CN114950498B - 一种可循环利用的高效光催化材料及其制备方法和应用 - Google Patents

一种可循环利用的高效光催化材料及其制备方法和应用 Download PDF

Info

Publication number
CN114950498B
CN114950498B CN202210531858.5A CN202210531858A CN114950498B CN 114950498 B CN114950498 B CN 114950498B CN 202210531858 A CN202210531858 A CN 202210531858A CN 114950498 B CN114950498 B CN 114950498B
Authority
CN
China
Prior art keywords
photocatalytic material
preparation
recyclable
agcl
efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210531858.5A
Other languages
English (en)
Other versions
CN114950498A (zh
Inventor
高大响
束震
史俊
席刚俊
杨鹤同
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Polytechnic College of Agriculture and Forestry
Original Assignee
Jiangsu Polytechnic College of Agriculture and Forestry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Polytechnic College of Agriculture and Forestry filed Critical Jiangsu Polytechnic College of Agriculture and Forestry
Priority to CN202210531858.5A priority Critical patent/CN114950498B/zh
Publication of CN114950498A publication Critical patent/CN114950498A/zh
Application granted granted Critical
Publication of CN114950498B publication Critical patent/CN114950498B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/10Chlorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种可循环利用的高效光催化材料及其制备方法和应用,所述可循环利用的高效光催化材料是通过引入氧化石墨烯材料,并利用阴离子型天然高分子多糖水溶液与二价阳离子形成稳定凝胶的性质,采用化学偶联和原位沉积法负载AgCl,再通过光致还原制备而成的Ag@AgCl/GO光催化材料。本发明所述光催化材料在实际光催化剂生产中具有极大应用潜力。

Description

一种可循环利用的高效光催化材料及其制备方法和应用
技术领域
本发明涉及一种光催化材料及其制备方法和应用,具体涉及一种可循环利用的高效光催化材料及其制备方法和应用。
背景技术
近年来,Ag@AgCl等离子体光催化剂引起了广泛的关注。Ag@AgCl是指AgCl在光照条件下分解出的单质态的Ag0负载于AgCl表面,因此Ag@AgCl光催化剂是一种基于纳米金属表面等离子体效应和半导体光催化效应的新型可见光催化材料。虽然Ag@AgCl等离子体有很好的光催化活性,但由于AgCl光化学稳定性差,易团聚,光生电子-空穴高复合率。因此,其在光催化研究中的应用受到限制。
氧化石墨烯(GO)是一种新型的碳基材料,是由羧基、羟基、环氧基等含氧官能团组成的单层石墨烯片,表面呈褶皱状,是石墨烯的衍生物,具有优异的亲水性、较大的比表面积和低毒性等特性,其与光催化剂形成的复合材料在光催化等领域受到了极大的关注,如GO与TiO2、Ag3PO4、BiOI、BiVO4、ZnO。
2018年专利CN201410492455.X公开了一种制备Ag@AgCl/GO自清洁型表面拉曼增强基底的方法。AgCl溶胶在高压釜160-180℃下保温12-36h后获得Ag@AgCl溶胶,然后利用GO带负电荷的特点以及强的吸附功能和模板效应,通过自组装吸附带正电荷的Ag@AgCl纳米粒子获得了Ag@AgCl/GO复合薄膜并应用于自清洁型拉曼增强基底。2020年专利CN111905774A公开了一种应用于降解甲基橙的光催化剂的制备方法,将一定量的TiO2在管式炉高温得到C-TiO2,然后将适量的硝酸银、氨水、C-TiO2和GO加入到容器中,再先后加入酸性溶液和醇溶液,通过可见光光照得催化剂Ag/AgCl/C-TiO2/GO。
目前,制备的GO负载的Ag@AgCl复合光催化材料中,有些制备工艺复杂,有些需要高温煅烧制备,有些制备的为粉体催化材料不易从水中分离,回收较困难,难以循环使用,易造成二次污染。
发明内容
发明目的:本发明的目的在于提供一种可循环利用的高效光催化材料及其制备方法和应用,有效解决粉体催化剂难分离回收问题。本发明另一个目的是提供所述可循环利用的高效光催化材料的制备方法。本发明还有一个目的是提供所述的可循环利用的高效光催化材料在制备水体清洁剂中的应用。
技术方案:本发明所述的可循环利用的高效光催化材料,其是通过引入氧化石墨烯材料,并利用阴离子型天然高分子多糖水溶液与二价阳离子形成稳定凝胶的性质,采用化学偶联和原位沉积法负载AgCl,并通过光致还原法制备而成的Ag@AgCl/GO光催化材料。
所述的可循环利用的高效光催化材料,所述阴离子型天然高分子多糖为海藻酸钠或海藻酸钾。
所述的可循环利用的高效光催化材料,所述二价阳离子选自Ca2+、Cu2+或Zn2+,优选Ca2+
所述的可循环利用的高效光催化材料的制备方法,包括以下步骤:
(1)取氧化石墨烯分散液,加入海藻酸钠或海藻酸钾溶液,超声分散使充分混合;
(2)于(2)所得的混合液中加入十六烷基三甲基溴化铵,超声分散;由于氢键的作用和CTAB的表面活性剂作用,海藻酸根离子会被吸附在GO上。
(3)在搅拌下,缓慢滴加AgNO3溶液,滴加完毕,继续搅拌;由于静电引力作用,带正电的银离子(Ag+)会吸引带负电的海藻酸根离子和GO上的羧酸根基团(-COO-),从而使Ag+被紧密包围在GO内部。
(4)在搅拌下,于(3)所得的混合悬浮液中缓慢滴加CaCl2溶液,形成不溶性小颗粒,搅拌后静置;利用Ca2+的交联作用和AgCl沉淀形成不溶性小颗粒。
(5)纱布过滤(4)所得的产物,将所得小颗粒沉淀物用水洗涤,然后把小颗粒沉淀物加入容器中,再加水,在搅拌下,置于太阳光照或置于氙灯光源下照射,纱布过滤,再用水洗涤,真空冷冻干燥,即得到Ag@AgCl/GO光催化材料。
所述的可循环利用的高效光催化材料的制备方法,所述纱布为双层纱布。
所述的可循环利用的高效光催化材料在制备水体清洁剂中的应用。
所述的可循环利用的高效光催化材料在制备光催化剂中的应用。
所述的可循环利用的高效光催化材料在降解罗丹明B、亚甲基蓝及甲基橙中的应用。
所述的可循环利用的高效光催化材料在降解四环素中的应用。
本发明所制备的易分离且可循环利用的高效可见光催化材料,有效解决粉体催化剂难分离回收问题。发明针对AgCl光稳定性差且难回收的问题,引入氧化石墨烯(GO)材料,并利用阴离子型天然高分子多糖海藻酸钠(SA)水溶液与二价阳离子(如Ca2+)能形成稳定凝胶的性质,采用化学偶联和原位沉积负载AgCl,再通过光致还原法制备Ag@AgCl/GO不溶性颗粒光催化材料,然后用于处理染料废水和抗生素废水等污染物。该光催化材料呈小颗粒状,光催化效率高,可见光波响应范围广,易与水相分离,可循环利用。
本发明主要解决AgCl光化学稳定性差,易团聚,吸附能力不足以及难回收循环利用的问题。通过引入氧化石墨烯(GO)材料,并利用海藻酸钠(SA)水溶液与二价阳离子(如Ca2+)能形成稳定凝胶的性质,采用化学偶联和原位沉积法负载AgCl,并通过光致还原法制备Ag@AgCl/GO不溶性颗粒光催化材料。该光催化材料呈小颗粒状,具有制备工艺简单,所制备得到的催化材料吸附能力强、光催化降解时间短、催化效率高以及易回收循环使用等优点,可用于实际多种有机污染废水的降解。
有益效果:(1)制备工艺简单,无需过多的设备投入,无需复杂的技术手段和工艺条件就能得到。(2)对紫外和可见光响应均响应,尤其是在可见光下吸收带较宽。(3)对多种有机污染物都具有较好的催化效果,且催化效率高,催化时间短,一级反应动力学拟合表明,催化材料对罗丹明B(RhB)、亚甲基蓝(MB)及甲基橙(MO)光催化降解速率常数(k)分别为0.5381min-1、0.4989min-1及0.2573min-1。(4)催化材料呈小颗粒状,易回收循环使用,稳定性能好,复合材料经过5次循环使用后,对RhB仍然具有大于91.0%的脱色率。表明该催化材料具有良好的光催化稳定性及可重复使用性,作为一种可见光催化剂应用于实际生产中具有极大潜力。
附图说明
图1是高分辨场发射扫描电镜(SEM)观察到的催化剂催化材料形貌图;
图2是透射电子显微镜(TEM)观察到的催化剂催化材料形貌图;
图3是催化材料的EDS图;
图4是测定催化材料的红外光谱图;
图5是测定催化材料的拉曼光谱图;
图6是测定催化材料的比表面积;
图7是测定催化材料的孔径分布;
图8是光催化材料对RhB降解的紫外-可见光谱;
图9是光催化材料对MB降解的紫外-可见光谱;
图10是光催化材料对MO降解的紫外-可见光谱;
图11是光催化材料RhB降解的循环使用稳定性测试曲线;
图12是光催化材料对四环素降解的紫外-可见光谱。
具体实施方式
实施例1
Ag@AgCl/GO的制备
1、取浓度1g/L氧化石墨烯(GO)分散液60mL,加入浓度4g/L海藻酸钠(SA)溶液3mL,超声分散15min使GO分散液与SA溶液充分混合。
2、于上述混合液中加入浓度为10g/L的十六烷基三甲基溴化铵(CTAB)1.5mL,超声分散30min,由于氢键的作用和CTAB的表面活性剂作用,海藻酸根离子会被吸附在GO上。
3、在磁力搅拌下,缓慢滴加浓度50g/L的AgNO3溶液9mL,滴加完毕,继续磁力搅拌20min。由于静电引力作用,带正电的银离子(Ag+)会吸引带负电的海藻酸根离子和GO上的羧酸根基团(-COO-),从而使Ag+被紧密包围在GO内部。
4、在磁力搅拌下,于上述混合悬浮液中缓慢滴加9mLCaCl2溶液,利用Ca2+的交联作用和AgCl沉淀,进一步形成不溶性小颗粒,CaCl2溶液浓度为20g/L,磁力搅拌30min后静置24h。
5、双层纱布过滤,所得小颗粒沉淀物用去离子水洗涤5次,然后把小颗粒沉淀物加入250mL三角瓶中,加入50mL去离子水,在磁力搅拌下,置于太阳光照30min或置于350W氙灯光源下照射1h。双层纱布过滤,得到的颗粒再用去离子水洗涤3次,真空冷冻干燥,即得到Ag@AgCl/GO光催化材料。
实施例2
将实施例1所制得的光催化材料分别用高分辨场发射扫描电镜(SEM)和透射电子显微镜(TEM)观察,结果如图1和图2所示。图3是将实施例1所制得的光催化材料检测EDS,结果见图3,将实施例1所制得的光催化材料进行红外光谱检测,结果如图4所示,再将实施例1所制得的光催化材料进行拉曼光谱检测,结果如图5所示。测定催化材料的比表面积,结果如图6所示。测定催化材料的孔径分布,结果如图7所示。
实施例3
取所制备的光催化材料0.2g,加入到含有50mL去离子水中的三角瓶中,并加入罗丹明B(RhB),使其浓度为10mg/L,调pH值6.5,温度控制在40℃,先于暗处在磁力搅拌下吸附30min,再置于350W的氙灯可见光处,在磁力搅拌下照射10min,光源距液面2cm,其对RhB的吸附和降解情况见图8。RhB在可见光区域554nm处(C=O,C=N上的n→π*的电子跃迁)和紫外光区域270nm处(苯环上π→π*的电子跃迁)的特征吸收,随反应时间的延长,在可见区最大吸收峰迅速降低,说明发色基团苯氨基、羰基键逐渐被破坏,10min后,RhB的主要结构物质被完全分解。
实施例4
取所制备的光催化材料0.2g,加入到含有50mL去离子水中的三角瓶中,并加入亚甲基蓝(MB),使其浓度为10mg/L,调pH值6.5,温度控制在40℃,先于暗处在磁力搅拌下吸附30min,再置于350W的氙灯可见光处,在磁力搅拌下照射10min,光源距液面2cm,其降解情况见图9。MB在664、609、291.8及246.4nm处有特征吸收峰,其中664nm和291.8nm处分别对应于MB的超大共轭结构及苯环的π→π*跃迁所产生的吸收峰。经过10min,这些特征吸收峰消失,表明反应后,废水中的MB已被降解。
实施例5
取所制备的光催化材料0.2g,加入到含有50mL去离子水中的三角瓶中,并加入甲基橙(MO),使其浓度为10mg/L,调pH值6.5,温度控制在40℃,先于暗处在磁力搅拌下吸附30min,再置于350W的氙灯可见光处,在磁力搅拌下照射12min,光源距液面2cm,其降解情况见图10。MO在465.2nm及271.6nm处有特征吸收峰,分别是MO的-N=N-偶氮显色基团和苯环共轭体系产生的吸收峰。随着催化降解反应时间的延长,2个吸收峰均不断减弱,12min后,可见区和紫外区已无明显的吸收峰,说明MO已被催化降解。
实施例6
取所制备的光催化材料0.1g,加入到含有50mL去离子水中的三角瓶中,并加入RhB,使其浓度为10mg/L,调pH值6.5,温度控制在40℃,磁力搅拌下,置于350W的氙灯可见光照射20min。过滤后所得颗粒,经去离子水洗涤2次,再重复上述操作,经过5次循环使用后的降解效果如图11。光催化材料经过5次循环使用后,对RhB仍然具有大于90.0%以上的降解率,表明该催化材料具有良好的光催化稳定性及可重复使用性。
实施例7
分别取所制备的光催化材料0.2g,加入到含有50mL去离子水中的2个三角瓶中,并加入四环素,使其浓度为10mg/L,调pH值6.5,温度控制在40℃,先于暗处在磁力搅拌下吸附30min后,1瓶加浓度30%(w/w)的双氧水(H2O2))0.2mL,另一瓶不加双氧水,并同时置于350W的氙灯可见光处,在磁力搅拌下照射20min,光源距液面2cm,其吸附和降解情况见图12。光照20min时,未加H2O2的四环素在267nm处显示还有弱的吸收峰,表明仍存在少量芳香环A结构,而在体系中加入少量H2O2,四环素在267nm和355nm(芳香环B~D与其所连接的发色基团)引起的峰消失,表明四环素完全降解。

Claims (7)

1.一种可循环利用的高效光催化材料的制备方法,其特征在于,其是通过引入氧化石墨烯材料,并利用阴离子型天然高分子多糖水溶液与二价阳离子形成稳定凝胶的性质,采用化学偶联和原位沉积负载AgCl,再通过光致还原制备而成的Ag@AgCl/GO光催化材料;所述阴离子型天然高分子多糖为海藻酸钠或海藻酸钾;所述二价阳离子为Ca2+;包括以下步骤:
(1)取氧化石墨烯分散液,加入海藻酸钠或海藻酸钾溶液,超声分散使充分混合;
(2)于(1)所得的混合液中加入十六烷基三甲基溴化铵,超声分散;
(3)在搅拌下,缓慢滴加AgNO3溶液,滴加完毕,继续搅拌;
(4)在搅拌下,于(3)所得的混悬液中缓慢滴加CaCl2溶液,形成不溶性小颗粒,搅拌后静置;
(5)纱布过滤(4)所得的产物,将所得小颗粒沉淀物用水洗涤,然后把小颗粒沉淀物加入容器中,再加水,在搅拌下,置于太阳光照或置于氙灯光源下照射,纱布过滤,再用水洗涤,真空冷冻干燥,即得到Ag@AgCl / GO光催化材料。
2.根据权利要求1所述的可循环利用的高效光催化材料的制备方法,其特征在于,所述纱布为双层纱布。
3.权利要求1所述的可循环利用的高效光催化材料的制备方法得到的可循环利用的高效光催化材料在制备水体清洁剂中的应用。
4.权利要求1所述的可循环利用的高效光催化材料的制备方法得到的可循环利用的高效光催化材料在制备光催化剂中的应用。
5.权利要求1所述的可循环利用的高效光催化材料的制备方法得到的可循环利用的高效光催化材料在降解罗丹明B、亚甲基蓝及甲基橙中的应用。
6.权利要求1所述的可循环利用的高效光催化材料的制备方法得到的可循环利用的高效光催化材料在降解四环素中的应用。
7.权利要求1所述的可循环利用的高效光催化材料的制备方法得到的可循环利用的高效光催化材料和双氧水联用在降解四环素中的应用。
CN202210531858.5A 2022-05-16 2022-05-16 一种可循环利用的高效光催化材料及其制备方法和应用 Active CN114950498B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210531858.5A CN114950498B (zh) 2022-05-16 2022-05-16 一种可循环利用的高效光催化材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210531858.5A CN114950498B (zh) 2022-05-16 2022-05-16 一种可循环利用的高效光催化材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114950498A CN114950498A (zh) 2022-08-30
CN114950498B true CN114950498B (zh) 2023-12-22

Family

ID=82983429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210531858.5A Active CN114950498B (zh) 2022-05-16 2022-05-16 一种可循环利用的高效光催化材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114950498B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104096578A (zh) * 2014-07-31 2014-10-15 安徽工业大学 一种Ag/AgBr/GO纳米复合光催化剂的制备方法
CN105223262A (zh) * 2015-10-23 2016-01-06 上海交通大学 基于核酸适配体特异性检测四环素的生物传感器及其制备方法
CN106423272A (zh) * 2016-09-28 2017-02-22 中南林业科技大学 一种负载型二氧化钛/氧化石墨烯小球及其制备方法与应用
CN106563473A (zh) * 2015-10-08 2017-04-19 南京理工大学 一种具有磁响应性的高效表面等离子体可见光催化剂复合材料(Ag@AgCl)-Ni/RGO
CN106732690A (zh) * 2016-11-15 2017-05-31 武汉理工大学 Ag@AgCl/TiO2‑氧化石墨烯复合材料的制备方法
CN106975499A (zh) * 2017-05-05 2017-07-25 董可轶 一种Ag@AgCl/rGO三明治纳米复合材料及其制备方法与应用
KR101766590B1 (ko) * 2016-07-06 2017-08-10 경희대학교 산학협력단 복합 나노구조 광촉매 및 이의 제조방법
CN108525683A (zh) * 2018-05-16 2018-09-14 福州大学 一种三维石墨烯气凝胶/溴化银/银光催化剂及其制备方法与应用
CN109126647A (zh) * 2018-09-08 2019-01-04 佛山市森昂生物科技有限公司 一种氧化石墨烯-海藻酸钠凝胶球的制备方法
CN110102324A (zh) * 2019-03-26 2019-08-09 广东工业大学 一种新型高效碳酸银/溴化银/go三元复合光催化剂及其制备方法和应用
WO2020258931A1 (zh) * 2019-06-27 2020-12-30 童裳慧 废水中有机染料的处理方法
CN115069302A (zh) * 2022-07-20 2022-09-20 江苏农林职业技术学院 一种高效可见光催化材料及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108855191B (zh) * 2018-07-12 2020-09-08 苏州大学 可见光响应的杂化气凝胶及其制备方法与在废气处理中的应用

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104096578A (zh) * 2014-07-31 2014-10-15 安徽工业大学 一种Ag/AgBr/GO纳米复合光催化剂的制备方法
CN106563473A (zh) * 2015-10-08 2017-04-19 南京理工大学 一种具有磁响应性的高效表面等离子体可见光催化剂复合材料(Ag@AgCl)-Ni/RGO
CN105223262A (zh) * 2015-10-23 2016-01-06 上海交通大学 基于核酸适配体特异性检测四环素的生物传感器及其制备方法
KR101766590B1 (ko) * 2016-07-06 2017-08-10 경희대학교 산학협력단 복합 나노구조 광촉매 및 이의 제조방법
CN106423272A (zh) * 2016-09-28 2017-02-22 中南林业科技大学 一种负载型二氧化钛/氧化石墨烯小球及其制备方法与应用
CN106732690A (zh) * 2016-11-15 2017-05-31 武汉理工大学 Ag@AgCl/TiO2‑氧化石墨烯复合材料的制备方法
CN106975499A (zh) * 2017-05-05 2017-07-25 董可轶 一种Ag@AgCl/rGO三明治纳米复合材料及其制备方法与应用
CN108525683A (zh) * 2018-05-16 2018-09-14 福州大学 一种三维石墨烯气凝胶/溴化银/银光催化剂及其制备方法与应用
CN109126647A (zh) * 2018-09-08 2019-01-04 佛山市森昂生物科技有限公司 一种氧化石墨烯-海藻酸钠凝胶球的制备方法
CN110102324A (zh) * 2019-03-26 2019-08-09 广东工业大学 一种新型高效碳酸银/溴化银/go三元复合光催化剂及其制备方法和应用
WO2020258931A1 (zh) * 2019-06-27 2020-12-30 童裳慧 废水中有机染料的处理方法
CN115069302A (zh) * 2022-07-20 2022-09-20 江苏农林职业技术学院 一种高效可见光催化材料及其制备方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Ag/AgBr/GO复合材料的制备、表征与光催化性能研究;况鹏鹏;《中国优秀硕士学位论文全文数据库 工程科技I辑》(第1期);第B014-467页 *
Daxiang Gao et al..Preparation of Ag@AgCl/GO Material with Efficient Visible-Light Photocatalytic Performance.《Mathematerial Problems in Engineering》.2022,第1-12页. *
Yuhua Ma et al..Ag2O/Sodium alginate-reduced graphene oxide aerogel beads for efficient visible light driven photocatalysis.《Applied Surface Science》.2017,第430卷第155页第1节,第157页第3.1节及第159页第3.2节. *
褚亮亮等.复合光催化材料Ag-AgCl/石墨烯的制备及性能.《化工环保》.2013,第33卷(第1期),摘要及第81页第2段和第1.2节. *
高大响等.Ag@AgCl/GO/CA的制备及对模拟废水降解性能研究.《工业水处理》.2022,第42卷(第12期),第106-113页. *

Also Published As

Publication number Publication date
CN114950498A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
Leong et al. Ni (OH) 2 decorated rutile TiO2 for efficient removal of tetracycline from wastewater
Rajaboopathi et al. Green synthesis of seaweed surfactant based CdO-ZnO nanoparticles for better thermal and photocatalytic activity
Zhu et al. Efficient decolorization of azo dye solution by visible light-induced photocatalytic process using SnO2/ZnO heterojunction immobilized in chitosan matrix
Zhao et al. Fabrication of biomaterial/TiO2 composite photocatalysts for the selective removal of trace environmental pollutants
Wang et al. Construction of β-FeOOH@ tunicate cellulose nanocomposite hydrogels and their highly efficient photocatalytic properties
CN108786812A (zh) 一种兼具吸附和催化作用的多孔碳/纳米双金属氧化物复合光催化材料及其制备方法
Mirbagheri et al. A Ti-doped γ-Fe2O3/SDS nano-photocatalyst as an efficient adsorbent for removal of methylene blue from aqueous solutions
Buu et al. Three-dimensional ZnO–TiO2/graphene aerogel for water remediation: The screening studies of adsorption and photodegradation
CN110624594A (zh) 一种磁性Fe3O4/ZnO/g-C3N4复合光催化剂及其制备方法
Yang et al. Enhanced adsorption/photocatalytic removal of Cu (Ⅱ) from wastewater by a novel magnetic chitosan@ bismuth tungstate coated by silver (MCTS-Ag/Bi2WO6) composite
Rout et al. Enhanced photocatalytic degradation of malachite green using manganese oxide doped graphene oxide/zinc oxide (GO-ZnO/Mn2O3) ternary composite under sunlight irradiation
Kaur Synergistic effect of biochar impregnated with ZnO nano-flowers for effective removal of organic pollutants from wastewater
Vu et al. Synthesis of nano-flakes Ag• ZnO• activated carbon composite from rice husk as a photocatalyst under solar light
Tu et al. Ultrafast and efficient removal of aqueous Cr (VI) using iron oxide nanoparticles supported on Bermuda grass-based activated carbon
Yang et al. Fabrication of carbon nanotube-loaded TiO 2@ AgI and its excellent performance in visible-light photocatalysis
Tu et al. Synthesis of Fe2O3/TiO2/graphene aerogel composite as an efficient Fenton‐photocatalyst for removal of methylene blue from aqueous solution
Sanni et al. Tailored synthesis of Ag/AgBr nanostructures coupled activated carbon with intimate interface interaction for enhanced photodegradation of tetracycline
Zhang et al. 3D chitosan/GO/ZnO hydrogel with enhanced photocorrosion-resistance and adsorption for efficient removal of typical water-soluble pollutants
Gupta et al. Synchronous role of coupled adsorption and photocatalytic oxidation on the hybrid nanomaterials of pectin and nickel ferrite leads to the excellent removal of toxic dye effluents
CN109046421B (zh) 一种利用季铵碱制备c,n共掺杂纳米管/棒催化材料的方法
CN114950498B (zh) 一种可循环利用的高效光催化材料及其制备方法和应用
CN115069302B (zh) 一种高效可见光催化材料及其制备方法和应用
CN107486203B (zh) 一种可回收漂浮型复合光催化球及其制备方法和应用
CN108404948B (zh) 一种(BiO)2CO3-BiO2-x复合光催化剂及其制备方法和应用
Adnan et al. A comparative study on the photodegradation efficiency of TiO2-CS hybrid beads under wet and dry conditions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant