CN114805914A - 用于稠油分离的磁性纳米纤维气凝胶 - Google Patents

用于稠油分离的磁性纳米纤维气凝胶 Download PDF

Info

Publication number
CN114805914A
CN114805914A CN202210544672.3A CN202210544672A CN114805914A CN 114805914 A CN114805914 A CN 114805914A CN 202210544672 A CN202210544672 A CN 202210544672A CN 114805914 A CN114805914 A CN 114805914A
Authority
CN
China
Prior art keywords
magnetic
aerogel
nanofiber
hydrophobic
thick oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210544672.3A
Other languages
English (en)
Other versions
CN114805914B (zh
Inventor
王栋
武艺
徐桂林
刘轲
夏明�
程芹
徐佳
李青云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Textile University
Original Assignee
Wuhan Textile University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Textile University filed Critical Wuhan Textile University
Priority to CN202210544672.3A priority Critical patent/CN114805914B/zh
Publication of CN114805914A publication Critical patent/CN114805914A/zh
Application granted granted Critical
Publication of CN114805914B publication Critical patent/CN114805914B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0202Separation of non-miscible liquids by ab- or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0484Elimination of a frozen liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/026Aerogel, i.e. a supercritically dried gel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/204Keeping clear the surface of open water from oil spills

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明提供了一种用于稠油分离的磁性纳米纤维气凝胶,通过先将磁性粒子与纳米纤维熔融共混,再与交联剂进行交联,得到磁性纳米纤维气凝胶后,再经表面疏水改性处理,即制得超疏水性的磁性纳米纤维气凝胶。通过先使磁性粒子与纳米纤维熔融共混,可使磁性粒子能够均匀而有效地附着于纳米纤维上,从而确保磁性粒子均匀分布于最终制得的气凝胶中;通过利用混有疏水粒子的疏水树脂溶液对纳米纤维气凝胶进行表面疏水改性,可借助于疏水树脂溶液的粘性将疏水粒子附着于上述气凝胶表面,同时,随着疏水树脂溶液在气凝胶表面固化,即可使疏水粒子固定在气凝胶表面。通过上述方式,制得的超疏水性的磁性纳米纤维气凝胶中磁性粒子分布均匀且疏水性均匀。

Description

用于稠油分离的磁性纳米纤维气凝胶
技术领域
本发明涉及油水分离材料技术领域,尤其涉及一种用于稠油分离的磁性纳米纤维气凝胶。
背景技术
气凝胶是利用冷冻干燥或超临界二氧化碳干燥技术对水凝胶进行处理,用气体替代水凝胶内的液体得到的多孔材料,其具有水凝胶本身的网络结构和体积特性。气凝胶自身独特的性能及其可被修饰的特性使其成为功能化复合材料的理想基材,磁性纳米纤维气凝胶是具有磁性能的气凝胶。对气凝胶赋予磁性的方法通常包括直接利用纳米纤维溶液和纳米磁性颗粒的混合物制备气凝胶的前处理方式,及先制备气凝胶再在其上修饰纳米磁性颗粒。前一方法中易出现纳米磁性颗粒的聚集,使得制得的气凝胶的磁性不均匀,且纳米磁性颗粒易从纳米纤维上脱落,致使不能充分发挥纳米磁性颗粒的作用;而后一方法,由于多次对气凝胶进行处理,可能会对气凝胶的结构造成影响,如处理过程使气凝胶塌陷,致使磁性气凝胶的性质受到影响。
现有技术中,中国专利申请号201410773097.X,公开日期2016年7月13日,名称为“一种磁性气凝胶及其制备方法”的发明专利中公开了一种磁性气凝胶及其制备方法,上述技术方案中通过将含有磁性离子的溶液均匀喷洒气凝胶基材,至气凝胶基材吸湿饱和;采用干燥的方法去除吸湿饱和后的气凝胶基材的水分,不全干;将沉淀溶液吸附在气凝胶基材上,至气凝胶基材全部浸透;待气凝胶基材颜色不再变化后,用水洗涤,干燥,得到磁性气凝胶。上述技术方案中借助于磁性离子与气凝胶基材之间的静电作用力制备了磁性气凝胶,但是上述方法制得的气凝胶亲水,不适用于油水分离领域。
现有技术中,中国专利申请号为201910975905.3,公开日期2020年1月24日,名称为“一种超疏水磁性混合物及其制备方法和应用”的发明专利中公开了一种超疏水磁性混合物及其制备方法和应用,该技术方案中利用CNF水悬浮液、Fe3O4纳米粒子以及疏水改性剂的混合溶液直接制备气凝胶,通过此种方式制得的气凝胶具有疏水性和磁性,但是,由于疏水改性剂和纳CNF水悬浮液之间不互溶,因而最终制得的气凝胶内部的疏水改性剂并不均匀,使得气凝胶的疏水性不均匀;此外,由于磁性纳米粒子与CNF之间不存在化学键的作用,磁性纳米粒子只是负载在CNF上,因此在使用过程中气凝胶上的磁性纳米粒子易掉落,最终影响气凝胶的磁性。
有鉴于此,有必要设计一种改进的用于稠油分离的磁性纳米纤维气凝胶,以解决上述问题。
发明内容
本发明的目的在于提供一种用于稠油分离的磁性纳米纤维气凝胶。
为实现上述发明目的,本发明提供了一种用于稠油分离的磁性纳米纤维气凝胶,通过如下步骤进行制备:
S1、将磁性粒子与纳米纤维熔融共混,制得磁性纳米纤维;
S2、将步骤S1中制得的所述磁性纳米纤维配置成磁性纳米纤维悬浮液并与交联剂混合均匀,得到混合物,然后将所述混合物倒入模具中,使内含所述混合物的模具在低温预冻成型后再经冷冻干燥处理,制得磁性粒子掺杂的纳米纤维气凝胶;
S3、对步骤S2中制得的所述磁性粒子掺杂的纳米纤维气凝胶浸泡在改性溶液中进行表面疏水改性,制得超疏水性的磁性纳米纤维气凝胶。
优选的,在步骤S3中,所述改性溶液为疏水性粒子溶于树脂溶液中得到;优选的,所述树脂溶液由疏水树脂配置得到。
优选的,在步骤S3中,所述树脂溶液为聚二甲基硅氧烷或环氧树脂类物质的溶液,所述树脂溶液的粘度为500~20000cps。
优选的,在步骤S3中,所述磁性粒子掺杂的纳米纤维气凝胶浸泡在所述改性溶液中的时间为10~30min。
优选的,在步骤S3中,所述疏水性粒子为气相二氧化硅类物质。
优选的,在步骤S1中,所述磁性粒子的加入量与所述磁性粒子和所述纳米纤维的质量总和的质量百分比为3~8%;优选的,所述磁性粒子为铁系类纳米粒子及其包覆物。
优选的,在步骤S1中,所述纳米纤维为PVA-co-PE纳米纤维、聚酯纤维、聚乳酸纳米纤维中的一种。
优选的,在步骤S2中,所述交联剂为戊二醛、二醛、聚乙烯吡咯烷酮中的一种,所述交联剂的用量为0.5~1g;所述混合物中所述磁性纳米纤维悬浮液的质量为50~100g,所述磁性纳米纤维悬浮液为所述磁性纳米纤维分散于水和异丙醇中得到;优选的,所述磁性纳米纤维悬浮液中所述磁性纳米纤维、水、异丙醇的质量比为3:5:5。
优选的,在步骤S2中,所述冷冻干燥处理的处理时间为24~72h。
优选的,在步骤S2中,所述混合均匀的方式为机械搅拌或超声波处理。
本发明的有益效果是:
1、本发明提出的用于稠油分离的磁性纳米纤维气凝胶,通过先将磁性粒子与纳米纤维熔融共混,再与交联剂进行交联,得到磁性纳米纤维气凝胶后,再经表面疏水改性处理,即制得超疏水性的磁性纳米纤维气凝胶。通过上述方式,制得的超疏水性的磁性纳米纤维气凝胶中磁性粒子分布均匀且疏水性均匀。
2、本发明提出的用于稠油分离的磁性纳米纤维气凝胶,通过先使磁性粒子与纳米纤维熔融共混,可使磁性粒子能够均匀而有效地附着于纳米纤维上,从而确保磁性粒子能够均匀分布于最终制得的气凝胶中;另外,纳米纤维可对磁性粒子进行包覆,使磁性粒子与纳米纤维成为一个整体,通过此种方式可使磁性粒子与纳米纤维有效结合,使纳米纤维上有效附着的磁性粒子的量增多,同时,避免在气凝胶的使用过程中磁性粒子出现脱落,有效发挥磁性粒子的作用,减少制备过程中磁性粒子的添加量。通过利用混有疏水粒子的疏水树脂溶液对纳米纤维气凝胶进行表面疏水改性,可借助于疏水树脂溶液的粘性将疏水粒子附着于纳米纤维气凝胶表面,同时,随着疏水树脂溶液在气凝胶表面进一步固化,即可使疏水粒子固定在气凝胶表面,再者,同时利用疏水树脂和疏水性粒子进行疏水改性处理,使表面疏水改性的效果更好,此外,本发明还通过调整树脂溶液的粘度和疏水改性处理的时间,有效避免了具有粘性的树脂溶液堵塞气凝胶的孔道结构。通过先制备气凝胶再对气凝胶进行疏水改性处理的后处理方式,有效减少了对气凝胶的处理过程,避免了在制备过程中对气凝胶的结构产生影响,使得最终制得的磁性纳米纤维气凝胶仍能保持气凝胶的三维贯穿网络结构。通过上述方式,可在不使用有毒疏水物质的情况下制得内部磁性粒子分布均匀、且具有超疏水性的磁性纳米纤维气凝胶,将上述气凝胶应用于稠油分离时,结果表明本发明制得的磁性纳米纤维气凝胶对稠油的分离效果优良。
附图说明
图1为本发明的用于稠油分离的磁性纳米纤维气凝胶的制备工艺流程图;
图2为本发明的实施例1中应用磁性纳米纤维气凝胶在磁加热和不进行磁加热条件下分离稠油的过程中的光学照片。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图和具体实施例对本发明进行详细描述。
在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
另外,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
请参阅图1所示,本发明提供了一种用于稠油分离的磁性纳米纤维气凝胶,通过先将磁性粒子与纳米纤维熔融共混,再加入交联剂进行交联,得到磁性纳米纤维气凝胶后,再经表面疏水改性处理,即制得超疏水性的磁性纳米纤维气凝胶,包括如下步骤:
S1、将磁性粒子与纳米纤维熔融共混,制得磁性纳米纤维;
S2、将步骤S1中制得的磁性纳米纤维配置成磁性纳米纤维悬浮液并与交联剂混合均匀,得到混合物,然后将上述混合物倒入模具中,使模具低温预冻成型后再经冷冻干燥处理,制得磁性粒子掺杂的纳米纤维气凝胶;
S3、对步骤S2中得到的磁性粒子掺杂的纳米纤维气凝胶浸泡在改性溶液中进行表面疏水改性,制得超疏水性的磁性纳米纤维气凝胶。
优选的,在步骤S1中,纳米纤维为PVA-co-PE(乙烯/乙烯醇共聚物)纳米纤维、聚酯纤维、聚乳酸纳米纤维中的一种。
优选的,在步骤S1中,磁性粒子为铁系类纳米粒子及其包覆物,磁性粒子的加入量与磁性粒子和纳米纤维的质量总和的质量百分比为3~8%。
优选的,在步骤S2中,交联剂为戊二醛、二醛、聚乙烯吡咯烷酮中的一种,交联剂的用量为0.5~1g。
优选的,在步骤S2中,混合物中磁性纳米纤维悬浮液的质量为50~100g,其中,磁性纳米纤维悬浮液为磁性纳米纤维分散于水和异丙醇中得到,磁性纳米纤维、水、异丙醇三者的质量比为3:5:5。
优选的,在步骤S2中,混合均匀的方式为机械搅拌或超声波处理。
优选的,在步骤S2中,干燥处理的时间为24~72h。
优选的,在步骤S3中,改性溶液为疏水性粒子溶于疏水树脂溶液中得到,疏水性粒子为气相二氧化硅类物质,疏水树脂溶液为聚二甲基硅氧烷或环氧树脂类物质的溶液,疏水树脂溶液的粘度为500~20000cps,浸泡时间为10~30min;本领域技术人员应当理解,气凝胶的表面疏水改性除了浸泡还可以采用化学气相沉积或表面喷涂的方式进行,此处不以此为限。
下面结合具体的实施例对本发明作进一步限定:
实施例1
S1、将5g四氧化三铁与95g PVA-co-PE纳米纤维熔融共混,制得磁性纳米纤维,其中,磁性粒子的加入量与磁性粒子和纳米纤维的质量总和的质量百分比为5%;
S2、在磁力搅拌条件下,将步骤S1中制得的磁性纳米纤维配置成磁性纳米纤维悬浮液,取5g磁性纳米纤维悬浮液与0.5g戊二醛混合均匀,得到混合物,然后将上述混合物倒入模具中,再利用液氮对模具预冻成型,然后将预冻成型的模具放入已经预冷好的冷冻干燥机中,冷冻干燥48h后得到四氧化三铁掺杂的PVA-co-PE纳米纤维气凝胶,其中,磁性纳米纤维悬浮液为磁性纳米纤维分散于水和异丙醇中得到,磁性纳米纤维、水、异丙醇三者的质量比为3:5:5。
S3、将步骤S2中得到的四氧化三铁掺杂的PVA-co-PE纳米纤维气凝胶浸泡于质量百分数为5%的分散有气相二氧化硅的聚二甲基硅氧烷树脂溶液中进行表面疏水改性,其中,树脂溶液的粘度为5000cps,浸泡时间为15min,最终制得超疏水性磁性纳米纤维气凝胶。
为了验证本发明制备的磁性纳米纤维气凝胶对稠油的吸附效果,将磁加热处理后的磁性纳米纤维气凝胶用于稠油分离,并与未经磁加热处理后的磁性纳米纤维气凝胶进行对比,磁加热处理后的磁性纳米纤维气凝胶的稠油分离结果如图2b所示,未经磁加热处理后的磁性纳米纤维气凝胶的稠油分离结果如图2a所示,从图中可以看到,经过磁加热处理的气凝胶对稠油的吸附效果明显优于未经磁加热处理的气凝胶的吸附效果,这是因为经磁加热处理的气凝胶具有较高的温度,在于稠油接触时,会引起稠油粘度降低,使稠油具有流动性更易于被气凝胶吸附,而未经磁加热处理的气凝胶只能利用自身的空隙结构吸附部分稠油,因而吸附效果不如前者。
对比例1
对比例1与实施例1的区别仅在于:先将磁性粒子、PVA-co-PE纳米纤维、戊二醛混合均匀后,得到混合物,然后将混合物注入模具中进行预冻成型,其他步骤与实施例1基本相同,在此不再赘述。应用对比例1制得的超疏水性磁性纳米纤维气凝胶进行稠油分离,结果发现,实施例1制得的超疏水性磁性纳米纤维气凝胶对稠油的分离效果更好,这是因为实施例1中制得的超疏水性磁性纳米纤维气凝胶中磁性粒子的分布更均匀,且纳米纤维上有效附着的磁性粒子的量更多。
下面对用于稠油分离的磁性纳米纤维气凝胶的形成机理进行说明:
将PVA-co-PE纳米纤维与磁性粒子熔融共混制得磁性纳米纤维,一方面可使磁性粒子能够在最终制得的气凝胶中分布均匀;另一方面,由于磁性粒子与纳米纤维之间通常不存在化学键的作用,因此,磁性粒子只能负载在纳米纤维上,此时磁性粒子和纳米纤维之间仍为独立存在的个体,而在本发明中,由于纳米纤维可对磁性粒子进行包覆,因而磁性粒子与纳米纤维可以成为一个整体,从而此种方式得到的气凝胶的强度强于直接在纳米纤维上负载磁性粒子制得的气凝胶的强度。接着,将磁性纳米纤维溶液与交联剂进行交联,制得磁性纳米纤维气凝胶,由于PVA-co-PE纳米纤维的表面富含羟基,因而可与戊二醛表面的醛基发生羟醛缩合反应,形成具有三维贯穿网络结构的纳米纤维气凝胶。最后,利用混有疏水粒子的树脂溶液对磁性纳米纤维气凝胶进行疏水处理,由于树脂溶液具有一定的粘度,可将疏水粒子附着于纳米纤维气凝胶表面,随着树脂溶液在纳米纤维气凝胶表面进一步固化,可使疏水粒子固定在纳米纤维气凝胶表面;另一方面,疏水树脂溶液和疏水粒子一起对气凝胶进行表面修饰,确保了表面疏水处理的效果。应用上述方法制得的超疏水性磁性纳米纤维气凝胶处于磁加热环境中时,在磁效应的作用下,纳米纤维气凝胶可快速升温,当稠油与升温后的气凝胶接触时,气凝胶周围的稠油粘度会逐渐降低并形成具有流动性的流体,同时,由于气凝胶的超疏水特性,使得气凝胶选择性吸附稠油,从而实现将稠油/水的混合物中的稠油进行分离的目的。
综上所述,本发明提出的用于稠油分离的磁性纳米纤维气凝胶,通过先将磁性粒子与纳米纤维熔融共混,再与交联剂进行交联,得到磁性纳米纤维气凝胶后,再经表面疏水改性处理,即制得具有超疏水性的磁性纳米纤维气凝胶。通过先使磁性粒子与纳米纤维熔融共混,可使磁性粒子能够均匀而有效地附着于纳米纤维上,从而确保磁性粒子能够均匀分布于最终制得的气凝胶中;通过利用混有疏水粒子的疏水树脂溶液对纳米纤维气凝胶进行表面疏水改性,可借助于疏水树脂溶液的粘性将疏水粒子附着于纳米纤维气凝胶表面,同时,随着疏水树脂溶液在纳米纤维气凝胶表面进一步固化,即可使疏水粒子固定在纳米纤维气凝胶表面。通过上述方式,可在不使用有毒疏水物质的情况下制得内部磁性粒子分布均匀、且具有超疏水性的磁性纳米纤维气凝胶。
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。

Claims (10)

1.一种用于稠油分离的磁性纳米纤维气凝胶,其特征在于,通过如下步骤进行制备:
S1、将磁性粒子与纳米纤维熔融共混,制得磁性纳米纤维;
S2、将步骤S1中制得的所述磁性纳米纤维配置成磁性纳米纤维悬浮液并与交联剂混合均匀,得到混合物,然后将所述混合物倒入模具中,使内含所述混合物的模具在低温预冻成型后再经冷冻干燥处理,制得磁性粒子掺杂的纳米纤维气凝胶;
S3、对步骤S2中制得的所述磁性粒子掺杂的纳米纤维气凝胶浸泡在改性溶液中进行表面疏水改性,制得超疏水性的磁性纳米纤维气凝胶。
2.根据权利要求1所述的用于稠油分离的磁性纳米纤维气凝胶,其特征在于,在步骤S3中,所述改性溶液为疏水性粒子溶于树脂溶液中得到;优选的,所述树脂溶液由疏水树脂配置得到。
3.根据权利要求2所述的用于稠油分离的磁性纳米纤维气凝胶,其特征在于,在步骤S3中,所述树脂溶液为聚二甲基硅氧烷或环氧树脂类物质的溶液,所述树脂溶液的粘度为500~20000cps。
4.根据权利要求2所述的用于稠油分离的磁性纳米纤维气凝胶,其特征在于,在步骤S3中,所述磁性粒子掺杂的纳米纤维气凝胶浸泡在所述改性溶液中的时间为10~30min。
5.根据权利要求2所述的用于稠油分离的磁性纳米纤维气凝胶,其特征在于,在步骤S3中,所述疏水性粒子为气相二氧化硅类物质。
6.根据权利要求1所述的用于稠油分离的磁性纳米纤维气凝胶,其特征在于,在步骤S1中,所述磁性粒子的加入量与所述磁性粒子和所述纳米纤维的质量总和的质量百分比为3~8%;优选的,所述磁性粒子为铁系类纳米粒子及其包覆物。
7.根据权利要求1所述的用于稠油分离的磁性纳米纤维气凝胶,其特征在于,在步骤S1中,所述纳米纤维为PVA-co-PE纳米纤维、聚酯纤维、聚乳酸纳米纤维中的一种。
8.根据权利要求1所述的用于稠油分离的磁性纳米纤维气凝胶,其特征在于,在步骤S2中,所述交联剂为戊二醛、二醛、聚乙烯吡咯烷酮中的一种,所述交联剂的用量为0.5~1g;所述混合物中所述磁性纳米纤维悬浮液的质量为50~100g,所述磁性纳米纤维悬浮液为所述磁性纳米纤维分散于水和异丙醇中得到;优选的,所述磁性纳米纤维悬浮液中所述磁性纳米纤维、水、异丙醇的质量比为3:5:5。
9.根据权利要求1所述的用于稠油分离的磁性纳米纤维气凝胶,其特征在于,在步骤S2中,所述冷冻干燥处理的处理时间为24~72h。
10.根据权利要求1所述的用于稠油分离的磁性纳米纤维气凝胶,其特征在于,在步骤S2中,所述混合均匀的方式为机械搅拌或超声波处理。
CN202210544672.3A 2022-05-19 2022-05-19 用于稠油分离的磁性纳米纤维气凝胶 Active CN114805914B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210544672.3A CN114805914B (zh) 2022-05-19 2022-05-19 用于稠油分离的磁性纳米纤维气凝胶

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210544672.3A CN114805914B (zh) 2022-05-19 2022-05-19 用于稠油分离的磁性纳米纤维气凝胶

Publications (2)

Publication Number Publication Date
CN114805914A true CN114805914A (zh) 2022-07-29
CN114805914B CN114805914B (zh) 2023-05-12

Family

ID=82514489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210544672.3A Active CN114805914B (zh) 2022-05-19 2022-05-19 用于稠油分离的磁性纳米纤维气凝胶

Country Status (1)

Country Link
CN (1) CN114805914B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091932A (ja) * 2002-08-29 2004-03-25 Gunze Ltd 磁性繊維の製造方法及び磁性繊維
CN104064783A (zh) * 2014-06-30 2014-09-24 武汉纺织大学 一种微生物燃料电池阳极用磁性导电纳米纤维膜的制备方法
CN106009056A (zh) * 2016-06-24 2016-10-12 武汉纺织大学 一种聚合物纳米纤维基气凝胶材料及其制备方法
CN106334538A (zh) * 2016-09-28 2017-01-18 武汉纺织大学 一种具有硬磁性纳米纤维气凝胶材料的制备方法
CN107573535A (zh) * 2017-08-09 2018-01-12 华南理工大学 一种磁性纤维素气凝胶的制备方法
CN111187444A (zh) * 2020-02-10 2020-05-22 东华大学 一种本征超疏水纳米纤维素气凝胶及其制备方法
CN114479197A (zh) * 2022-01-25 2022-05-13 南京工业大学 一种定向结构纳米纤维素蒙脱土气凝胶的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091932A (ja) * 2002-08-29 2004-03-25 Gunze Ltd 磁性繊維の製造方法及び磁性繊維
CN104064783A (zh) * 2014-06-30 2014-09-24 武汉纺织大学 一种微生物燃料电池阳极用磁性导电纳米纤维膜的制备方法
CN106009056A (zh) * 2016-06-24 2016-10-12 武汉纺织大学 一种聚合物纳米纤维基气凝胶材料及其制备方法
CN106334538A (zh) * 2016-09-28 2017-01-18 武汉纺织大学 一种具有硬磁性纳米纤维气凝胶材料的制备方法
CN107573535A (zh) * 2017-08-09 2018-01-12 华南理工大学 一种磁性纤维素气凝胶的制备方法
CN111187444A (zh) * 2020-02-10 2020-05-22 东华大学 一种本征超疏水纳米纤维素气凝胶及其制备方法
CN114479197A (zh) * 2022-01-25 2022-05-13 南京工业大学 一种定向结构纳米纤维素蒙脱土气凝胶的制备方法

Also Published As

Publication number Publication date
CN114805914B (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
Niinivaara et al. Bottom-up assembly of nanocellulose structures
CN103146147B (zh) 一种增韧环氧树脂/玻璃纤维预浸料及制备方法
Onur et al. Engineering cellulose fibre inorganic composites for depth filtration and adsorption
JP7270993B2 (ja) 構造制御可能なイオン交換式ナノファイバー骨格三次元分離材及びその製造方法
CN110038450B (zh) 一种超亲水碳纳米管纳米多孔膜的制备方法
CN105531345A (zh) 复合体及其制造方法
CN107573535B (zh) 一种磁性纤维素气凝胶的制备方法
Wang et al. Facile fabrication of an effective nanocellulose-based aerogel and removal of methylene blue from aqueous system
CN114408924B (zh) 一种无氟防水防潮超疏水活性炭及其制备方法和应用
CN101323675B (zh) 一种有机/无机复合膜的制备方法
CN114805914A (zh) 用于稠油分离的磁性纳米纤维气凝胶
CN112646240B (zh) 一种纳米甲壳素复合气凝胶及其制备方法和应用
JPH0987526A (ja) 成分濃度傾斜構造を有する有機高分子と金属酸化物との複合体の製造方法
CN113563762B (zh) 一种水性疏水浆料及其制备方法与应用
Zuo et al. Preparation and characterization of blend membranes of polyurethane and superfine chitosan powder
He et al. Advances in cellulose hydrophobicity improvement
Ji et al. Porous hollow carbon nanotube composite cages
TW202022023A (zh) 含有官能基改質氣凝膠顆粒之複合材料的製備方法
CN114808465A (zh) 一种纺织品可控加香的自粘附微胶囊及其制备和应用
CN107513894A (zh) 一种超双疏空气过滤纸及其制备方法
KR20200062795A (ko) 개선된 발수 특성 및 오일 용출 특성을 가지는 필름 및 이의 제조방법
KR102651070B1 (ko) 항균성을 가지는 코팅장갑의 제조방법 및 이 방법에 의해 제조된 코팅장갑
WO2004039495A1 (de) Mit organischen polymeren beschichtete anorganische monolithische formkörper
US8404278B2 (en) Polyimide microparticles
KR101921693B1 (ko) 코어-쉘 나노섬유를 이용한 고비표면적 다공성 나노섬유 복합체 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant