CN114975653B - 一种Zn(O,S)薄膜的制备方法及其应用 - Google Patents

一种Zn(O,S)薄膜的制备方法及其应用 Download PDF

Info

Publication number
CN114975653B
CN114975653B CN202210578268.8A CN202210578268A CN114975653B CN 114975653 B CN114975653 B CN 114975653B CN 202210578268 A CN202210578268 A CN 202210578268A CN 114975653 B CN114975653 B CN 114975653B
Authority
CN
China
Prior art keywords
film
annealing
precursor film
preparation
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210578268.8A
Other languages
English (en)
Other versions
CN114975653A (zh
Inventor
辛颢
韩帅琪
刘乃云
闫伟博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN202210578268.8A priority Critical patent/CN114975653B/zh
Publication of CN114975653A publication Critical patent/CN114975653A/zh
Application granted granted Critical
Publication of CN114975653B publication Critical patent/CN114975653B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请提供了一种Zn(O,S)薄膜的制备方法及其应用,制备方法包括以下步骤:将基底浸入含有硫源、锌源和络合剂的混合溶液中进行化学浴沉积,制备Zn(O,S)前驱体膜,将该前驱体膜进行两步退火,即先缓慢升温退火,然后经过恒定高温退火,得到均匀、致密、平整的Zn(O,S)薄膜;最后将Zn(O,S)薄膜作为缓冲层应用于铜铟镓硒薄膜太阳能电池。本申请优化了Zn(O,S)薄膜的制备方法,抑制了一步热退火对Zn(O,S)薄膜的损伤,提高了Zn(O,S)薄膜的均匀性、致密性、平整度,为实现溶液法、大面积、廉价制备无镉铜铟镓硒薄膜太阳能电池器件的工业化应用提供了技术支撑。

Description

一种Zn(O,S)薄膜的制备方法及其应用
技术领域
本发明涉及半导体材料技术领域,尤其涉及一种制备Zn(O,S)薄膜的方法及其应用,特别是在铜铟镓硒薄膜太阳能电池中的应用。
背景技术
铜铟镓硒是一种直接带隙半导体材料,具有较高的吸收系数(105cm-1)、合适的禁带宽度(1.0eV-1.7eV)和具有良好的材料稳定性,被认为是一种极具应用前景的太阳能电池吸收层材料。目前,铜铟镓硒薄膜太阳电池已经步入到商业化应用阶段,并且实验室制备的铜铟镓硒薄膜太阳能电池的光电转换效率已经达到了23.35%,已经具备与传统的晶硅太阳能电池相抗衡的能力。然而,迄今为止报道的高效(>20%)铜铟镓硒太阳能电池的吸收层都是基于真空法制备的,真空法能耗高、成本投资大、运行成本高等问题,而且很难控制成膜的均匀性和重复性,更难以实现大面积成膜。
溶液法制备铜铟镓硒吸收层是一种相对较新但非常有前景的方法,具有成本低、薄膜加工面积大、化学成分易于精确控制以及适用于柔性基底等优点。迄今为止,使用溶液法制备的铜铟镓硒薄膜太阳能电池的效率达到了18.7%。为了实现高效率,通常需要在铜铟镓硒吸收层和窗口层之间设置缓冲层。用于铜铟镓硒太阳能电池的最完善的缓冲层是硫化镉(CdS)。CdS缓冲层可以改变吸收层的表面化学性质;在沉积窗口层时保护吸收层免受溅射损坏;在吸收层和窗口层之间形成良好的晶格匹配;产生尖峰型能带排列并减少界面复合。但是,CdS带隙相对较低,限制了太阳光的吸收;而且CdS中含有有毒元素(Cd),有污染生物环境风险。
综上所述,与真空法相比,溶液法的优势明显。但是目前高效的溶液法铜铟镓硒薄膜太阳能电池都使用CdS作为缓冲层,CdS短波太阳光吸收较差还有毒。用Zn(O,S)作为缓冲层可以增加短波太阳光的吸收而且无毒,但是目前Zn(O,S)薄膜都需要一步退火去除内部杂质,一步退火操作会对Zn(O,S)薄膜造成损伤,影响薄膜质量。目前因此,开发一种Zn(O,S)缓冲层薄膜的退火方法应用于溶液法铜铟镓硒薄膜太阳能电池领域具有重要意义。
发明内容
针对现有技术的不足,本发明提供了一种简单有效的Zn(O,S)薄膜的退火方法,解决了现有技术一步退火对Zn(O,S)薄膜造成的损伤,可应用于溶液法大面积无镉铜铟硒薄膜太阳能电池的制备。解决了现有真空沉积技术存在的能耗高、成本高和溶液法技术中CdS短波太阳光吸收较差还有毒等问题。
为解决现有技术问题,本发明采取的技术方案如下:提供一种Zn(O,S)薄膜的制备方法,其特征在于,包括以下步骤:
制备Zn(O,S)前驱体膜:将薄膜基底浸入含有硫源、锌源和络合剂的溶液中,进行化学浴沉积,得到Zn(O,S)前驱体膜;
清洁处理,对所述Zn(O,S)前驱体膜,进行清洁表面处理;
两步退火处理:对所述清洁后的Zn(O,S)前驱体膜进行两步退火处理,所述两步退火处理包括,缓慢升温退火和恒定高温退火,两步退火处理后得到Zn(O,S)薄膜。
在一实施例中,所述薄膜基底为铜铟镓硒薄膜。
在一实施例中,所述硫源为Tu;所述锌源为ZnSO4·7H2O;所述络合剂为NH3·H2O。
在一实施例中,制备Zn(O,S)前驱体膜为:将薄膜基底垂直放入样品架,设置水浴温度75-80℃,设置搅拌速度100-300r/min,将锌源水溶液和络合剂倒入夹套烧杯中,搅拌后倒入硫源水溶液,将装有薄膜基底的样品架放入夹套烧杯,将设定温度的水通入烧杯夹套中,进行化学浴沉积。
在一实施例中,所述化学浴沉积的沉积时间为5-60min。
在一实施例中,所述清洁表面处理为:待Zn(O,S)前驱体膜沉积完成后,后用7-10%浓度的氨水和去离子水清洗表面,用氮***吹干。
在一实施例中,所述缓慢升温退火为,将Zn(O,S)前驱体膜置于室温的热台上,设置热台升温速度为20-100℃/min,升温时间为2-15min,以缓慢升温的方式对Zn(O,S)前驱体膜进行退火处理。
在一实施例中,所述恒定高温退火,为200-300℃恒温退火10-20min,进行恒定高温退火处理
本申请还提供了所述的Zn(O,S)薄膜作为缓冲层在太阳能电池上的应用。
在一实施例中,所述应用包括以下步骤:
步骤1,将在铜铟镓硒薄膜上沉积完成并两步退火后的Zn(O,S)薄膜置于氮气氛围的手套箱中进行110-200℃异质结热处理4-12小时,完成Zn(O,S)缓冲层的制备;
步骤2,在Zn(O,S)缓冲层上沉积ZnO/ITO窗口层;
步骤3,真空蒸镀Ni和Al作为阴极。
有益效果
与现有技术相比,本发明一种Zn(O,S)薄膜的制备方法及其应用,具有如下优势:
1.本发明提供了一种Zn(O,S)薄膜的制备方法,该方法可应用于铜铟镓硒薄膜太阳能电池中,将在铜铟镓硒薄膜上化学浴沉积后得到的Zn(O,S)前驱体膜进行两步退火,即先缓慢升温退火,然后经过恒定高温退火。该方法可以有效改善一步退火(即直接恒定高温退火)对薄膜造成的损伤,减少薄膜迅速脱水产生的针孔,避免快速热膨胀产生的热应力使薄膜开裂。通过两步退火可以得到均匀、致密、平整的Zn(O,S)薄膜。
2.本发明制备方法简单可行,可减少制备过程对缓冲层薄膜造成的损伤,无毒无害,实现绿色生产,以此Zn(O,S)薄膜作为缓冲层应用于溶液法制备的铜铟镓硒薄膜太阳能电池可以获得超过8%的光电转换效率。
附图说明
图1为本发明在铜铟镓硒上沉积的Zn(O,S)薄膜并分别采用实施例1、实施例2和对比例1的退火方法得到的Zn(O,S)薄膜SEM表面图。
图2为本发明在铜铟镓硒上沉积的Zn(O,S)薄膜并分别采用实施例3、实施例4和对比例2的退火方法得到的Zn(O,S)薄膜SEM表面图。
图3为本发明以实施例1和对比例1制备的Zn(O,S)薄膜作为缓冲层应用于溶液法铜铟镓硒太阳能电池器件的J-V效率对比曲线。
图4为实施例1和对比例1制备的Zn(O,S)薄膜作为缓冲层应用于溶液法铜铟镓硒太阳能电池器件的阻抗对比图。
图5为实施例1制备的Zn(O,S)薄膜作为缓冲层应用于溶液法铜铟镓硒太阳能电池器件的结构示意图和SEM器件截面图。
具体实施方式
下面结合具体实施例,进一步阐明本发明,应理解这些实施例,仅用于说明本发明而不用于限制本发明的范围,在阅读本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
实施例1慢升温速度200℃两步退火Zn(O,S)薄膜
Zn(S,O)前驱体膜通过化学浴沉积方法制备,使用七水硫酸锌(ZnSO4·7H2O)、硫脲(Tu)和氨水(NH3·H2O)作为试剂。化学浴沉积前先设置水浴温度,将清洗后的铜铟镓硒薄膜放入样品架备用;待水浴温度升至80℃后,将80mL的ZnSO4·7H2O水溶液和80mL NH3·H2O溶液先后倒入夹套烧杯中,搅拌1min后倒入80mL的Tu水溶液,将设定温度的水通入烧杯夹套中。此时混合水溶液中ZnSO4·7H2O、Tu和NH3·H2O的浓度分别为0.15、0.6和4mol/L。最后将装有铜铟镓硒薄膜的样品架放入夹套烧杯浸入混合水溶液,溶液中发生化学反应并在铜铟镓硒基底上沉积35nm的Zn(O,S)前驱体膜。混合水溶液中发生的化学反应如下:
SC(NH2)2+OH-→S2-+CN2H2+2H2O
Zn2++S2-→ZnS
Zn2++2OH-→Zn(OH)2
Zn2++2OH-→ZnO+H2O
将沉积后的Zn(O,S)前驱体膜从夹套烧杯中取出后,先后用7-10%浓度的NH3·H2O溶液和去离子水冲洗,并再用氮***吹干,并转移至热台上退火。
退火采用两步退火,具体为先将沉积完成的Zn(O,S)前驱体膜放在室温的热台上,设置热台升温速度为20℃/min,10min升至200℃,通过缓慢升温的方式对Zn(O,S)前驱体膜进行脱水干燥、消除内部热应力和部分Zn(OH)2杂质,然后200℃恒温退火10min,以完全消除薄膜内部Zn(OH)2杂质,完成Zn(O,S)薄膜的制备。退火所发生的化学反应如下:
Zn(OH)2→ZnO+H2O↑
制备的Zn(O,S)薄膜作为缓冲层应用于溶液法铜铟镓硒太阳能电池器件的结构示意图和SEM器件截面图具体参见图5。
实施例2快升温速度200℃两步退火Zn(O,S)薄膜
将实施例1中热台升温速度升高至100℃/min,2min升至200℃,然后200℃恒温退火10min,其余的条件保持不变。
对比例1 200℃一步退火Zn(O,S)薄膜
将实施例1中沉积后的Zn(O,S)前驱体膜直接置于200℃的热台上,200℃恒温退火10min,其余的条件保持不变。
图1为本发明在铜铟镓硒上沉积的Zn(O,S)薄膜并分别采用实施例1、实施例2和对比例1的退火方法得到的Zn(O,S)薄膜SEM表面图。从图中可以看到一步退火的Zn(O,S)薄膜表面有许多孔洞,而快升温速度两步退火的薄膜表面孔洞明显减少,慢升温速度两步退火的Zn(O,S)薄膜表面几乎看不到孔洞,薄膜表面均匀、致密、平整。这表明两步退火的方法可以有效改善一步退火(即直接恒定高温退火)对薄膜造成的损伤,减少薄膜迅速脱水产生的针孔。
实施例3慢升温速度300℃两步退火Zn(O,S)薄膜
将实施例1中热台的升温速度保持20℃/min不变,但最终恒定温度升高至300℃,15min升高至300℃,300℃恒温退火10min,其余的条件保持不变。
实施例4快升温速度300℃两步退火Zn(O,S)薄膜
将对比例3中热台升温速度升高至100℃/min,3min升至300℃,然后300℃恒温退火10min,其余的条件保持不变。
对比例2 300℃一步退火Zn(O,S)薄膜
将对比例3中沉积后的Zn(O,S)前驱体膜直接置于300℃的热台上,300℃恒温退火10min,其余的条件保持不变。
图2为本发明在铜铟镓硒上沉积的Zn(O,S)薄膜并分别采用实施例3、实施例4和对比例2的退火方法得到的Zn(O,S)薄膜SEM表面图。从图中可以看到一步退火的Zn(O,S)薄膜表面有许多孔洞,延晶界处还能看到少许裂纹。而快升温速度两步退火的薄膜表面孔洞和裂纹明显减少,慢升温速度两步退火的Zn(O,S)薄膜表面几乎看不到孔洞和裂纹,但是薄膜表面平整度还是较差。这表明两步退火的方法可以有效改善一步退火(即直接恒定高温退火)对薄膜造成的损伤,减少薄膜迅速脱水产生的针孔,避免快速热膨胀产生的热应力使薄膜开裂;但是300℃过高的退火温度还是会轻微影响薄膜的均匀性、致密性和平整度。
组装太阳能电池
(1)钼玻璃基底依次用清洗液、丙酮、异丙醇超声清洗。
(2)在清洗过钼玻璃基底上旋涂铜铟镓硒的DMF前驱体溶液(CuCl、InCl3·4H2O、GaCl3)制备铜铟镓硒前驱体薄膜;并进一步硒化得到铜铟镓硒吸收层薄膜。
(3)将实施例1和对比例1中在铜铟镓硒薄膜上制备完成的Zn(O,S)薄膜置于氮气氛围的手套箱中进行160℃异质结热处理12小时,完成Zn(O,S)缓冲层的制备。
(5)采用磁控溅法沉积窗口层50nm的ZnO和200nm的ITO。
(6)蒸镀50nm的Ni和500nm的Al作为电池阴极。
图3为应用Zn(O,S)薄膜作为缓冲层组装成的溶液法铜铟镓硒薄膜太阳能电池器件的J-V和EQE曲线,参照《薄膜太阳电池的基础与应用-太阳能光伏发电的新发展》,对太阳能电池进行测试,具体测试过程如下:将制备的电池置于太阳能电池测试平台上,并将测试平台上的探针分别扎在电池的正极和负极,然后将探针的导线与数字源表Keithley 2400连接,打开计算机上配套的测试软件,在AAA太阳模拟器(CROWNTECH,Inc.)产生100mW/cm2辐照度下(强度由NREL校准的Si参考电池校准),使用Keithley 2400源表测量J-V曲线。J-V测量在温度为300K、湿度为40%的空气中进行。太阳能电池的外量子效率(EQE)在EnlitechQE-R3018上使用校准的Si和Ge二极管(Enli technology Co.Ltd.)作为参考进行测量。
图3为本发明以实施例1和对比例1制备的Zn(O,S)薄膜作为缓冲层应用于溶液法铜铟镓硒太阳能电池的J-V效率曲线。一步退火的铜铟镓硒太阳能电池的短路电流密度(Jsc)、开路电压(Voc)和填充因子(FF)分别为25.4mA/cm2、435.6mV和49.3%,功率转换率为6.7%效率(PCE)。两步退火的铜铟镓硒太阳能电池中的Jsc、Voc、FF和PCE分别提高到31.5mA/cm2、471.1mV、54.2%和8.0%。两步退火的电池具有更高的Voc和FF,因此表现出更好的器件效率。这是因为对Zn(S,O)缓冲层薄膜进行一步退火过程中,Zn(OH)2快速脱水转化为ZnO会使Zn(S,O)缓冲层薄膜收到热应力的损伤,产生针孔和裂纹,这些针孔和裂纹充当复合中心降低了电池的性能。采用两步退火的方法可以有效抑制针孔和裂纹的产生,因此Zn(S,O)缓冲层薄膜中的缺陷更少,电池的性能更好。
图4为实施例1和对比例1制备的Zn(O,S)薄膜作为缓冲层应用于溶液法铜铟镓硒太阳能电池器件的阻抗对比图。由图4可知,两步退火的电池阻抗更大,说明界面复合较少;同样由阻抗曲线拟合出来的CPE和C的数值更大,说明电池的p-n结和n-n更好,进一步说明了两步退火可以有效抑制一步退火对Zn(O,S)薄膜的损伤,减少界面缺陷,改善电池性能。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来书,在不脱离本发明的原理的前提下,还可以作数若干改进和润饰,这些改进和润饰也应当视为本发明的保护范围。

Claims (8)

1.一种Zn(O,S)薄膜的制备方法,其特征在于,包括以下步骤:
制备Zn(O,S)前驱体膜:将薄膜基底浸入含有硫源、锌源和络合剂的溶液中,进行化学浴沉积,得到Zn(O,S)前驱体膜;
清洁处理,对所述Zn(O,S)前驱体膜,进行清洁表面处理得到清洁后的Zn(O,S)前驱体膜;
两步退火处理:对所述清洁后的Zn(O,S)前驱体膜进行两步退火处理,所述两步退火处理包括缓慢升温退火和恒定高温退火,两步退火处理后得到Zn(O,S)薄膜;其中,
所述缓慢升温退火为,将Zn(O,S)前驱体膜置于室温的热台上,设置热台升温速度为20-100℃/min,升温时间为2-15min,以缓慢升温的方式对Zn(O,S)前驱体膜进行退火处理;
所述恒定高温退火,为200-300℃恒温退火10-20min,进行恒定高温退火处理。
2.根据权利要求1所述的制备方法,其特征在于,所述薄膜基底为铜铟镓硒薄膜。
3.根据权利要求1所述的制备方法,其特征在于,所述硫源为Tu;
所述锌源为ZnSO4·7H2O;所述络合剂为NH3·H2O。
4.根据权利要求1所述的制备的方法,其特征在于,制备Zn(O,S)
前驱体膜为:将薄膜基底垂直放入样品架,设置水浴温度75-80℃,设置搅拌速度100-300r/min,将锌源水溶液和络合剂倒入夹套烧杯中,搅拌后倒入硫源水溶液,将装有薄膜基底的样品架放入夹套烧杯,将设定温度的水通入烧杯夹套中,进行化学浴沉积。
5.根据权利要求1所述的制备方法,其特征在于,所述化学浴沉积的沉积时间为5-60min。
6.根据权利要求1所述的制备方法,其特征在于,所述清洁表面处理为:待Zn(O,S)前驱体膜沉积完成后,后用7-10%浓度的氨水和去离子水清洗表面,用氮***吹干。
7.权利要求1-4所述的Zn(O,S)薄膜作为缓冲层在太阳能电池上的应用。
8.根据权利要求7所述的应用,其特征在于,包括以下步骤:
步骤1,将在铜铟镓硒薄膜上沉积完成并两步退火后的Zn(O,S)薄膜置于氮气氛围的手套箱中进行110-200℃异质结热处理4-12小时,完成Zn(O,S)缓冲层的制备;
步骤2,在Zn(O,S)缓冲层上沉积ZnO/ITO窗口层;
步骤3,真空蒸镀Ni和Al作为阴极。
CN202210578268.8A 2022-05-25 2022-05-25 一种Zn(O,S)薄膜的制备方法及其应用 Active CN114975653B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210578268.8A CN114975653B (zh) 2022-05-25 2022-05-25 一种Zn(O,S)薄膜的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210578268.8A CN114975653B (zh) 2022-05-25 2022-05-25 一种Zn(O,S)薄膜的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN114975653A CN114975653A (zh) 2022-08-30
CN114975653B true CN114975653B (zh) 2023-09-12

Family

ID=82955323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210578268.8A Active CN114975653B (zh) 2022-05-25 2022-05-25 一种Zn(O,S)薄膜的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN114975653B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102270699A (zh) * 2011-07-18 2011-12-07 中国科学院深圳先进技术研究院 无镉铜铟镓硒薄膜太阳能电池及其硫化锌缓冲层薄膜的制备方法
CN102544237A (zh) * 2012-02-29 2012-07-04 广东工业大学 一种铜铟镓硒薄膜太阳能电池缓冲层材料的制备方法
CN102610690A (zh) * 2011-01-19 2012-07-25 河南师范大学 一种铜铟镓硒薄膜太阳能电池缓冲层材料制备方法
JP2012227497A (ja) * 2011-04-22 2012-11-15 Tokyo Institute Of Technology 薄膜太陽電池およびその製造方法
CN103474510A (zh) * 2013-09-13 2013-12-25 厦门大学 一种铜铟镓硒薄膜太阳能电池的制作方法
CN105140317A (zh) * 2015-07-29 2015-12-09 福州大学 一种Zn(O,S)薄膜及其制备方法和应用
CN206098426U (zh) * 2016-09-07 2017-04-12 中山瑞科新能源有限公司 一种用于薄膜太阳能电池连续退火装置
CN108172660A (zh) * 2017-12-08 2018-06-15 华东师范大学 Czts太阳能电池制作方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4782880B2 (ja) * 2009-10-05 2011-09-28 富士フイルム株式会社 バッファ層とその製造方法、反応液、光電変換素子及び太陽電池
US9825197B2 (en) * 2013-03-01 2017-11-21 Taiwan Semiconductor Manufacturing Co., Ltd. Method of forming a buffer layer in a solar cell, and a solar cell formed by the method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102610690A (zh) * 2011-01-19 2012-07-25 河南师范大学 一种铜铟镓硒薄膜太阳能电池缓冲层材料制备方法
JP2012227497A (ja) * 2011-04-22 2012-11-15 Tokyo Institute Of Technology 薄膜太陽電池およびその製造方法
CN102270699A (zh) * 2011-07-18 2011-12-07 中国科学院深圳先进技术研究院 无镉铜铟镓硒薄膜太阳能电池及其硫化锌缓冲层薄膜的制备方法
CN102544237A (zh) * 2012-02-29 2012-07-04 广东工业大学 一种铜铟镓硒薄膜太阳能电池缓冲层材料的制备方法
CN103474510A (zh) * 2013-09-13 2013-12-25 厦门大学 一种铜铟镓硒薄膜太阳能电池的制作方法
CN105140317A (zh) * 2015-07-29 2015-12-09 福州大学 一种Zn(O,S)薄膜及其制备方法和应用
CN206098426U (zh) * 2016-09-07 2017-04-12 中山瑞科新能源有限公司 一种用于薄膜太阳能电池连续退火装置
CN108172660A (zh) * 2017-12-08 2018-06-15 华东师范大学 Czts太阳能电池制作方法

Also Published As

Publication number Publication date
CN114975653A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
Moritake et al. Preparation of Cu2ZnSnS4 thin film solar cells under non‐vacuum condition
JP2011146594A (ja) 光電素子用バッファ層及びその製造方法、並びに、光電素子
JP5564688B2 (ja) Czts系半導体用cbd溶液、czts系半導体用バッファ層の製造方法及び光電素子
Kurokawa et al. Fabrication of three-dimensional-structure solar cell with Cu2ZnSnS4
CN112201725A (zh) 一种硒化锑薄膜太阳能电池的制备方法
CN107623046B (zh) 铜铟镓硒吸收层后处理方法及基于其的太阳电池制备方法
CN114203848A (zh) 一种柔性硒化锑太阳电池及其制备方法
CN109148641A (zh) 铜锌锡硫硒薄膜太阳能电池及其制备方法和背电极的修饰方法
CN110518130B (zh) 一种电场调控钙钛矿晶粒二次生长的方法
CN113078239B (zh) 一种硒化锑薄膜太阳电池及其制备方法
JP3589380B2 (ja) 半導体薄膜の製造方法および薄膜太陽電池の製造方法
CN114975653B (zh) 一种Zn(O,S)薄膜的制备方法及其应用
CN108336177B (zh) 一种铜锌锡硫薄膜太阳能电池及其制备方法
CN110819958A (zh) 一种改变硒化锑薄膜电学性质的方法及硒化锑太阳电池
CN113410340B (zh) CZTSSe薄膜太阳能电池吸收层改性方法
CN112736150B (zh) 一种铜铟镓硒薄膜太阳能电池及其制备方法
CN112563118B (zh) In掺杂CdS薄膜、制备方法及制备的CIGS电池
CN112071941B (zh) 功能模组及其制备方法和应用
KR20180034248A (ko) 수산화나트륨을 이용한 유연 czts계 박막태양전지 및 이의 제조방법
CN114904744B (zh) 一种制备铜铟硒薄膜的刮涂方法及其应用
Zhu et al. New Route for Fabrication of High-Quality Zn (S, O) Buffer Layer at High Deposition Temperature on Cu (In, Ga) Se $ _2 $ Solar Cells
CN113078224A (zh) 透明导电玻璃铜铟硒薄膜太阳能电池器件及其制备方法与应用
CN111876809A (zh) 一种硒化锑薄膜的制备方法及应用
CN115101611B (zh) 一种基于AgSbS2的无机薄膜太阳能电池及其制备方法
CN110752272B (zh) 一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant