CN115141020A - 高韧性且宽频吸收电磁波的超层构仿生陶瓷的制备方法 - Google Patents

高韧性且宽频吸收电磁波的超层构仿生陶瓷的制备方法 Download PDF

Info

Publication number
CN115141020A
CN115141020A CN202210774519.XA CN202210774519A CN115141020A CN 115141020 A CN115141020 A CN 115141020A CN 202210774519 A CN202210774519 A CN 202210774519A CN 115141020 A CN115141020 A CN 115141020A
Authority
CN
China
Prior art keywords
electromagnetic wave
casting
weight
super
interface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210774519.XA
Other languages
English (en)
Inventor
李�权
张建浩
王之成
杨建�
汪洋
潘丽梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202210774519.XA priority Critical patent/CN115141020A/zh
Publication of CN115141020A publication Critical patent/CN115141020A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/612Machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/75Products with a concentration gradient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开了一种高韧性且宽频吸收电磁波的超层构仿生陶瓷的制备方法,属于层状仿生陶瓷材料制备技术领域,通过将基体层流延片材和界面层流延片材交替叠层,然后经裁剪、叠层、排胶和高温烧结等工艺制备出超层构仿生陶瓷材料;通过控制基体层和界面层内电磁波吸收剂的含量和分布,制备出阻抗/损耗梯度渐变、阻抗/损耗周期性变化或损耗具有“低‑高‑低”三明治结构特点的超层构仿生陶瓷;通过引入弱界面可有效提高陶瓷材料的韧性,韧性可超过12MP·m1/2;同时通过对电磁波吸收剂含量和分布的优化,可使超层构仿生陶瓷材料获得宽频吸波性能,所制备的陶瓷材料可在先进隐身装备中得到广泛应用。

Description

高韧性且宽频吸收电磁波的超层构仿生陶瓷的制备方法
技术领域
本发明属于层状仿生陶瓷材料制备技术领域,更具体地说,本发明涉及一种兼具宽频电磁波吸波且高韧性等功能的超层构仿生陶瓷的制备方法。
背景技术
吸波陶瓷材料主要是由低介电常数、低介电损耗的陶瓷和高介电损耗的电磁波吸收剂组成。兼具电磁波吸收和承载功能的结构吸波一体化材料在先进航空航天飞行器、陆地装甲以及船舰的隐身领域有着广阔而重要的应用前景。但目前吸波陶瓷材料具有韧性低、有效吸收频带窄等缺点,难以满足应用环境下的使用要求。
文献1“Zhou W,et al.Mechanical and Microwave-Absorption Properties ofSi3N4 Ceramic with SiCNFs Fillers[J].Advanced Engineering Materials,2018.”公开了一种将SiC纳米纤维(SiCNFs)引入Si3N4陶瓷中的方法。结果表明,随着Si3N4基体中SiCNFs填充量的增加,材料的韧性由3.4MPa·m1/2提高到5.2MPa·m1/2。此外,在Si3N4陶瓷中引入SiCNFs填料,可显著提高复介电常数和介电损耗。但该材料的韧性仍然较低,且没实现电磁波宽频吸收。
文献2“Qing Y,et al.Optimization of Electromagnetic Matching ofCarbonyl Iron/BaTiO3 Composites for Microwave Absorption[J].Journal ofMagnetism&Magnetic Materials,2011,323(5):600-606.”公开了一种通过改变BaTiO3和羰基铁(CI)颗粒重量比来调节材料介电和磁性能的方法。结果表明,材料在10.8~14.8GHz的频率范围内反射损耗小于-10dB,并且频率在12.5GHz的最小反射损耗为-59dB。但该材料无法在8~18GHz或更宽频率范围内实现宽频吸收。
因此,本领域技术人员亟需提供一种高韧性且宽频吸收电磁波的超层构仿生陶瓷的制备方法,制备出的超层构仿生陶瓷可同时提高陶瓷材料的韧性和电磁波吸收性能,使其在结构与功能一体化领域具有广阔的应用前景,易于实现工业化生产。
发明内容
为了克服现有技术的上述缺陷,本发明的提供一种高韧性且宽频吸收电磁波的超层构仿生陶瓷的制备方法,制备出的超层构仿生陶瓷可同时提高陶瓷材料的韧性和电磁波吸收性能,使其在结构与功能一体化领域具有广阔的应用前景,易于实现工业化生产。
为实现上述目的,本发明提供一种高韧性且宽频吸收电磁波的超层构仿生陶瓷的制备方法,包括以下步骤:
步骤S01、制备基体层流延片材;
采用苯类和醇类混合液作为溶剂,加入分散剂到溶剂中至完全溶解;然后分别加入烧结助剂和基体层陶瓷颗粒,选择性的加入电磁波吸波剂,球磨均匀后分别加入粘结剂和增塑剂,再球磨均匀;经真空除泡后得到均匀的基体层流延浆料;其中,基体层陶瓷颗粒是Si3N4、AlN、B4C、MgO、SiO2、Al2O3、ZrO2、HfO2、ZrSiO4或HfSiO4材料中的一种或由其中几种材料组成的复相陶瓷颗粒;
调节流延机刮刀间隙并控制流延速度进行流延成型,干燥后得到基体层流延片材;
步骤S02、制备界面层流延片材;
采用苯类和醇类混合液作为溶剂,加入分散剂到溶剂中至完全溶解;然后分别加入烧结助剂和界面层陶瓷颗粒,选择性的加入电磁波吸波剂,球磨均匀后分别加入粘结剂和增塑剂,再球磨均匀;经真空除泡后得到均匀的界面层流延浆料;其中,界面层陶瓷颗粒是BN、Y2Si2O7、Y2SiO5或碳材料中的一种或由其中几种材料组成的复相陶瓷颗粒;基体层流延片材和界面层流延片材中至少有一种片材加入电磁波吸波剂;
调节流延机刮刀间隙并控制流延速度进行流延成型,干燥后得到界面层流延片材;
步骤S03、制备超层构仿生陶瓷材料;
将步骤S01中的基体层流延片材与步骤S02中的界面层流延片材按厚度比(2~15):1间隔交替叠层,并将层叠后的材料进行干预压成型后进行排胶;将排胶后的试样在进行高温烧结,得到超层构仿生陶瓷材料;其中,所述超层构仿生陶瓷材料中基体层流延片材和界面层流延片材按电磁波吸波剂的含量呈梯度渐变结构、周期性变化结构或低-高-低的三明治结构分布。
优选的,所述步骤S01和步骤S02中的电磁波吸波剂是SiC微米粉、SiC纳米粉、SiC晶须、SiC纤维、石墨粉、碳黑粉、碳纳米管、石墨烯、碳纤维、TiC、TaC、ZrC、HfC、TiB2、ZrB2、HfB2、TaN、HfN、ZrN材料中的一种或几种。
优选的,所述步骤S02中界面层陶瓷颗粒中添加预设量的基体层陶瓷颗粒,以调节界面结合强度。
优选的,步骤S01、制备基体层流延片材具体包括以下步骤:
将重量分数为30~60%的醇类和苯类混合液作为溶剂,其中醇类和苯类的体积比为3:1~1:3;将重量分数为1~5%的分散剂加入到溶剂中搅拌2~20min至完全溶解;然后加入重量分数为1~10%的烧结助剂和重量分数为30~50%的基体层陶瓷颗粒和电磁波吸波剂,球磨2~12h后加入重量分数为2~4%的粘结剂和重量分数为3~6%的增塑剂,再球磨6~12h;真空除泡5~30min后得到均匀的、粘度适当的基体层流延浆料;
调节流延机刮刀间隙为25~200μm,控制流延速度为1~10cm/s进行流延,在通风橱中自然干燥8~24h后得到基体层流延片材,将基体层流延片材裁切为所需尺寸,并从流延膜上揭下后密封保存。
优选的,步骤S01中,醇类和苯类混合液的重量分数为30~60%,醇类为乙醇或异丙醇中的一种,苯类为甲苯或二甲苯中的一种,醇类与苯类的体积比为(0.3~3):1;分散剂为磷酸三乙酯,其重量分数为1~5%;粘结剂和增塑剂的重量分数为5~10%,粘结剂为PVB、PVP、PVA中的一种,增塑剂为丙三醇和邻苯二甲酸二辛酯,基体层陶瓷颗粒和电磁波吸收剂的重量分数为30~50%且基体层陶瓷颗粒与微波吸收剂重量比为20:1~1:2;烧结助剂的重量分数为1~10%。
优选的,步骤S02、制备界面层流延片材具体包括:
将重量分数为30~60%的醇类和苯类混合液作为溶剂,其中醇类和苯类的体积比为3:1~1:3;将重量分数为1~5%的分散剂加入到溶剂中搅拌2~20min至完全溶解;然后加入重量分数为1~10%的烧结助剂和重量分数为30~50%的界面层陶瓷颗粒和电磁波吸波剂,球磨2~12h后加入重量分数为2~4%的粘结剂和重量分数为3~6%的增塑剂,再球磨6~12h;真空除泡5~30min后得到均匀的、粘度适当的界面层流延浆料;
调节流延机刮刀间隙为25~200μm,控制流延速度为1~10cm/s进行流延,在通风橱中自然干燥8~24h后得到界面层流延片材,将界面层流延片材裁切为所需尺寸,并从流延膜上揭下后密封保存。
优选的,步骤S02中,醇类和苯类混合液的重量分数为30~60%,醇类为乙醇或异丙醇中的一种,苯类为甲苯或二甲苯中的一种,醇类与苯类的体积比为(0.3~3):1;分散剂为磷酸三乙酯,其重量分数为1~5%;粘结剂和增塑剂的重量分数为5~10%,粘结剂为PVB、PVP、PVA中的一种,增塑剂为丙三醇和邻苯二甲酸二辛酯,界面层陶瓷颗粒和电磁波吸收剂的重量分数为30~50%且界面层陶瓷颗粒与微波吸收剂重量比为50:1~1:2;烧结助剂的重量分数为1~10%。
优选的,超层构仿生陶瓷材料将步骤S01中的基体层流延片材与步骤S02中的界面层流延片材交替叠层,叠层厚度为2~30mm。
优选的,将层叠后的材料进行干预压成型后在600~900℃下排胶2~5h;将排胶后的试样在温度为1600~2000℃,压力为1~30MPa、惰性气氛下进行高温烧结0.5~6h,得到超层构仿生陶瓷材料。
本发明的技术效果和优点:
1、通过将基体层流延片材和界面层流延片材交替叠层,然后经裁剪、叠层、排胶和高温烧结等工艺制备出超层构仿生陶瓷材料;通过控制基体层和界面层内电磁波吸收剂的含量和分布,设计和制备出阻抗/损耗梯度渐变、阻抗/损耗周期性变化或损耗具有“低-高-低”三明治结构特点的超层构仿生陶瓷。
2、引入弱界面可有效提高陶瓷材料的韧性,韧性可超过15MP·m1/2;同时,通过对电磁波吸收剂含量和分布的优化,可使超层构仿生陶瓷材料获得宽频吸波性能,反射率在8~18GHz范围内或更宽频率范围内小于-10dB,所制备的陶瓷材料可在先进隐身装备中得到广泛应用;
3、本发明原料易得,工艺及其设备简单,可设计性强,且易于实现工业化生产,制备出的样品具有强的电磁波吸收能力和高韧性,可满足应用环境需求。
附图表说明
图1为本发明中超层构仿生陶瓷材料的制备流程;
图2为本发明中基体层流延片材和界面层流延片材叠层后的示意图;
图3为本发明中排胶烧结后的超层构仿生陶瓷材料的示意图;
图4为本发明中呈梯度渐变结构的超层构仿生陶瓷材料的示意图;
图5为本发明中呈三明治结构的超层构仿生陶瓷材料的示意图;
图6为本发明中呈周期性变化结构的超层构仿生陶瓷材料的示意图;
图7为本发明实施案例1中经优化后材料的反射损耗图;
图8为本发明实施案例1中平行韧性位移载荷图;
图9为本发明实施案例1中垂直韧性位移载荷图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种高韧性且宽频吸收电磁波的超层构仿生陶瓷的制备方法,包括以下步骤:步骤S01、制备基体层流延片材;步骤S02、制备界面层流延片材;步骤S03、制备超层构仿生陶瓷材料。本发明通过将基体层流延片材和界面层流延片材交替叠层,然后经裁剪、叠层、排胶和高温烧结等工艺制备出超层构仿生陶瓷材料。
步骤S01中,制备基体层流延片材首先采用苯类和醇类混合液作为溶剂,加入分散剂到溶剂中至完全溶解;然后分别加入烧结助剂、基体层陶瓷颗粒和电磁波吸波剂,球磨均匀后分别加入粘结剂和增塑剂,再球磨均匀;经真空除泡后得到均匀的基体层流延浆料;最后调节流延机刮刀间隙并控制流延速度进行流延成型,干燥后得到基体层流延片材。
其中,基体层陶瓷颗粒是Si3N4、AlN、B4C、MgO、SiO2、Al2O3、ZrO2、HfO2、ZrSiO4或HfSiO4材料中的一种或由其中几种材料组成的复相陶瓷颗粒;电磁波吸波剂是SiC微米粉、SiC纳米粉、SiC晶须、SiC纤维、石墨粉、碳黑粉、碳纳米管、石墨烯、碳纤维、TiC、TaC、ZrC、HfC、TiB2、ZrB2、HfB2、TaN、HfN、ZrN材料中的一种或几种。
苯类和醇类优选为乙醇和二甲苯或异丙醇和甲苯;分散剂优选为磷酸三乙酯;烧结助剂优选为重量分数为1~10%且Al2O3:Y2O3质量比为1:3~3:1或MgF2:AlF3=1:3~3:1;粘结剂优选为PVB、PVP或PVA;增塑剂优选为丙三醇和邻苯二甲酸二辛酯DOP,其中丙三醇和邻苯二甲酸二辛酯DOP的体积比为3:1~1:3。
具体的,制备基体层流延片材具体包括以下步骤:将重量分数为30~60%的醇类和苯类混合液作为溶剂,其中醇类和苯类的体积比为3:1~1:3;将重量分数为1~5%的分散剂加入到溶剂中搅拌2~20min至完全溶解;然后加入重量分数为1~10%的烧结助剂和重量分数为30~50%的基体层陶瓷颗粒和电磁波吸波剂,球磨2~12h后加入重量分数为2~4%的粘结剂和重量分数为3~6%的增塑剂,再球磨6~12h;真空除泡5~30min后得到均匀的、粘度适当的基体层流延浆料;最后调节流延机刮刀间隙为25~200μm,控制流延速度为1~10cm/s进行流延,在通风橱中自然干燥8~24h后得到基体层流延片材,将基体层流延片材裁切为所需尺寸,并从流延膜上揭下后密封保存。
其中,将重量分数为30~60%的醇类和苯类混合液作为溶剂,其中醇类和苯类的体积比为3:1~1:3;将重量分数为1~5%的分散剂加入到溶剂中搅拌2~20min至完全溶解;然后加入重量分数为1~10%的烧结助剂和重量分数为30~50%的基体层陶瓷颗粒和电磁波吸波剂,球磨2~12h后加入重量分数为2~4%的粘结剂和重量分数为3~6%的增塑剂,再球磨6~12h;真空除泡5~30min后得到均匀的、粘度适当的基体层流延浆料。
步骤S02中,制备界面层流延片材首先采用苯类和醇类混合液作为溶剂,加入分散剂到溶剂中至完全溶解;然后分别加入烧结助剂、界面层陶瓷颗粒和电磁波吸波剂,球磨均匀后分别加入粘结剂和增塑剂,再球磨均匀;经真空除泡后得到均匀的界面层流延浆料;最后调节流延机刮刀间隙并控制流延速度进行流延成型,干燥后得到界面层流延片材。
其中,界面层陶瓷颗粒是BN、Y2Si2O7、Y2SiO5或碳材料中的一种或由其中几种材料组成的复相陶瓷颗粒;电磁波吸波剂是SiC微米粉、SiC纳米粉、SiC晶须、SiC纤维、石墨粉、碳黑粉、碳纳米管、石墨烯、碳纤维、TiC、TaC、ZrC、HfC、TiB2、ZrB2、HfB2、TaN、HfN、ZrN材料中的一种或几种。
苯类和醇类优选为乙醇和二甲苯或异丙醇和甲苯;分散剂优选为磷酸三乙酯;烧结助剂优选为重量分数为1~10%且Al2O3:Y2O3质量比为1:3~3:1或MgF2:AlF3=1:3~3:1;粘结剂优选为PVB、PVP或PVA;增塑剂优选为丙三醇和邻苯二甲酸二辛酯DOP,其中丙三醇和邻苯二甲酸二辛酯DOP的体积比为3:1~1:3。
具体的,制备界面层流延片材具体包括以下步骤:将重量分数为30~60%的醇类和苯类混合液作为溶剂,其中醇类和苯类的体积比为3:1~1:3;将重量分数为1~5%的分散剂加入到溶剂中搅拌2~20min至完全溶解;然后加入重量分数为1~10%的烧结助剂和重量分数为30~50%的界面层陶瓷颗粒和电磁波吸波剂,球磨2~12h后加入重量分数为2~4%的粘结剂和重量分数为3~6%的增塑剂,再球磨6~12h;真空除泡5~30min后得到均匀的、粘度适当的界面层流延浆料;调节流延机刮刀间隙为25~200μm,控制流延速度为1~10cm/s进行流延,在通风橱中自然干燥8~24h后得到界面层流延片材,将界面层流延片材裁切为所需尺寸,并从流延膜上揭下后密封保存。
其中,醇类和苯类混合液的重量分数为30~60%,醇类为乙醇或异丙醇中的一种,苯类为甲苯或二甲苯中的一种,醇类与苯类的体积比为(0.3~3):1;分散剂为磷酸三乙酯,其重量分数为1~5%;粘结剂和增塑剂的重量分数为5~10%,粘结剂为PVB、PVP、PVA中的一种,增塑剂为丙三醇和邻苯二甲酸二辛酯,界面层陶瓷颗粒和电磁波吸收剂的重量分数为30~50%且界面层陶瓷颗粒与微波吸收剂重量比为50:1~1:2;烧结助剂的重量分数为1~10%。
步骤S03、制备超层构仿生陶瓷材料首先将步骤S01中的基体层流延片材与步骤S02中的界面层流延片材按厚度比(2~15):1间隔交替叠层,叠层厚度为2~30mm,并将层叠后的材料进行干预压成型后进行排胶;将排胶后的试样在进行高温烧结,得到超层构仿生陶瓷材料;超层构仿生陶瓷材料中基体层流延片材和界面层流延片材按电磁波吸波剂的含量呈梯度渐变结构、周期性变化结构或低-高-低的三明治结构分布。
具体的,本步骤中,将层叠后的材料进行干预压成型后在600~900℃下排胶2~5h;将排胶后的试样在温度为1600~2000℃,压力为1~30MPa、惰性气氛下进行高温烧结0.5~6h,得到超层构仿生陶瓷材料。
本发明通过将基体层流延片材和界面层流延片材交替叠层,然后经裁剪、叠层、排胶和高温烧结等工艺制备出超层构仿生陶瓷材料;通过控制基体层和界面层内电磁波吸收剂的含量和分布,设计和制备出阻抗/损耗梯度渐变、阻抗/损耗周期性变化或损耗具有“低-高-低”三明治结构特点的超层构仿生陶瓷。
实施例一
步骤S01中,制备Si3N4-SiC基体层流延片材;以100g基体层流延浆料为例,取60g的乙醇和二甲苯作为溶剂,其中乙醇和二甲苯体积比为1:1;将2g的磷酸三乙酯加入溶剂中搅拌20min,然后加入1.5g Al2O3、1.5g Y2O3、30gSiC和Si3N4,其中,烧结助剂为Al2O3和Y2O3,电磁波吸波剂SiC纳米粉,基体层陶瓷颗粒是Si3N4;球磨5h(转速180r/min)后加入粘结剂2gPVB、增塑剂1.5g丙三醇和1.5g DOP,再球磨8h;真空除泡15min后得到均匀的、粘度适当的基体层流延浆料。其中,基体层流延浆料中电磁波吸波剂SiC纳米粉占总陶瓷粉体(Si3N4和SiC纳米粉)的质量分数分别为0%,30%,45%。
调节流延机刮刀间隙为150μm,控制流延速度为5cm/s进行流延,在通风橱中自然干燥20h后得到基体层流延片材;将基体层流延片材裁切为所需尺寸,并从流延膜上揭下后密封保存。
步骤S02中,制备BN界面层流延片;以100g流延浆料为例,取60g的乙醇和二甲苯作为溶剂,其中乙醇和二甲苯体积比为1:1;将2g的磷酸三乙酯加入溶剂中搅拌20min,然后加入1.5g Al2O3、1.5g Y2O3和25g BN,并球磨5h(转速180r/min);其中,烧结助剂为Al2O3和Y2O3,界面层陶瓷颗粒是BN;球磨后加入粘结剂2g PVB、增塑剂1.5g丙三醇和1.5g DOP,再球磨8h;真空除泡15min后得到均匀的、粘度适当的界面层流延浆料。
调节流延机刮刀厚度为50μm,控制流延速度为5cm/s进行流延。在通风橱中自然干燥20h后得到界面层流延片材;将界面层流延片材裁切为所需尺寸,并从流延膜上揭下后密封保存。
步骤S03中,制备Si3N4-SiC/BN仿生陶瓷材料:将步骤S01中的Si3N4-SiC基体层流延片材与步骤S02中的BN界面层流延片材间隔交替叠层,其中基体层流延片材按电磁波吸波剂SiC纳米粉含量递增方式从下到上依次叠层,叠层厚度分别为含0%SiC的流延片材10mm、含30%SiC的流延片材7mm和含45%SiC的流延片材3mm;将叠层后的试样进行干预压成型后在800℃下排胶2h;将排胶后的试样在1850℃,压力为30MPa,气氛为N2下进行热压烧结1h,得到Si3N4-SiC/BN超层构仿生陶瓷材料。
请参阅图7-9,图7为本发明实施案例1中经优化后材料的反射损耗图;图8为本发明实施案例1中平行韧性位移载荷图;图9为本发明实施案例1中垂直韧性位移载荷图。图7以Si3N4-SiC为基体层,BN为界面层组成的双层吸波材料的RL曲线,其中经优化的材料在8-18GHZ的范围内其反射系数均小于-10dB,且出现了两个谐振吸收峰,分别在8.9GHz和15.6GHz处。图8为Si3N4-SiC/BN层状陶瓷样品单边缺口梁测试的载荷位移曲线,载荷方向与叠层方向平行,最大载荷为130.3N。屈服阶段的曲线呈锯齿状,其最大载荷并未出现在第一个峰值处,且层状陶瓷失效后并未表现出单体陶瓷材料的突然性断裂,而图9的垂直韧性位移载荷表现出突然性断裂。
请参阅表1,表1为本发明实施案例1中Si3N4-SiC/BN仿生陶瓷材料的力学性能数据;
Figure BDA0003726212660000111
实施例二
步骤S01中,制备Si3N4基体层流延片材;以100g流延浆料为例,取60g的乙醇和二甲苯作为溶剂,其中乙醇和二甲苯体积比为1:1;将2g的磷酸三乙酯加入溶剂中搅拌20min,然后加入1.5g Al2O3、1.5g Y2O3、30g Si3N4,其中,烧结助剂为Al2O3和Y2O3,基体层陶瓷颗粒是Si3N4;球磨5h(转速180r/min)加入2g粘结剂PVB、2g增塑剂丙三醇和1g DOP,再球磨8h;真空除泡15min后得到均匀的、粘度适当的流延浆料。
调节流延机刮刀间隙为150μm,控制流延速度为5cm/s进行流延,在通风橱中自然干燥20h后得到基体层流延片材;将流延片材裁切为所需尺寸,并从流延膜上揭下后密封保存。
步骤S02中,制备SiC-BN界面层流延片材,以100g流延浆料为例,取60g的乙醇和二甲苯作为溶剂,其中乙醇和二甲苯体积比为1:1;将2g的磷酸三乙酯加入溶剂中搅拌20min,然后加入1.5g Al2O3、1.5g Y2O3、30g SiC纤维和BN粉体,其中,烧结助剂为Al2O3和Y2O3,电磁波吸波剂是SiC纤维,界面层陶瓷颗粒是BN;球磨5h(转速180r/min)后加入2g粘结剂PVB、1.5g增塑剂丙三醇和1.5g DOP,再球磨8h;真空除泡15min后得到均匀的、粘度适当的流延浆料。其中,界面层流延浆料中电磁波吸波剂SiC纤维占总陶瓷粉体(BN和SiC纤维)的质量分数分别为0%,30%,45%。
调节流延机刮刀厚度为50μm,控制流延速度为5cm/s进行流延。在通风橱中自然干燥20h后得到界面层流延片材;将流延片材裁切为所需尺寸,并从流延膜上揭下后密封保存。
步骤S03中,制备Si3N4/SiC-BN仿生陶瓷材料,将步骤S01中的Si3N4基体层流延片材与步骤S02中的SiC-BN界面层流延片材间隔交替叠层;其中界面层流延片材按电磁波吸波剂SiC纤维的含量递增方式从下到上依次叠层,叠层厚度分别含0%SiC纤维的界面层流延片材为9mm、含30%SiC纤维的界面层流延片材6mm和含45%SiC纤维的界面层流延片材3mm;将叠层后的试样进行干预压成型后在900℃下排胶2h;将排胶后的试样在1850℃,压力为30MPa,气氛为N2下进行热压烧结2h,得到Si3N4/SiC-BN超层构仿生陶瓷材料。
实施例三
步骤S01中,制备AlN-CNT基体层流延片材;以100g流延浆料为例,取60g的乙醇和二甲苯作为溶剂,其中乙醇和二甲苯体积比为1:1;将2g的磷酸三乙酯加入溶剂中搅拌20min,然后加入2g AlF3、1g MgF2、30g CNT和AlN,其中,烧结助剂为MgF2和AlF3,电磁波吸波剂为碳纳米管CNT,基体层陶瓷颗粒是AlN;球磨5h(转速180r/min后加入2g粘结剂PVB、2g增塑剂丙三醇和1g DOP,再球磨8h;真空除泡15min后得到均匀的、粘度适当的基体层流延浆料。其中,基体层流延浆料中电磁波吸波剂CNT占总陶瓷粉体(CNT和AlN)的质量分数分别为1%和5%。
调节流延机刮刀间隙为150μm,控制流延速度为5cm/s进行流延,在通风橱中自然干燥20h后得到基体层流延片材;将基体层流延片材裁切为所需尺寸,并从流延膜上揭下后密封保存。
步骤S02中,制备AlN-BN界面层流延片材,以100g流延浆料为例,取60g的乙醇和二甲苯作为溶剂,其中乙醇和二甲苯体积比为1:1;将2g的磷酸三乙酯加入溶剂中搅拌20min,然后加入2g AlF3、1g MgF2、5g AlN和25g BN;其中,烧结助剂为MgF2和AlF3,界面层陶瓷颗粒是BN和AlN;球磨5h(转速180r/min)后再加入2g粘结剂PVB、2g增塑剂丙三醇和1g DOP,再球磨8h;真空除泡15min后得到均匀的、粘度适当的界面层流延浆料。
调节流延机刮刀厚度为25μm,控制流延速度为5cm/s进行流延。在通风橱中自然干燥20h后得到界面层流延片材;将界面层流延片材裁切为所需尺寸,并从流延膜上揭下后密封保存。
步骤S03中,制备AlN-CNT/BN仿生陶瓷材料;将步骤S01中的AlN-CNT基体层流延片材与步骤S02中的AlN-BN界面层流延片材间隔交替叠层,其中基体层按“低-高-低”三明治结构方式从下到上依次叠层,叠层厚度分别是含1%CNT的流延片材6mm、含5%CNT的流延片材8mm和含1%CNT的流延片材6mm,将叠层后的试样进行干预压成型后在900℃下排胶2h;将排胶后的试样在1800℃,压力为30MPa,气氛为N2下进行热压烧结2h,得到AlN-CNT/BN超层构仿生陶瓷材料。
实施例四
步骤S01中,制备MgO-石墨粉(C)基体层流延片材,以100g流延浆料为例,取60g的乙醇和二甲苯作为溶剂,其中乙醇和二甲苯体积比为1:1;将2g的磷酸三乙酯加入溶剂中搅拌20min,然后加入1g AlF3、2g MgF2、20g C和MgO粉体,其中,烧结助剂为MgF2和AlF3,电磁波吸波剂为C,基体层陶瓷颗粒是MgO;球磨3h(转速180r/min)后加入2g粘结剂PVB、2g增塑剂丙三醇和1g DOP,再球磨5h;真空除泡20min后得到均匀的、粘度适当的基体层流延浆料。其中,基体层流延浆料中电磁波吸波剂石墨粉在总陶瓷粉体(MgO和C)的质量分数分别为10%,30%,50%。
调节流延机刮刀间隙为150μm,控制流延速度为2cm/s进行流延,在通风橱中自然干燥20h后得到基体层流延片材;将基体层流延片材裁切为所需尺寸,并从流延膜上揭下后密封保存。
步骤S02中,制备MgO-BN界面层流延片材,以100g流延浆料为例,取60g的乙醇和二甲苯作为溶剂,其中乙醇和二甲苯体积比为1:1;将2g的磷酸三乙酯加入溶剂中搅拌20min,然后加入1g AlF3、2g MgF2、5g MgO和25g BN,其中,烧结助剂为MgF2和AlF3,界面层陶瓷颗粒是BN,另外加入基体层陶瓷颗粒MgO,以调节界面结合强度;球磨3h(转速180r/min)后加入2g粘结剂PVB、2g增塑剂丙三醇和1g DOP,再球磨5h;真空除泡15min后得到均匀的、粘度适当的界面层流延浆料。
调节流延机刮刀厚度为25μm,控制流延速度为2cm/s进行流延。在通风橱中自然干燥20h后得到界面层流延片材;将界面层流延片材裁切为所需尺寸,并从流延膜上揭下后密封保存。
步骤S03中,制备MgO-SiC/BN仿生陶瓷材料,将步骤S01中的MgO-C基体层流延片材与步骤S02中的MgO-BN界面层流延片材间隔交替叠层,其中基体层流延片材按电磁波吸波剂C含量递增方式从下到上依次叠层,叠层厚度分别为含10%C的流延片材9mm、含30%C的流延片材7mm和含50%SiC的流延片材4mm,将叠层后的试样进行干预压成型后在900℃下排胶5h;将排胶后的试样在1650℃,压力为30MPa,气氛为N2下进行热压烧结2h,得到MgO-C/BN超层构仿生陶瓷材料。
实施例五
步骤S01中,制备Si3N4-SiC基体层流延片材,以100g流延浆料为例,取60g的乙醇和二甲苯作为溶剂,其中乙醇和二甲苯体积比为1:1;将2g的磷酸三乙酯加入溶剂中搅拌20min,然后加入0.5g Al2O3、2.5g Y2O3、30g SiC晶须和Si3N4粉体,其中,烧结助剂为Al2O3和Y2O3,电磁波吸波剂为SiC晶须,基体层陶瓷颗粒是Si3N4;球磨5h(转速180r/min)后加入2g粘结剂PVB、1.5g增塑剂丙三醇和1.5g DOP,再球磨5h;真空除泡20min后得到均匀的、粘度适当的基体层流延浆料。其中,基体层流延浆料中电磁波吸波剂SiC晶须占总陶瓷粉体(Si3N4和SiC晶须)的质量分数分别为10%,45%。
调节流延机刮刀间隙为150μm,控制流延速度为5cm/s进行流延,在通风橱中自然干燥20h后得到基体层流延片材;将基体层流延片材裁切为所需尺寸,并从流延膜上揭下后密封保存。
步骤S02中,制备Si3N4-Y2Si2O7界面层流延片材,以100g流延浆料为例,取60g的乙醇和二甲苯作为溶剂,其中乙醇和二甲苯体积比为1:1;将2g的磷酸三乙酯加入溶剂中搅拌20min,然后加入0.5g Al2O3、2.5g Y2O3、5g Si3N4和25g Y2Si2O7,其中,烧结助剂为Al2O3和Y2O3,界面层陶瓷颗粒是Y2Si2O7;另外加入基体层陶瓷颗粒Si3N4,以调节界面结合强度;球磨5h(转速180r/min)后加入2g粘结剂PVB、1.5g增塑剂丙三醇和1.5g DOP,再球磨5h;真空除泡20min后得到均匀的、粘度适当的界面层流延浆料。
调节流延机刮刀厚度为50μm,控制流延速度为5cm/s进行流延。在通风橱中自然干燥20h后得到界面层流延片材;将界面层流延片材裁切为所需尺寸,并从流延膜上揭下后密封保存。
步骤S03中,制备Si3N4-SiC/Y2Si2O7仿生陶瓷材料;将步骤S01中的Si3N4-SiC基体层流延片材与步骤S02中的Si3N4-Y2Si2O7界面层流延片材间隔交替叠层,其中基体层流延片材按电磁波吸波剂SiC含量周期性变化方式从下到上依次叠层,叠层厚度分别为含10%SiC晶须的流延片材3mm、含45%SiC的流延片材7mm、含10%SiC的流延片材3mm和含45%SiC晶须的流延片材7mm,将叠层后的试样进行干预压成型后在800℃下排胶3h;将排胶后的试样在1700℃,压力为30MPa,气氛为N2下进行热压烧结2h,得到Si3N4-SiC/Y2Si2O7超层构仿生陶瓷材料。
最后,以上所述仅为本发明的优选实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种高韧性且宽频吸收电磁波的超层构仿生陶瓷的制备方法,其特征在于,包括以下步骤:
步骤S01、制备基体层流延片材;
采用苯类和醇类混合液作为溶剂,加入分散剂到溶剂中至完全溶解;然后分别加入烧结助剂和基体层陶瓷颗粒,选择性的加入电磁波吸波剂,球磨均匀后分别加入粘结剂和增塑剂,再球磨均匀;经真空除泡后得到均匀的基体层流延浆料;其中,基体层陶瓷颗粒是Si3N4、AlN、B4C、MgO、SiO2、Al2O3、ZrO2、HfO2、ZrSiO4或HfSiO4材料中的一种或由其中几种材料组成的复相陶瓷颗粒;
调节流延机刮刀间隙并控制流延速度进行流延成型,干燥后得到基体层流延片材;
步骤S02、制备界面层流延片材;
采用苯类和醇类混合液作为溶剂,加入分散剂到溶剂中至完全溶解;然后分别加入烧结助剂和界面层陶瓷颗粒,选择性的加入电磁波吸波剂,球磨均匀后分别加入粘结剂和增塑剂,再球磨均匀;经真空除泡后得到均匀的界面层流延浆料;其中,界面层陶瓷颗粒是BN、Y2Si2O7、Y2SiO5或碳材料中的一种或由其中几种材料组成的复相陶瓷颗粒;基体层流延片材和界面层流延片材中至少有一种片材加入电磁波吸波剂;
调节流延机刮刀间隙并控制流延速度进行流延成型,干燥后得到界面层流延片材;
步骤S03、制备超层构仿生陶瓷材料;
将步骤S01中的基体层流延片材与步骤S02中的界面层流延片材按厚度比(2~15):1间隔交替叠层,并将层叠后的材料进行干预压成型后进行排胶;将排胶后的试样在进行高温烧结,得到超层构仿生陶瓷材料;其中,所述超层构仿生陶瓷材料中基体层流延片材和界面层流延片材按电磁波吸波剂的含量呈梯度渐变结构、周期性变化结构或低-高-低的三明治结构分布。
2.根据权利要求1所述的高韧性且宽频吸收电磁波的超层构仿生陶瓷的制备方法 ,其特征在于,所述步骤S01和步骤S02中的电磁波吸波剂是SiC微米粉、SiC纳米粉、SiC晶须、SiC纤维、石墨粉、碳黑粉、碳纳米管、石墨烯、碳纤维、TiC、TaC、ZrC、HfC、TiB2、ZrB2、HfB2、TaN、HfN、ZrN材料中的一种或几种。
3.根据权利要求1所述的高韧性且宽频吸收电磁波的超层构仿生陶瓷的制备方法,其特征在于,所述步骤S02中界面层陶瓷颗粒中添加预设量的基体层陶瓷颗粒,以调节界面结合强度。
4.根据权利要求1所述的高韧性且宽频吸收电磁波的超层构仿生陶瓷的制备方法,其特征在于,步骤S01、制备基体层流延片材具体包括以下步骤:
将重量分数为30~60%的醇类和苯类混合液作为溶剂,其中醇类和苯类的体积比为3:1~1:3;将重量分数为1~5%的分散剂加入到溶剂中搅拌2~20min至完全溶解;然后加入重量分数为1~10%的烧结助剂和重量分数为30~50%的基体层陶瓷颗粒和电磁波吸波剂,球磨2~12h后加入重量分数为2~4%的粘结剂和重量分数为3~6%的增塑剂,再球磨6~12h;真空除泡5~30min后得到均匀的、粘度适当的基体层流延浆料;
调节流延机刮刀间隙为25~200μm,控制流延速度为1~10cm/s进行流延,在通风橱中自然干燥8~24h后得到基体层流延片材,将基体层流延片材裁切为所需尺寸,并从流延膜上揭下后密封保存。
5.根据权利要求1所述的高韧性且宽频吸收电磁波的超层构仿生陶瓷的制备方法 ,其特征在于,步骤S01中,醇类和苯类混合液的重量分数为30~60%,醇类为乙醇或异丙醇中的一种,苯类为甲苯或二甲苯中的一种,醇类与苯类的体积比为(0.3~3):1;分散剂为磷酸三乙酯,其重量分数为1~5%;粘结剂和增塑剂的重量分数为5~10%,粘结剂为PVB、PVP、PVA中的一种,增塑剂为丙三醇和邻苯二甲酸二辛酯,基体层陶瓷颗粒和电磁波吸收剂的重量分数为30~50 %且基体层陶瓷颗粒与微波吸收剂重量比为20:1~1:2;烧结助剂的重量分数为1~10%。
6.根据权利要求1所述的高韧性且宽频吸收电磁波的超层构仿生陶瓷的制备方法,其特征在于,步骤S02、制备界面层流延片材具体包括:
将重量分数为30~60%的醇类和苯类混合液作为溶剂,其中醇类和苯类的体积比为3:1~1:3;将重量分数为1~5%的分散剂加入到溶剂中搅拌2~20min至完全溶解;然后加入重量分数为1~10%的烧结助剂和重量分数为30~50%的界面层陶瓷颗粒和电磁波吸波剂,球磨2~12h后加入重量分数为2~4%的粘结剂和重量分数为3~6%的增塑剂,再球磨6~12h;真空除泡5~30min后得到均匀的、粘度适当的界面层流延浆料;
调节流延机刮刀间隙为25~200μm,控制流延速度为1~10cm/s进行流延,在通风橱中自然干燥8~24h后得到界面层流延片材,将界面层流延片材裁切为所需尺寸,并从流延膜上揭下后密封保存。
7.根据权利要求1所述的高韧性且宽频吸收电磁波的超层构仿生陶瓷的制备方法,其特征在于,步骤S02中,醇类和苯类混合液的重量分数为30~60%,醇类为乙醇或异丙醇中的一种,苯类为甲苯或二甲苯中的一种,醇类与苯类的体积比为(0.3~3):1;分散剂为磷酸三乙酯,其重量分数为1~5%;粘结剂和增塑剂的重量分数为5~10%,粘结剂为PVB、PVP、PVA中的一种,增塑剂为丙三醇和邻苯二甲酸二辛酯,界面层陶瓷颗粒和电磁波吸收剂的重量分数为30~50 %且界面层陶瓷颗粒与微波吸收剂重量比为50:1~1:2;烧结助剂的重量分数为1~10%。
8.根据权利要求1所述的高韧性且宽频吸收电磁波的超层构仿生陶瓷的制备方法 ,其特征在于,超层构仿生陶瓷材料将步骤S01中的基体层流延片材与步骤S02中的界面层流延片材交替叠层,叠层厚度为2~30mm。
9.根据权利要求8所述的高韧性且宽频吸收电磁波的超层构仿生陶瓷的制备方法 ,其特征在于,将层叠后的材料进行干预压成型后在600~900℃下排胶2~5h;将排胶后的试样在温度为1600~2000℃,压力为1~30MPa、惰性气氛下进行高温烧结0.5~6h,得到超层构仿生陶瓷材料。
CN202210774519.XA 2022-07-01 2022-07-01 高韧性且宽频吸收电磁波的超层构仿生陶瓷的制备方法 Pending CN115141020A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210774519.XA CN115141020A (zh) 2022-07-01 2022-07-01 高韧性且宽频吸收电磁波的超层构仿生陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210774519.XA CN115141020A (zh) 2022-07-01 2022-07-01 高韧性且宽频吸收电磁波的超层构仿生陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN115141020A true CN115141020A (zh) 2022-10-04

Family

ID=83409577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210774519.XA Pending CN115141020A (zh) 2022-07-01 2022-07-01 高韧性且宽频吸收电磁波的超层构仿生陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN115141020A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116655384A (zh) * 2023-06-07 2023-08-29 徐州工程学院 一种耐高温高熵吸波陶瓷及其制备方法和应用
CN117865705A (zh) * 2024-03-11 2024-04-12 山东华信工业科技有限公司 一种高导热碳化硅陶瓷的制备方法
CN117865705B (zh) * 2024-03-11 2024-05-17 山东华信工业科技有限公司 一种高导热碳化硅陶瓷的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106671514A (zh) * 2016-12-07 2017-05-17 中国航空工业集团公司北京航空材料研究院 一种间断阻抗渐变结构吸波复合材料
CN106699192A (zh) * 2017-02-24 2017-05-24 中南大学 一种功能陶瓷凝胶流延浆料及其制备方法
CN106854453A (zh) * 2016-12-15 2017-06-16 陕西科技大学 一种层状复合吸波材料的制备方法
CN107734948A (zh) * 2017-09-05 2018-02-23 西北工业大学 基于频率选择表面和三明治夹层结构设计的宽频带吸波材料及制备方法
JP2018125412A (ja) * 2017-02-01 2018-08-09 国立大学法人 名古屋工業大学 電磁波吸収体及びその製造方法
CN109413976A (zh) * 2018-11-06 2019-03-01 杭州如墨科技有限公司 一种宽频高灵敏电磁波吸波材料及其制备方法
CN109843029A (zh) * 2017-11-29 2019-06-04 深圳光启岗达创新科技有限公司 吸波复合材料及其制备方法
CN112389039A (zh) * 2020-11-02 2021-02-23 宁波伏尔肯科技股份有限公司 一种高强度、高韧性层状复相陶瓷的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106671514A (zh) * 2016-12-07 2017-05-17 中国航空工业集团公司北京航空材料研究院 一种间断阻抗渐变结构吸波复合材料
CN106854453A (zh) * 2016-12-15 2017-06-16 陕西科技大学 一种层状复合吸波材料的制备方法
JP2018125412A (ja) * 2017-02-01 2018-08-09 国立大学法人 名古屋工業大学 電磁波吸収体及びその製造方法
CN106699192A (zh) * 2017-02-24 2017-05-24 中南大学 一种功能陶瓷凝胶流延浆料及其制备方法
CN107734948A (zh) * 2017-09-05 2018-02-23 西北工业大学 基于频率选择表面和三明治夹层结构设计的宽频带吸波材料及制备方法
CN109843029A (zh) * 2017-11-29 2019-06-04 深圳光启岗达创新科技有限公司 吸波复合材料及其制备方法
CN109413976A (zh) * 2018-11-06 2019-03-01 杭州如墨科技有限公司 一种宽频高灵敏电磁波吸波材料及其制备方法
CN112389039A (zh) * 2020-11-02 2021-02-23 宁波伏尔肯科技股份有限公司 一种高强度、高韧性层状复相陶瓷的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘顾等: "《等离子喷涂CNT基高温吸波涂层的构建与制备》", vol. 1, 国防工业出版社, pages: 55 *
周倩: "《宽频吸波复合材料的结构设计与性能优化》", 《中国博士学位论文全文数据库工程科技Ⅰ辑》, pages 5 - 7 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116655384A (zh) * 2023-06-07 2023-08-29 徐州工程学院 一种耐高温高熵吸波陶瓷及其制备方法和应用
CN116655384B (zh) * 2023-06-07 2023-12-12 徐州工程学院 一种耐高温高熵吸波陶瓷及其制备方法和应用
CN117865705A (zh) * 2024-03-11 2024-04-12 山东华信工业科技有限公司 一种高导热碳化硅陶瓷的制备方法
CN117865705B (zh) * 2024-03-11 2024-05-17 山东华信工业科技有限公司 一种高导热碳化硅陶瓷的制备方法

Similar Documents

Publication Publication Date Title
CN111620711B (zh) 一种仿生氮化硅陶瓷材料及其制备方法
CN111777427B (zh) 一种仿珍珠母层状高强超韧陶瓷的制备方法
CN115141020A (zh) 高韧性且宽频吸收电磁波的超层构仿生陶瓷的制备方法
CN112125653A (zh) 一种基于3d打印制备的石墨烯陶瓷复合材料及其制备方法
CN1212289C (zh) 采用流延成型法制备功能梯度材料的方法
JP2694242B2 (ja) 高信頼性窒化ケイ素セラミックスとその製造方法
Shigegaki et al. Processing of a novel multilayered silicon nitride
CN115231903B (zh) 一种大尺寸高纯陶瓷基板的制备工艺
JP2018108918A (ja) カーボンナノチューブ及びグラフェンを用いたセラミックマトリックス複合材の製作
CN113354434B (zh) 低孔隙率陶瓷基复合材料用陶瓷浆料、预浸料及其制造方法
CN114716258A (zh) 一种碳纤维增强碳化硼复合材料的制备方法
US5935888A (en) Porous silicon nitride with rodlike grains oriented
CN114685169A (zh) 一种基于浆料叠层设计的纤维增强碳化硅陶瓷基复合材料的制备方法
Wang et al. Piezoelectric, ferroelectric and mechanical properties of lead zirconate titanate/zinc oxide nanowhisker ceramics
Li et al. Fabrication and characterization of Li1+ x− yNb1− x− 3yTix+ 4yO3 substrates using aqueous tape casting process
CN114988854A (zh) 一种氧化铝陶瓷基板及其制备方法
Aishwarya et al. Optimisation of Slurry Compositions for Improving the Mechanical Properties of Low Temperature Co-Fired Ceramic (LTCC) Tapes
Zhang et al. Preparation of TiC ceramics through aqueous tape casting
CN111892406B (zh) 湿纺-浸渍法制备弱界面纤维独石硼化锆超高温陶瓷
CN114907126B (zh) 一种多维纳米碳序构TiB2-SiC-B4C结构功能一体化复合材料和制备方法
CN115894011B (zh) 一种微波介质陶瓷滤波器及其制备方法
CN115894069B (zh) 一种多孔碳化硅高温隔热瓦及其制备方法
CN115417686B (zh) 一种连接AlON/Al2O3陶瓷的方法
TWI806482B (zh) 陶瓷基板及其製造方法
KR100843449B1 (ko) 세라믹 시트 제품 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination