性能优异、且稳定的高熵合金复合电极材料。
为了实现上述目的,本发明采用以下技术方案予以实现:
一种高熵合金CuSnZnAlCd/C碳基复合材料的制备方法,包括以下步骤:
步骤一、将铜源、锌源、锡源、铝源和镉源以铜、锌、锡、铝和镉元素相同摩尔比加入装有5~10mL无水乙醇的试剂瓶中,在室温下隔绝空气搅拌,获得铜、锌、锡、铝和镉金属离子总浓度为1~10mmol/L的CuSnZnAlCd前驱体溶液;
步骤二、将碳纸在等离子体清洗机中处理5~30min;
步骤三、将步骤一制备的高熵前驱体溶液取10μL~100μL滴定于0.785cm2步骤二得到的碳纸上并真空干燥;
步骤四、将步骤三得到的碳纸置于管式炉中,在氩氢混合气气氛中,加热至700~1200℃退火1~5h,得到高熵合金CuSnZnAlCd/C复合材料。
本发明还具有以下技术特征:
优选的,步骤一中所述的铜源为硫酸铜、氯化铜或硝酸铜及其水合物中的任一种。
优选的,步骤一中所述的锌源为硫酸锌、氯化锌或硝酸锌及其水合物中的任一种。
优选的,步骤一中所述的锡源为硫酸锡、氯化锡或硝酸锡及其水合物中的任一种。
优选的,步骤一中所述的铝源为硫酸铝、氯化铝或硝酸铝及其水合物中的任一种。
优选的,步骤一中所述的镉源为硫酸镉、氯化镉和硝酸镉中的任一种。
优选的,步骤一所述的充分搅拌为使用磁力搅拌器以200~400r/min的转速搅拌12~24h。
优选的,步骤三所述的真空干燥为在真空烘箱中于60~100℃干燥8~12h。
本发明还保护一种如上所述的方法制备的高熵合金CuSnZnAlCd/C碳基复合材料以及该材料在锂金属电池电极材料中的应用。
本发明与现有技术相比,具有如下技术效果:
本发明通过表面滴定法和高温氧化还原法,将高熵合金CuSnZnAlCd复合到碳基材料中,形成具有高熵合金CuSnZnAlCd/C碳基复合材料的锂金属电池电极材料,CuSnZnAlCd/C复合材料通过高熵电子性能协同调节(复合效应)和亲锂成核(低成核势垒)的协同作用来调节Li+的均匀沉积,使Li+均匀沉积在电极表面从而抑制锂枝晶生长;该策略可实现在电流密度为20mA cm-2测试下,电池在8800h内循环后也实现了稳定的电镀/剥离;在全电极1C的测试条件下,能够实现超过700圈循环,平均比容量超过140mAh·g-1以及库伦效率高达99.9%。
附图说明
图1为实施例1制备的高熵合金CuSnZnAlCd/C碳基复合材料的SEM图(100μm);
图2为实施例1制备的高熵合金CuSnZnAlCd/C碳基复合材料的SEM图(20μm);
图3为实施例1制备的高熵合金CuSnZnAlCd/C碳基复合材料的XRD图;
图4至图6为实施例1制备的高熵合金CuSnZnAlCd/C碳基复合材料的对电极性能图;
图7、图8为实施例1制备的高熵合金CuSnZnAlCd/C碳基复合材料的全电极性能图;
图9为实施例1制备的高熵合金CuSnZnAlCd/C碳基复合材料的对电池倍率图;
图10为实施例1制备的高熵合金CuSnZnAlCd/C碳基复合材料的全电池倍率图。
具体实施方式
下面结合附图和实施例对本发明进行具体说明,但本发明的实施方式不限于此。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。下列实施例中未注明具体实验条件的试验方法,通常按照常规实验条件。除非特别说明,本发明所用试剂和原材料均可通过市售获得。以下各实施例中氩氢混合气的氢气体积占比为10%。
实施例1
本实施例提供了一种用于锂金属电池电极的高熵合金CuSnZnAlCd/C碳基复合材料的制备方法,具体包括以下步骤:
步骤一、将CuCl2·2H2O、SnCl2·2H2O、ZnCl2、AlCl3·6H2O、CdCl2以相同摩尔比加入装有5mL无水乙醇的试剂瓶中,在室温下隔绝空气采用磁力搅拌器200r/min搅拌24h,得到CuSnZnAlCd溶液前驱体金属离子总浓度为5mmol/L;
步骤二、将面积为0.785cm2的碳纸片在等离子体清洗机中处理30min;
步骤三、将步骤一中的高熵前驱体溶液滴定10μL于步骤二得到的碳纸上并放入真空干燥箱中80℃烘干10h;
步骤四、将步骤三得到的碳纸置于管式炉中,在氩氢混合气气氛中,加热至700℃退火1h,得到高熵合金CuSnZnAlCd/C复合材料。
实施例2
本实施例提供了一种用于锂金属电池电极的高熵合金CuSnZnAlCd/C碳基复合材料的制备方法,具体包括以下步骤:
步骤一、将硫酸铜、硫酸锌、硫酸锡、硫酸铝、硫酸镉以相同摩尔比加入装有10mL无水乙醇的试剂瓶中,在室温下隔绝空气采用磁力搅拌器200r/min搅拌24h,其中CuSnZnAlCd溶液前驱体金属离子总浓度为10mmol/L;
步骤二、将面积为0.785cm2的碳纸片在等离子体清洗机中处理30min;
步骤三、将步骤一中的高熵前驱体溶液滴定10μL于步骤二得到的碳纸上并放入真空干燥箱中70℃烘干24h;
步骤四、将步骤三得到的碳纸置于管式炉中,在氩氢混合气气氛中,加热至1100℃退火1h,得到高熵合金CuSnZnAlCd/C复合材料。
实施例3
本实施例提供了一种用于锂金属电池电极的高熵合金CuSnZnAlCd/C碳基复合材料的制备方法,具体包括以下步骤:
步骤一、将硝酸铜、硝酸锌、硝酸锡、硝酸铝、硝酸镉以相同摩尔比加入装有10mL无水乙醇的试剂瓶中,在室温下隔绝空气采用磁力搅拌器300r/min搅拌24h,得到CuSnZnAlCd溶液前驱体金属离子总浓度为5mmol/L;
步骤二、将面积为0.785cm2的碳纸片在等离子体清洗机中处理30min;
步骤三、将步骤一中的高熵前驱体溶液滴定10μL于步骤二得到的碳纸上并放入真空干燥箱中60℃烘干12h;
步骤四、将步骤三得到的碳纸置于管式炉中,在氩氢混合气气氛中,加热至1100℃退火3h,得到高熵合金CuSnZnAlCd/C复合材料。
实施例4
步骤一、将氯化铜、氯化锡、氯化锌、氯化铝、氯化镉以相同摩尔比加入装有8mL无水乙醇的试剂瓶中,在室温下隔绝空气采用磁力搅拌器400r/min搅拌12h,其中CuSnZnAlCd溶液前驱体金属离子总浓度为8mmol/L;
步骤二、将面积为0.785cm2的碳纸片在等离子体清洗机中处理30min;
步骤三、将步骤一中的高熵前驱体溶液滴定10μL于步骤二得到的碳纸上并放入真空干燥箱中80℃烘干12h;
步骤四、将步骤三得到的碳纸置于管式炉中,在氩氢混合气气氛中,加热至1100℃退火2h,得到高熵合金CuSnZnAlCd/C复合材料。
实施例5
步骤一、将氯化铜、氯化锡、氯化锌、氯化铝、氯化镉以相同摩尔比加入装有6mL无水乙醇的试剂瓶中,在室温下隔绝空气采用磁力搅拌器300r/min搅拌18h,得到CuSnZnAlCd溶液前驱体金属离子总浓度为1mmol/L;
步骤二、将面积为0.785cm2的碳纸片在等离子体清洗机中处理5min;
步骤三、将步骤一中的高熵前驱体溶液滴定50μL于步骤二得到的碳纸上并放入真空干燥箱中100℃烘干8h;
步骤四、将步骤三得到的碳纸置于管式炉中,在氩氢混合气气氛中,加热至1000℃退火2h,得到高熵合金CuSnZnAlCd/C复合材料。
实施例6
步骤一、将氯化铜、氯化锡、氯化锌、氯化铝、氯化镉以相同摩尔比加入装有5mL无水乙醇的试剂瓶中在室温下隔绝空气采用磁力搅拌器200r/min搅拌24h,得到CuSnZnAlCd溶液前驱体金属离子总浓度为10mmol/L;
步骤二、将面积为0.785cm2的碳纸片在等离子体清洗机中处理20min;
步骤三、将步骤一中的高熵前驱体溶液滴定100μL于步骤二得到的碳纸上并放入真空干燥箱中80℃烘干10h;
步骤四、将步骤三得到的碳纸置于管式炉中,在氩氢混合气气氛中,加热至900℃退火4h,得到高熵合金CuSnZnAlCd/C复合材料。
概括如下:
1形貌
图1和图2为实施例1制备的高熵合金CuSnZnAlCd/C碳基复合材料在不同倍率下的SEM图,可以从图1和图2中可以看出CuSnZnAlCd的微观形貌为球状,均匀生长在碳纤维表面上。
2组成
图3为实施例1制备的高熵合金CuSnZnAlCd/C碳基复合材料的XRD衍射峰,如图3所示,其特征峰强度高,说明已经合成出高熵合金CuSnZnAlCd/C碳基复合材料。
3电化学性能
图4为至图6为实施例1制备的高熵合金CuSnZnAlCd/C碳基复合材料的对电极性能图;如图4所示,将实施例制备成负极,在电流密度为20mA cm-2,比容量为20mAh cm-2时,测试了电极稳定性,电池在8800h内循环后也实现了稳定的电镀/剥离,并且在循环前后未观察到大的过电位。
如图5和图6所示,在进一步提高电流密度,在电流密度为40mA cm-2,比容量为40mAh·cm-2以及电流密度为60mA·cm-2,比容量为1mAh·cm-2时,测试了电极稳定性,电池表现出优异的长循环稳定性;电池即使在60mA·cm-2的高电流密度下,电池的过电位也很小,在这种大电流密度下长时间的充放电循环过程中具备更优异的电化学性能。
图7至图8为实施例1制备的高熵合金CuSnZnAlCd/C碳基复合材料的全电极性能图;如图7所示,对于碳酸盐电解质***,将其与磷酸铁锂正极匹配为全电池时来展示CuSnZnAlCd/C@Li(HEA/C@Li)负极的优势;在0.1C的电流密度下,50次循环后提供了147mAh·g-1的平均比容量和>99.9%的高库伦效率。同时,如图8所示,在1C的测试条件下,能够实现超过700圈循环,平均比容量超过140mAh·g-1以及库伦效率高达99.9%。
图9为实施例1制备的高熵合金CuSnZnAlCd/C碳基复合材料的对电池倍率图;如图9所示,测试了对称电池在不同电流密度(1mA·cm-2/1mAh·cm-2、2mA·cm-2/2mAh·cm-2、5mA·cm-2/5mAh·cm-2、10mA·cm-2/10mAh·cm-2、20mA·cm-2/20mAh·cm-2、40mA·cm-2/40mAh·cm-2、60mA·cm-2/60mAh·cm-2)下的倍率性能。结果表明,该对称电池具有稳定的过电位,说明材料在高电流密度和剥离/沉积下可以有很好的电化学性能。
图10为实施例1制备的高熵合金CuSnZnAlCd/C碳基复合材料的全电池倍率图。如图10所示,将实施例1制备成负极测试了电池在不同电流密度下的倍率性能。电池在电流密度为0.1C、0.2C、0.5C、1C、5C和0.2C时对应的平均可逆容量分别为148.3mAh·g-1、147mAh·g-1、140.1mAh·g-1、120.8mAh·g-1、110.1mAh·g-1、98.8mAh·g-1。当电流密度恢复到0.2C时,电池的容量可以基本恢复到0.2C的初始容量。
需要说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;铝源、锌源、锡源、镉源、铜源的选用出实施例中列出的几种方式外,还可以为其他的组合,在不脱离本发明构思的前提下,本领域技术人员所做出的推演或替换均属于本发明的保护范围。

Claims (10)

1.一种高熵合金CuSnZnAlCd/C碳基复合材料的制备方法,其特征在于,包括以下步骤:
步骤一、将铜源、锌源、锡源、铝源和镉源以铜、锌、锡、铝和镉元素相同摩尔比加入装有5~10 mL无水乙醇的试剂瓶中,在室温下隔绝空气搅拌,获得铜、锌、锡、铝和镉金属离子总浓度为1~10 mmol/L的CuSnZnAlCd前驱体溶液;
步骤二、将碳纸在等离子体清洗机中处理5~30 min;
步骤三、将步骤一制备的高熵前驱体溶液取10 μL~100 μL滴定于0.785 cm²步骤二得到的碳纸上并真空干燥;
步骤四、将步骤三得到的碳纸置于管式炉中,在氩氢混合气气氛中,加热至700~1200℃退火1~5 h,得到高熵合金CuSnZnAlCd/C碳基复合材料。
2.如权利要求1所述的高熵合金CuSnZnAlCd/C碳基复合材料的制备方法,其特征在于,步骤一中所述的铜源为硫酸铜、氯化铜或硝酸铜及其水合物中的任一种。
3.如权利要求1所述的高熵合金CuSnZnAlCd/C碳基复合材料的制备方法,其特征在于,步骤一中所述的锌源为硫酸锌、氯化锌或硝酸锌及其水合物中的任一种。
4.如权利要求1所述的高熵合金CuSnZnAlCd/C碳基复合材料的制备方法,其特征在于,步骤一中所述的锡源为硫酸锡、氯化锡或硝酸锡及其水合物中的任一种。
5.如权利要求1所述的高熵合金CuSnZnAlCd/C碳基复合材料的制备方法,其特征在于,步骤一中所述的铝源为硫酸铝、氯化铝或硝酸铝及其水合物中的任一种。
6.如权利要求1所述的高熵合金CuSnZnAlCd/C碳基复合材料的制备方法,其特征在于,步骤一中所述的镉源为硫酸镉、氯化镉和硝酸镉中的任一种。
7.如权利要求1所述的高熵合金CuSnZnAlCd/C碳基复合材料的制备方法,其特征在于,步骤一所述的搅拌为使用磁力搅拌器以200~400 r/min的转速搅拌12~24 h。
8.如权利要求1所述的高熵合金CuSnZnAlCd/C碳基复合材料的制备方法,其特征在于,步骤三所述的真空干燥为在真空烘箱中于60~100 ℃干燥8~12 h。
9.一种如权利要求1-8中任一项所述的方法制备的高熵合金CuSnZnAlCd/C碳基复合材料。
10.一种如权利要求9所述的高熵合金CuSnZnAlCd/C碳基复合材料在锂金属电池电极材料中的应用。
CN202210966038.9A 2022-08-12 2022-08-12 一种高熵合金CuSnZnAlCd/C碳基复合材料及其制备方法和应用 Active CN115261662B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210966038.9A CN115261662B (zh) 2022-08-12 2022-08-12 一种高熵合金CuSnZnAlCd/C碳基复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210966038.9A CN115261662B (zh) 2022-08-12 2022-08-12 一种高熵合金CuSnZnAlCd/C碳基复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115261662A CN115261662A (zh) 2022-11-01
CN115261662B true CN115261662B (zh) 2023-05-26

Family

ID=83750624

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210966038.9A Active CN115261662B (zh) 2022-08-12 2022-08-12 一种高熵合金CuSnZnAlCd/C碳基复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115261662B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595683A (zh) * 2003-09-10 2005-03-16 中国科学院物理研究所 纳米金属或合金复合材料及其制备和用途
JP2007080547A (ja) * 2005-09-12 2007-03-29 Dowa Holdings Co Ltd アルカリ電池用亜鉛合金粉末およびその製造方法
US7736724B1 (en) * 2005-05-13 2010-06-15 The University Of Tulsa Fabrication of nanobaskets by sputter deposition on porous substrates and uses thereof
CN108539185A (zh) * 2018-05-24 2018-09-14 中南大学 一种锂或钠离子电池负极材料及其制备方法
CN110854380A (zh) * 2019-11-27 2020-02-28 电子科技大学 一种锂碳复合材料、锂电池及其制备方法
CN111106310A (zh) * 2018-10-25 2020-05-05 中国科学院宁波材料技术与工程研究所 一种复合锂金属负极的制备方法及含复合锂金属负极的电池
CN112008075A (zh) * 2019-05-28 2020-12-01 比亚迪股份有限公司 一种稀土永磁体及其制备方法
CN112475315A (zh) * 2020-11-27 2021-03-12 电子科技大学 一种普适性制备高熵合金纳米颗粒的方法
CN112750987A (zh) * 2021-01-04 2021-05-04 北京航空航天大学 一种基于亲锂三维碳基集流体的锂金属负极制备方法
EP3872197A1 (en) * 2018-10-22 2021-09-01 Seoul National University R & DB Foundation Composite copper alloy comprising high-entropy alloy, and manufacturing method therefor
CN113555529A (zh) * 2021-07-21 2021-10-26 陕西科技大学 一种用于锂电极的赫斯勒合金Fe2CoAl/C自支撑复合材料及其制备方法和应用
CN113964291A (zh) * 2021-10-22 2022-01-21 陕西科技大学 一种高熵合金/碳纳米管改性锂氟化碳电池正极片及其制备方法和锂氟化碳电池
CN114242989A (zh) * 2022-02-23 2022-03-25 中南大学 一种复合电极材料及其制备方法和应用
CN114530590A (zh) * 2022-01-27 2022-05-24 南京邮电大学 含铋锡锑的高熵氧化物负极储能材料及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170338482A1 (en) * 2016-05-20 2017-11-23 Korea University Research And Business Foundation Material of negative electrode for lithium secondary battery

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595683A (zh) * 2003-09-10 2005-03-16 中国科学院物理研究所 纳米金属或合金复合材料及其制备和用途
US7736724B1 (en) * 2005-05-13 2010-06-15 The University Of Tulsa Fabrication of nanobaskets by sputter deposition on porous substrates and uses thereof
JP2007080547A (ja) * 2005-09-12 2007-03-29 Dowa Holdings Co Ltd アルカリ電池用亜鉛合金粉末およびその製造方法
CN108539185A (zh) * 2018-05-24 2018-09-14 中南大学 一种锂或钠离子电池负极材料及其制备方法
EP3872197A1 (en) * 2018-10-22 2021-09-01 Seoul National University R & DB Foundation Composite copper alloy comprising high-entropy alloy, and manufacturing method therefor
CN111106310A (zh) * 2018-10-25 2020-05-05 中国科学院宁波材料技术与工程研究所 一种复合锂金属负极的制备方法及含复合锂金属负极的电池
CN112008075A (zh) * 2019-05-28 2020-12-01 比亚迪股份有限公司 一种稀土永磁体及其制备方法
CN110854380A (zh) * 2019-11-27 2020-02-28 电子科技大学 一种锂碳复合材料、锂电池及其制备方法
CN112475315A (zh) * 2020-11-27 2021-03-12 电子科技大学 一种普适性制备高熵合金纳米颗粒的方法
CN112750987A (zh) * 2021-01-04 2021-05-04 北京航空航天大学 一种基于亲锂三维碳基集流体的锂金属负极制备方法
CN113555529A (zh) * 2021-07-21 2021-10-26 陕西科技大学 一种用于锂电极的赫斯勒合金Fe2CoAl/C自支撑复合材料及其制备方法和应用
CN113964291A (zh) * 2021-10-22 2022-01-21 陕西科技大学 一种高熵合金/碳纳米管改性锂氟化碳电池正极片及其制备方法和锂氟化碳电池
CN114530590A (zh) * 2022-01-27 2022-05-24 南京邮电大学 含铋锡锑的高熵氧化物负极储能材料及其制备方法与应用
CN114242989A (zh) * 2022-02-23 2022-03-25 中南大学 一种复合电极材料及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Elastic properties of antiperovskite-type Ni-rich nitrides MNNi3 (M=Zn, Cd, Mg, Al, Ga, In, Sn, Sb, Pd, Cu, Ag and Pt) as predicted from first-principles calculations;V. V. Bannikov et al.;Physica B: Condensed Matter;第405卷(第22期);4615-4619 *
双铂极电流滴定法测定铜铁;乌云平等;分析试验室;第4卷(第05期);59-60 *
掺杂浓度对钾镁交替掺杂BST薄膜介电性能的影响;杨函于等;稀有金属材料与工程;第44卷(第S1期);28-31 *
锂离子电池C-Sn-金属复合负极材料的研究进展;王录娥等;材料导报;第25卷(第9期);148-152 *

Also Published As

Publication number Publication date
CN115261662A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
CN101237039B (zh) 化学气相沉积辅助固相法合成LiFePO4/C材料的方法
CN101969110A (zh) 快离子导体改性锂离子电池正极材料钴酸锂及制备方法
CN111900388A (zh) 一种锌离子电池负极材料、其制备及应用
CN110931781A (zh) 生物质碳/聚氟磷酸铁钠复合材料的制备方法及其应用
CN111740085B (zh) 一种富锂锰基正极材料的包覆改性方法
CN114122332A (zh) 一种利用MOFs衍生物制备三维金属锂负极的方法
WO2022205667A1 (zh) 一种硅基负极材料及其制备方法、应用
CN112652749B (zh) 钴颗粒均匀分布的长有垂直石墨烯的碳布及其制法和应用
CN106129348A (zh) 一种Al2O3包覆改性的镍锰酸锂正极材料及其制备方法
CN111009659A (zh) 生物质碳/聚氟磷酸锰钠复合材料的制备方法及其应用
CN112186135B (zh) 一种包覆有金属氧化物层的氟磷酸钒钠电极及其制备方法
CN110148712B (zh) 一种复合包覆改性的富锂锰正极材料及其制备方法
CN111463419A (zh) 一种硅基@钛铌氧化物核壳结构的负极材料及其制备方法
CN112864372A (zh) 一种双功能界面锂离子电池富镍单晶正极材料及制备方法
CN111244563A (zh) 一种正极补锂离子添加剂及其制备方法和应用
CN114203976A (zh) 一种可提高金属锂负极稳定性的混合溶液及制备方法和应用
CN110165179B (zh) 一种锂电池负极材料及其制备方法与包含该负极材料的锂电池
CN109616656B (zh) 锂电池用铜镁掺杂的包覆磷酸镍锂正极材料及制备方法
CN115261662B (zh) 一种高熵合金CuSnZnAlCd/C碳基复合材料及其制备方法和应用
CN109817968B (zh) 经表面包覆的镍锰酸锂颗粒及其制造方法
CN115411257A (zh) 一种表面双层包覆的富锂锰基正极材料及其制备方法和应用
CN115275168A (zh) 一种高倍率的锂离子电池负极材料及其制备方法
CN113104898B (zh) Li2Fe3(MoO4)4在锂离子电池负极中的应用
CN114804057A (zh) 改性磷酸铁前驱体、改性磷酸铁锂及其制备方法
CN106207251A (zh) 一种水热法磷酸铁锂的碳包覆方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant