CN1146827A - 半导体器件及生产工艺 - Google Patents

半导体器件及生产工艺 Download PDF

Info

Publication number
CN1146827A
CN1146827A CN96190107A CN96190107A CN1146827A CN 1146827 A CN1146827 A CN 1146827A CN 96190107 A CN96190107 A CN 96190107A CN 96190107 A CN96190107 A CN 96190107A CN 1146827 A CN1146827 A CN 1146827A
Authority
CN
China
Prior art keywords
semiconductor
limiting ring
field limiting
conduction type
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN96190107A
Other languages
English (en)
Other versions
CN1106695C (zh
Inventor
坂本和久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Publication of CN1146827A publication Critical patent/CN1146827A/zh
Application granted granted Critical
Publication of CN1106695C publication Critical patent/CN1106695C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • H01L29/7322Vertical transistors having emitter-base and base-collector junctions leaving at the same surface of the body, e.g. planar transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Element Separation (AREA)
  • Thyristors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本文提出了一种半导体器件。该器件由于消除了由场限制环导致的半导体层和绝缘膜之间界面的不连续性,以及避免了杂质由于再扩散而由场限制环进入绝缘膜中,所以该器件的绝缘击穿强度特性将有所提高。本文还给出了制造上述半导体器件的工艺方法。在第一导电类型的半导体层(即N-半导体层1b和外延层1c)上有用以形成半导体器件(三极管)的第二导电类型的半导体区(即P型基区2),第二导电类型的场限制环4a和4b位于半导体区外面,场限制环4a和4b没有暴露于外延层1c的表面。

Description

半导体器件及其生产工艺
                        技术领域
本发明涉及半导体器件,如二极管、三极管、晶闸管、绝缘栅双极晶体管(IGBT)、MOS场效应管和集成电路,本发明特别适用于需要提高击穿电压的半导体器件。
                        技术背景
通常用于提高半导体器件如三极管的介电击穿强度的方法如图4所示。场限制环(FLR)4位于基区2之外,这样,在位于基区2和集电区1之间的PN结下形成的耗尽层11扩展到场限制环4的外面。
通常的三极管包括集电区1、基区2和发射区3。集电区1包括N+半导体衬底1a和通过外延生长形成于衬底上的低掺杂N-层1b。通过适当的技术如扩散在集电区1中形成P型基区2。发射区3通过适当的技术如扩散向基区2中进行N+掺杂而得到。与基区2为相同导电类型(P型)的场限制环4位于基区和集电区之间的PN结10的外面。三极管还包括一层通常为SiO2的绝缘膜,器件隔离环6,集电极电极7,基区电极8和发射极电极9,绝缘膜位于半导体1b的表面。
如上所述的平面三极管并不具备理论上所描述的绝缘击穿强度,这是因为在氧化层或其它绝缘膜5中或在半导体1b和绝缘膜5之间的界面中有电荷和其它杂质。为解决这个问题,确保高的击穿电压,在制造三极管时选用电阻率高于理论值的基片,或者采用如图4所示的场限制环4,这样,位于基区和集电区之间的PN结10下面的耗尽层11可以扩展到场限制环4的外面。导电类型与基区2相同的场限制环4通常与基区一起以相似的方式形成。
如图5所示,通过适当的技术如热氧化,在半导体层1b的表面形成氧化层作为制作发射区的掩模,同时,分别在基区2和场限制环4上形成氧化层52和54。在氧化过程中,由于基区2和场限制环4的掺杂浓度高于N-型半导体层1b,所以氧化层52和54生长迅速。另一方面,N-型半导体层1b不仅掺杂浓度低,而且上面还覆盖了一层氧化层5,所以氧化层51生长缓慢。随着氧化层51,52和54的生长,N-型半导体层1b和氧化层5的界面62向N-型半导体层1b内推进;然而,如上所述由于生长速率的不同,界面62在氧化层51中较浅,在基区2和场限制环4中较深。因此,界面62沿半导体层1b的表面并不连续。同时,由于半导体层1b和氧化层5中的N型杂质以及基区2、场限制环4和氧化层52和54中的P型杂质将通过界面62进行再分布,直到界面两侧的化学势相等。由于以上这个公知的效应,不同氧化层中的杂质将要再分布。上述这些现象在形成发射区的过程中也将出现。
如果氧化层5和半导体层1b之间的界面不连续,将会导致电场集中,这是我们所不希望的。如果基区2和场限制环4中的杂质通过再分布进入到氧化层5中,正电荷和其它少数载流子将被引入到氧化层5中,这样在半导体1b的表面将感生出负电荷。因此,器件的介电击穿强度特性将要变差。
                        发明内容
本发明的上述背景下完成,其目的之一是提供一种具有改进的击穿强度特性的半导体器件。实现该目的可用下述方法:消除半导体和其表面绝缘膜之间由于引入场限制环而带来的界面的不连续性,和防止杂质从场限制环再分布扩散到绝缘膜中,场限制环是用来提高介电击穿强度的。
本发明的另一个目的是提供一种工艺,以制造上述改进的半导体器件。
根据本发明的第一个目的的半导体器件包括第一导电类型的半导体层,在上述半导体层中用来制造器件的第二导电类型的半导体区,和用于提高击穿电压,位于所述半导体区外面的第二导电类型的场限制环,上述场限制环没有暴露于上述半导体层的表面。
在优选的实施方案中,用以制造器件的第二导电类型的半导体区是二极管的基区,上述场限制环在上述基区的外面。这样结构的三极管具有高击穿电压。
根据本发明第二个目的的器件制造工艺用来制造一种半导体器件,该器件包括第一导电类型的半导体层,在上述半导体层中用来制造器件的第二导电类型的半导体区,和用于提高击穿电压、位于半导体区外面的第二导电类型的场限制环。该工艺包括:在第一导电类型的半导体层中形成场限制环,在第一导电类型的所述半导体层表面上外延生长第一导电类型的外延层,和在所述外延层表面形成第二导电类型的半导体区。根据本发明第一个目的,在上述半导体器件中,场限制环位于第二导电类型的半导体区的外面,第二导电类型的半导体区位于第一导电类型的半导体层中。场限制环是掩埋的,因而没有暴露于半导体层表面。即使通过适合的氧化技术如热氧化在半导体层表面形成绝缘膜,也不会由于场限制环在绝缘膜和半导体层之间的界面上导致不连续性,同时也避免了场限制环中的杂质由于再扩散进入绝缘膜。因此,场限制环确保了在集电区和基区之间的PN结下面的耗尽层扩展到场限制环的外面,并且不会由于场限制环导致击穿电压下降,这样可以制造一种有高的介电击穿强度的器件。
根据本发明第二个目的,在该器件的工艺中,场限制环从半导体层表面形成,然后,在半导体层的整个表面上形成一层与所述半导体层具有相同掺杂浓度和相同导电类型的外延层。这样,场限制环完全被相似的两层半导体层包围,第二导电类型的半导体区可以从该外延层表面形成。这样,预期的半导体器件就制成了,该器件的场限制环没有暴露于外延层表面。
如上所述,根据本发明第一个目的的半导体器件包括一层第一导电类型的半导体层,在上述半导体层中有用来制造器件的第二导电类型的半导体区,所述半导体区周界的外面是第二导电类型的场限制环,它们掩埋于第一导电类型的半导体层中,掩埋的场限制环有效地增加了耗尽层的扩展,从而提高了击穿电压,却不会导致在绝缘膜和半导体层之间的界面上的不连续性或场限制环中的杂质进入绝缘膜的再扩散。因此,有效稳定了界面能级,提高了介电击穿强度特性。因此,本发明的半导体器件有高击穿电压。
根据本发明第二个目的的器件制造工艺提供一种简单的方法以形成掩埋于半导体层的场限制环,从而能够制造一种其场限制环没有暴露于半导体层表面的半导体器件。
                        附图简述
半导体的半导体器件及其制造工艺如图1-3所示。
图1是根据本发明第一个目的的半导体器件的实施例的剖面图;
图2是半导体器件基区-集电区击穿电压曲线;
图3是本发明半导体器件的制造顺序;
图4是一个采用现有技术制造的三极管的剖面;和
图5是一个采用现有技术制造的三极管的场限制环及其周围区域的局部剖面图。
                 本发明的最佳实施方案
如图1所示,采用本发明的半导体器件例如三极管,包括典型的N+半导体衬底1a,在其表面形成有N-半导体层1b,其导电类型与1a相同,但掺杂浓度较低,然后在1b上外延生长与1b具有相同导电类型的外延层1c,这样,就形成了三极管的集电区1,集电区1是具有第一导电类型的半导体层。第二导电类型的P型杂质通过外延层1c的表面掺入形成基区2,在基区2中掺入N+杂质形成发射区3。场限制环4a和4b位于半导体层1b和外延层1c中,它水平地包围着基区2。本发明的特点是场限制环4a和4b没有暴露于外延层1c的表面,而是包围于半导体层1b和外延层1c中。
外延层1c的表面覆盖着绝缘膜5,绝缘膜通常由氧化硅构成用来作为形成基区2和发射区3的掩模。通常由铝构成的基区电极8和发射区电极9通过在绝缘膜5中形成的接触孔分别与基区和发射区连接。集电区电极9位于半导体衬底1a的背面。为了简明,图1中省略了器件隔离环。
在讨论的实施例中有两个场限制环4a和4b。提供的场限制环的数目越多,器件的介电击穿强度越强,但另一方面,随着场限制环数目的增多,芯片的面积也将随之增加。即使只有一个场限制环,击穿电压也将有显著提高,所以,场限制环的数目应根据具体的目的来决定。
N+半导体衬底1a和N-半导体层1b可以用任何方法来形成;例如,可以在N+半导体衬底1a上外延生长N-半导体层1b,或者可以在N-半导体衬底的背面注入N型杂质以形成N+层来作为半导体衬底1a。N+半导体衬层1a的典型掺杂浓度为1×1018-1×2020/cm3,而N-型半导体层1b和N-型外延层1c的典型掺杂浓度为1×1013-1×1015/cm3。外延层1c的厚度A大约为5-20μm,半导体层1b和外延层1c的总厚度B大约为40-120μm。从外延层1c的表面算起,典型的基区2的厚度C大约为10-30μm。基区2的典型掺杂浓度为5×1016-1×1017/cm3,而发射区3的典型掺杂浓度为1×1018-1×1020/cm3。场限制环4a和4b与基区2的掺杂类型和掺杂浓度相同。每个场限制环的高度D大约为5-20μm,场限制环的宽度E大约为15-20μm,场限制环4a和基区2的边界的距离F大约为45-55μm,场限制环4a和4b之间的间距大约为50-60μm。
因此,根据本发明的第一个目的的半导体器件具有如下的结构,即在第一导电类型的半导体层(即,N-型半导体层1b和外延层1c)上有用来形成半导体器件(三极管)的第二导电类型的半导体区(即,P型基区2),以及将场限制环4a和4b放在上述半导体区的边界外面,场限制环4a和4b没有暴露于外延层1c的表面。在该结构中,位于基区2的边界以外的半导体层1b的表面,它是半导体层1b与绝缘膜5的界面,均匀地被外延层1c所覆盖,不会由于场限制环4a和4b的存在而导致不连续性。并且,场限制环4a和4b中的杂质也不会可能再分布进入绝缘膜5,因此,绝缘膜5不会由于这种方式被污染以至使器件的介电击穿特性下降。
图2为根据本发明所述实施例的三极管基极-集电极击穿电压的曲线与现有技术的三极管的比较,在现有技术中,场限制环暴露于半导体层的表面。两条曲线的数据分别以二十个样品采集。显然,采用现有技术的三极管的基极-集电极击穿电压大约为1000V,而采用本发明的三极管的基极-集电极击穿电压大约为1300V。
现在,将参照图3说明制造本发明所述实施例的三极管的制造工艺。
首先,通过在900-1200下热氧化,在位于N+半导体衬底1a上的N-半导体层1b的上表面覆盖SiO2层12,其厚度大约为0.5-1μm,然后在欲形成场限制环4a和4b的位置,在SiO2层12上开出第一层窗口13(参见图3a)。窗口13是采用光刻工艺实现,光刻工艺包括涂光刻胶、曝光和刻蚀。
其次,通过SiO2膜12中的窗口13向半导体层1b中掺入诸如磷或砷等的杂质以形成掩埋的场限制环4a和4b(见图3b)。
然后,去掉SiO2层12,在半导体层1b的表面外延生长N-外延层1c(见图3c)。
随后,通过适当的技术如热氧化,在外延层1c的表面形成通常由SiO2构成的绝缘膜14,并采用与形成窗口13相同的光刻工艺,在绝缘膜14上形成窗口15。通过扩散向外延层1c参入P型杂质以形成基区2。在掺入杂质的同时掩埋的场限制环4a和4b中的杂质扩散到外延层1c中,这样,部分场限制环4a和4b将增大进入外延层1c中,但是,其增长的部分很小,所以,场限制环4a和4b不会暴露于外延层1c的表面。
尽管没有图示出,其后续工艺包括在表面形成第二层绝缘膜,采用如前所述的方法制作图案,扩散杂质形成发射区,并形成必要的电极如基区电极和发射区电极,以制作完整的三极管。
如上文所述的工艺,先在半导体层1b中形成场限制环4a和4b,然后再外延生长外延层1c。这样就可制成一种半导体器件,它的两个场限制环4a和4b完全被半导体层1b和外延层1c所包围,而没有暴露于外延层1c的表面。另外,场限制环4a和4b可与基区2在不同的步骤中形成,因此场限制环的掺杂浓度可以控制在所需的任何值,以自由调节耗尽层的扩展。
                        工业应用
根据本发明第一个目的的半导体器件包括第一导电类型的半导体层,在上述半导体层中有用于形成半导体器件的第二导电类型的半导体层,第二导电类型的场限制环位于半导体区的周界的外面,所述场限制环掩埋于上述第一导电类型的半导体层中。掩埋的场限制环有效地增加了耗尽层的扩展,从而提高了击穿电压而不会导致在绝缘膜和半导体层之间的界面上的不连续性或场限制环中的杂质进入绝缘膜的再扩散。因此,有效稳定了界面能级,提高了介电击穿强度特性。因此,本发明的半导体器件有高击穿电压。
根据本发明第二个目的的器件制造工艺提供了一种简单的方法以形成掩埋于半导体层的场限制环,使得可以制造一种其场限制环没有暴露于半导体层表面的半导体器件。

Claims (3)

1.一种半导体器件,包括:
第一导电类型的半导体层;
在上述半导体层中用来制造半导体器件的第二导电类型的半导体区;和
位于所述半导体区的周界的外面用来提高击穿电压的第二导电类型的场限制环;
其中场限制环没有从半导体层表面暴露。
2.根据权利要求1的半导体器件,其中,用以制造半导体器件的第二导电类型的所述半导体区是三极管的基区,且其中所述场限制环位于基区周界的外面。
3.一种制作一种半导体器件的工艺,该半导体器件包括第一导电类型的半导体层,在上述半导体层中用以制造器件的第二导电类型的半导体区,和位于所述半导体区周界的外面用以提高击穿电压的第二导电类型的场限制环,所述制作工艺包括:
在上述第一导电类型的半导体层中形成场限制环;
在上述第一导电类型的半导体层的表面上形成第一导电类型的外延层;和
在所述外延层表面形成第二导电类型的所述半导体区。
CN96190107A 1995-02-20 1996-02-19 半导体器件及生产工艺 Expired - Fee Related CN1106695C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31147/1995 1995-02-20
JP31147/95 1995-02-20
JP7031147A JP2989113B2 (ja) 1995-02-20 1995-02-20 半導体装置およびその製法

Publications (2)

Publication Number Publication Date
CN1146827A true CN1146827A (zh) 1997-04-02
CN1106695C CN1106695C (zh) 2003-04-23

Family

ID=12323331

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96190107A Expired - Fee Related CN1106695C (zh) 1995-02-20 1996-02-19 半导体器件及生产工艺

Country Status (7)

Country Link
US (1) US5841181A (zh)
EP (1) EP0756760B1 (zh)
JP (1) JP2989113B2 (zh)
KR (1) KR100392699B1 (zh)
CN (1) CN1106695C (zh)
DE (1) DE69634585T2 (zh)
WO (1) WO1996026547A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101752414B (zh) * 2009-12-17 2015-09-23 上海集成电路研发中心有限公司 一种三极管

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3632344B2 (ja) * 1997-01-06 2005-03-23 日産自動車株式会社 半導体装置
JP2002503401A (ja) 1998-04-08 2002-01-29 シーメンス アクチエンゲゼルシヤフト プレーナ構造用の高耐圧コーナー部シール体
DE19838108B4 (de) * 1998-08-21 2005-05-25 Infineon Technologies Ag Randstruktur für Hochvolt-Halbleiterbauelemente
DE19930783A1 (de) * 1999-07-03 2001-01-04 Bosch Gmbh Robert Halbleiterbauelement
WO2004066391A1 (ja) * 2003-01-20 2004-08-05 Mitsubishi Denki Kabushiki Kaisha 半導体装置
CN106601797A (zh) * 2016-11-04 2017-04-26 东莞市联洲知识产权运营管理有限公司 一种三极管及其制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3404295A (en) * 1964-11-30 1968-10-01 Motorola Inc High frequency and voltage transistor with added region for punch-through protection
US4003072A (en) * 1972-04-20 1977-01-11 Sony Corporation Semiconductor device with high voltage breakdown resistance
JPS524787A (en) * 1975-07-01 1977-01-14 Nec Corp Transistor containing embedded base
GB1558506A (en) * 1976-08-09 1980-01-03 Mullard Ltd Semiconductor devices having a rectifying metalto-semicondductor junction
US4158206A (en) * 1977-02-07 1979-06-12 Rca Corporation Semiconductor device
JPS57180164A (en) * 1981-04-30 1982-11-06 Nec Corp Semiconductor device
JPH01272153A (ja) * 1988-04-25 1989-10-31 Matsushita Electric Works Ltd ガードリングの製造方法
JP2597412B2 (ja) * 1990-03-20 1997-04-09 三菱電機株式会社 半導体装置およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101752414B (zh) * 2009-12-17 2015-09-23 上海集成电路研发中心有限公司 一种三极管

Also Published As

Publication number Publication date
CN1106695C (zh) 2003-04-23
KR100392699B1 (ko) 2004-06-16
EP0756760A1 (en) 1997-02-05
US5841181A (en) 1998-11-24
DE69634585D1 (de) 2005-05-19
JPH08227897A (ja) 1996-09-03
KR970702584A (ko) 1997-05-13
DE69634585T2 (de) 2005-09-29
JP2989113B2 (ja) 1999-12-13
WO1996026547A1 (en) 1996-08-29
EP0756760B1 (en) 2005-04-13

Similar Documents

Publication Publication Date Title
US4546536A (en) Fabrication methods for high performance lateral bipolar transistors
US4583106A (en) Fabrication methods for high performance lateral bipolar transistors
US4507171A (en) Method for contacting a narrow width PN junction region
EP0632503B1 (en) Integrated edge structure for high voltage semiconductor devices and related manufacturing process
EP0137905B1 (en) Method for making lateral bipolar transistors
EP0685891B1 (en) Integrated semiconductor diode
KR0171128B1 (ko) 수직형 바이폴라 트랜지스터
EP0036319B1 (en) Semiconductor device
US4404738A (en) Method of fabricating an I2 L element and a linear transistor on one chip
CN1106695C (zh) 半导体器件及生产工艺
IL31358A (en) Method of fabricating monolithic semiconductor devices
CN1190832C (zh) 半导体结构
EP0166923A2 (en) High performance bipolar transistor having a lightly doped guard ring disposed between the emitter and the extrinsic base region
US4669179A (en) Integrated circuit fabrication process for forming a bipolar transistor having extrinsic base regions
US4721685A (en) Single layer poly fabrication method and device with shallow emitter/base junctions and optimized channel stopper
US4165516A (en) Semiconductor device and method of manufacturing same
US5837553A (en) Method of making high voltage, junction isolation semiconductor device having dual conductivity type buried regions
JP2002190593A (ja) 絶縁ゲート型電界効果トランジスタ及びその製造方法
US5328857A (en) Method of forming a bilevel, self aligned, low base resistance semiconductor structure
KR930009029B1 (ko) 반도체 장치 및 그 제조방법
CN1113416C (zh) 具有纵向型和横向型双极晶体管的半导体器件
US5925923A (en) Merged single polysilicon bipolar NPN transistor
CN213519864U (zh) 超级结
EP0757382B1 (en) High voltage semiconductor monolithic device with integrated edge structure and corresponding manufacturing process
JPS62136850A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20030423

Termination date: 20140219