CN114621004A - 一种高储能密度的高熵陶瓷材料及其制备方法 - Google Patents

一种高储能密度的高熵陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN114621004A
CN114621004A CN202210096213.3A CN202210096213A CN114621004A CN 114621004 A CN114621004 A CN 114621004A CN 202210096213 A CN202210096213 A CN 202210096213A CN 114621004 A CN114621004 A CN 114621004A
Authority
CN
China
Prior art keywords
powder
energy storage
ceramic material
ceramic
storage density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210096213.3A
Other languages
English (en)
Other versions
CN114621004B (zh
Inventor
肖一鸣
郑鹏
白王峰
傅唐雨
叶文博
朱成浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202210096213.3A priority Critical patent/CN114621004B/zh
Publication of CN114621004A publication Critical patent/CN114621004A/zh
Application granted granted Critical
Publication of CN114621004B publication Critical patent/CN114621004B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Abstract

本发明公开了一种高储能密度的高熵陶瓷材料及其制备方法,采用固相合成方法,以Bi2O3、Na2CO3、K2CO3、BaCO3、SrCO3、TiO2和Nb2O5为原料,按化学式(Bi0.2Na0.2K0.2Ba0.2Sr0.2)Ti0.8Nb0.2O3配比取料,对粉体进行湿法球磨混合,干燥后的粉体在经过预烧之后进行二次球磨,再经过过筛和压制,最终通过烧结得到了高储能高效率的钙钛矿型高熵陶瓷。本发明所获得的储能陶瓷材料,其可恢复储能密度Wrec=4.53J/cm3,储能效率η=88.1%。能量存储性能较现有产品有大幅提升。此外,工艺流程简单,适合工业化生产,同时符合当前无铅环保的要求。

Description

一种高储能密度的高熵陶瓷材料及其制备方法
技术领域
本发明属于电介质储能材料领域,具体涉及一种高储能密度的高熵陶瓷材料及其制备方法。
背景技术
介电电容器中的介电陶瓷储能材料因为具有高功率密度、成本低、优异的热稳定性等特性,广泛应用于商业、消费、医疗和军事等高功率***。目前用于陶瓷电容器的材料大多是铅基陶瓷,虽然储能密度较高,但这些体系中含有大量的的铅元素,这对人体健康和环境都有着极大的危害,发展无铅材料取代含铅体系材料已是必然趋势。但是就目前而言,无铅介电陶瓷电容器的局限在于储能密度较低,无法与铅基陶瓷电容器的储能性能相比,这使其难以达到器件小型化、多功能及集成化的发展要求,从而限制了它在便携式电子设备中的应用。如能有效提高无铅介电陶瓷电容器的储能密度,那么其在储能领域的应用将更为广阔。
近年来,高熵材料由于具有各种优良的机械和物理性能,独特的结构以及发展潜力,受到了人们广泛的关注和研究。在过去的几年里,高熵材料的研究有了很大的进展,从最初的高熵合金体系扩展到了高熵陶瓷体系,如金属碳化物、二硼化物和氧化物。目前,高熵氧化物的研究主要集中在岩盐型结构上,而对高熵钙钛矿的研究却很少见到。钙钛矿氧化物(ABO3)在许多领域有着应用,例如储能、离子导体和磁阻。将高熵与钙钛矿结合往往能够产生出人意料的效果,但是高熵材料的合成是很困难的。截止2018年,只有几种高熵陶瓷被成功地以块体形式制造出来。
发明内容
针对上述技术存在的缺陷,本发明的目的是提供一种高储能密度的高熵陶瓷材料及其制备方法,通过增加钙钛矿结构中的A,B位上的元素数量,来构建高熵结构,从而制备出具有优良介电性能的新型电介质材料。
为了解决现有技术存在的技术问题,本发明的技术方案如下:
一种高储能密度的高熵陶瓷材料,该陶瓷材料的化学组成为(Bi0.2Na0.2K0.2Ba0.2Sr0.2)Ti0.8Nb0.2O3
作为进一步的改进方案,该陶瓷材料的烧结温度为1150~1200℃。
作为进一步的改进方案,该陶瓷材料的烧结温度为1150℃时,得到的陶瓷材料在380kV/cm电场下充电能量密度达到6.25J/cm3,可用储能密度达到3.47J/cm3,储能效率达到55.5%。
作为进一步的改进方案,该陶瓷材料的烧结温度为1175℃时,得到的陶瓷材料在340kV/cm电场下充电能量密度达到5.14J/cm3,可用储能密度达到4.53J/cm3,储能效率达到88.1%。
作为进一步的改进方案,该陶瓷材料的烧结温度为1200℃时,得到的陶瓷材料在160kV/cm电场下充电能量密度达到1.62J/cm3,可用储能密度达到1.31J/cm3,储能效率达到80.9%。
本发明还公开了钙钛矿型高熵陶瓷的制备方法,使用固相反应法制备得到相应的储能陶瓷,具体采用以下步骤:
(1)选取纯度大于98%的Bi2O3粉体,Na2CO3粉体,K2CO3粉体,BaCO3粉体,SrCO3粉体,TiO2粉体,Nb2O5粉体为原料,按照通式(Bi0.2Na0.2K0.2Ba0.2Sr0.2)Ti0.8Nb0.2O3称取原料,并加入与粉体等量的无水乙醇,通过一次球磨工艺混合均匀,使粉体混合均匀形成浆料;
(2)将上述浆料置于90℃下的恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
(3)将粉料置于模具中预压成料块,将料块在密闭条件下于750℃下预烧,保温时间3-4h,得到预合成的陶瓷粉体;
(4)将预合成的陶瓷料块在研钵中碾碎研磨后得到陶瓷粉体,向得到的粉体中加入等量的无水乙醇,进行二次球磨;
(5)将得到的浆料在90℃下烘干,经造粒、过筛、模压成型得到陶瓷生胚;
(6)将陶瓷坯体在600-650℃下进行排胶处理3-4h,将排胶后的陶瓷坯体进行烧结,烧结温度为1150~1200℃,升温速率3-4℃/min,保温时间2-3h,冷却到室温后得到高储能高效率的钙钛矿型高熵陶瓷;
(7)将制得的样品进行热腐蚀处理后拍摄SEM照片,观察陶瓷的致密程度和晶粒尺寸大小;
(8)将制得的样品加工成两面光滑、厚度约为0.1mm的薄片,镀金电极,然后在室温于10Hz频率下测试其铁电性能,并进行储能性能计算;
(9)将制得的样品两面涂覆银浆,在565℃下进行烧银处理20min,冷却到室温后进行介电性能测试。
进一步的,一次球磨及二次球磨时采用无水乙醇和ZrO2球作为球磨介质,转速为225r/min,每隔半个小时调整一次运转方向,球磨时间为12h。
进一步的,预烧温度优选为750℃,保温时间优选为4小时。
进一步的,在造粒时使用浓度为8%的聚乙烯醇(PVA)作为粘结剂掺入粉料中,掺入的粘结剂的质量是粉料质量的5%,掺入的蒸馏水的质量是粉料质量的2.5%,将粉料在研钵中混合均匀后置于模具中,压制成粉块。
进一步的,过筛时使用60目和140目筛子过筛,取60目和140目筛子中间层的粉料。
进一步的,模压成型时的压强控制在200MPa。
进一步的,将生胚置于坩埚中排胶时,盖在坩埚上的盖子和坩埚之间留有缝隙;在烧结时采用密封烧结,在陶瓷生胚上倒置坩埚密封。
进一步的,烧结时升温速率控制在4℃/min,保温时间控制在2h。
从原理上讲,高熵代表作一种无序性的增加,也是而在铁电体向弛豫铁电体的转变过程中,晶体里的极化从长程有序的铁电畴转变为极性纳米微区,也是一种无序性的增加。本发明通过在钙钛矿结构的A位引入铋,钠,钾,钡,锶离子,B位引入钛和铌离子,从而获得钙钛矿型高熵结构。最终获得了具有高有效储能密度4.53J/cm3的新型高熵钙钛矿型陶瓷。
相比于现有技术,本发明提供了一种简单有效的方法来制备钙钛矿型高熵储能陶瓷,得到高熵陶瓷的电滞回线细长,储能密度和储能效率高,对于实现脉冲功率器件的无铅化具有极高的应用价值,对于取代铅基储能陶瓷材料具有重大意义,并且能够在高功率微波武器、激光武器、电磁发射器、混合动力电动车等脉冲功率体系中得到广泛应用。
附图说明
图1为(Bi0.2Na0.2K0.2Ba0.2Sr0.2)Ti0.8Nb0.2O3陶瓷材料的烧结温度为1150℃时的介电温谱;
图2为(Bi0.2Na0.2K0.2Ba0.2Sr0.2)Ti0.8Nb0.2O3陶瓷材料的烧结温度为1175℃时的介电温谱;
图3为(Bi0.2Na0.2K0.2Ba0.2Sr0.2)Ti0.8Nb0.2O3陶瓷材料的烧结温度为1200℃时的介电温谱;
图4为(Bi0.2Na0.2K0.2Ba0.2Sr0.2)Ti0.8Nb0.2O3陶瓷材料的烧结温度为1150℃时的电滞回线;
图5为(Bi0.2Na0.2K0.2Ba0.2Sr0.2)Ti0.8Nb0.2O3陶瓷材料的烧结温度分别为1175℃时的电滞回线;
图6为(Bi0.2Na0.2K0.2Ba0.2Sr0.2)Ti0.8Nb0.2O3陶瓷材料的烧结温度为1200℃时的电滞回线。
具体实施方式
下面结合附图及实施例对本发明进行详细说明,但是本发明不局限于以下实施例。
本发明中,制备了(Bi0.2Na0.2K0.2Ba0.2Sr0.2)Ti0.8Nb0.2O3陶瓷材料。
实施例一
该高熵陶瓷材料的化学式为(Bi0.2Na0.2K0.2Ba0.2Sr0.2)Ti0.8Nb0.2O3,其烧结温度为1150℃。
上述陶瓷的制备方法包括以下步骤:
(1)选取纯度大于98%的Bi2O3粉体,Na2CO3粉体,K2CO3粉体,BaCO3粉体,SrCO3粉体,TiO2粉体,Nb2O5粉体为原料,按照化学式(Bi0.2Na0.2K0.2Ba0.2Sr0.2)Ti0.8Nb0.2O3称取原料,并加入与粉体等量的无水乙醇,通过一次球磨工艺混合均匀,使粉体混合均匀形成浆料。其中一次球磨时采用无水乙醇和ZrO2球作为球磨介质,转速为225r/min,每隔半个小时调整一次运转方向,球磨时间为12h;
(2)将上述浆料置于90℃下的恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
(3)将粉料置于模具中预压成料块,将料块在密闭条件下于750℃下预烧,保温时间4h,得到预合成的陶瓷粉体;
(4)将预合成的陶瓷料块在研钵中碾碎研磨后得到陶瓷粉体,向得到的粉体中加入等量的无水乙醇,进行二次球磨,该过程中依然采用无水乙醇和ZrO2球作为球磨介质,转速为225r/min,每隔半个小时调整一次运转方向,球磨时间为12h;
(5)将得到的浆料在90℃下烘干,加入8wt%的聚乙烯醇(PVA)
作为粘结剂掺入粉料中进行造粒,将造粒得到的粉块碾碎后,使用60目和140目筛子过筛,取60目和140目筛子中间层的粉料,在200Mpa的压强下模压成型得到陶瓷生胚。其中在造粒时,掺入的粘结剂的质量是粉料质量的5%,掺入的蒸馏水的质量是粉料质量的2.5%;
(6)将陶瓷坯体置于坩埚中盖上盖子并留有缝隙,在650℃下进行排胶处理3h,然后在排胶后的陶瓷坯体上进行烧结,烧结温度为1150℃,升温速率4℃/min,保温时间2h,冷却到室温后得到高储能密度的高熵陶瓷;
(7)将制得的样品加工成两面光滑、厚度约为0.1mm的薄片,镀金电极,然后在室温于10Hz频率下测试其铁电性能,并进行储能性能计算。通过计算得到该陶瓷在380kV/cm电场下充电能量密度(总能量密度,W)达到6.25J/cm3,可用储能密度(可利用储能密度,Wrec)达到3.47J/cm3,储能效率(η)达到55.5%;
(8)将制得的样品两面涂覆银浆,在565℃下进行烧银处理20min,冷却到室温后进行介电性能测试。由测试结果可知陶瓷的介电常数会随着陶瓷所处的温度环境的变化而发生改变,测试结果表明在1MHz下该陶瓷的介电峰对应的温度低于室温。介电温谱中均无明显的Tc,介电峰无明显尖锐。
实施例二
该高熵陶瓷材料的化学式为(Bi0.2Na0.2K0.2Ba0.2Sr0.2)Ti0.8Nb0.2O3,其烧结温度为1175℃。
上述陶瓷的制备方法包括以下步骤:
(1)选取纯度大于98%的Bi2O3粉体,Na2CO3粉体,K2CO3粉体,BaCO3粉体,SrCO3粉体,TiO2粉体,Nb2O5粉体为原料,按照化学式(Bi0.2Na0.2K0.2Ba0.2Sr0.2)Ti0.8Nb0.2O3称取原料,并加入与粉体等量的无水乙醇,通过一次球磨工艺混合均匀,使粉体混合均匀形成浆料。其中一次球磨时采用无水乙醇和ZrO2球作为球磨介质,转速为225r/min,每隔半个小时调整一次运转方向,球磨时间为12h;
(2)将上述浆料置于90℃下的恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
(3)将粉料置于模具中预压成料块,将料块在密闭条件下于750℃下预烧,保温时间4h,得到预合成的陶瓷粉体;
(4)将预合成的陶瓷料块在研钵中碾碎研磨后得到陶瓷粉体,向得到的粉体中加入等量的无水乙醇,进行二次球磨,该过程中依然采用无水乙醇和ZrO2球作为球磨介质,转速为225r/min,每隔半个小时调整一次运转方向,球磨时间为12h;
(5)将得到的浆料在90℃下烘干,加入8wt%的聚乙烯醇(PVA)作为粘结剂掺入粉料中进行造粒,在将造粒得到的粉块碾碎后,使用60目和140目筛子过筛,取60目和140目筛子中间层的粉料,在200Mpa的压强下模压成型得到陶瓷生胚。其中在造粒时,掺入的粘结剂的质量是粉料质量的5%,掺入的蒸馏水的质量是粉料质量的2.5%;
(6)将陶瓷坯体置于坩埚中盖上盖子并留有缝隙,在650℃下进行排胶处理3h,然后在排胶后的陶瓷坯体上进行烧结,烧结温度为1175℃,升温速率4℃/min,保温时间2h,冷却到室温后得到高储能高效率的钙钛矿型高熵陶瓷;
(7)将制得的样品加工成两面光滑、厚度约为0.1mm的薄片,镀金电极,然后在室温于10Hz频率下测试其铁电性能,并进行储能性能计算。通过计算得到该陶瓷在340kV/cm电场下充电能量密度(总能量密度,W)达到5.14J/cm3,可用储能密度(可利用储能密度,Wrec)达到4.53J/cm3,储能效率(η)达到88.1%;
(8)将制得的样品两面涂覆银浆,在565℃下进行烧银处理20min,冷却到室温后进行介电性能测试。由测试结果可知陶瓷的介电常数会随着陶瓷所处的温度环境的变化而发生改变,测试结果表明在1MHz下该陶瓷的介电峰对应的温度低于室温。介电温谱中均无明显的Tc,介电峰无明显尖锐。
实施例三
该高熵陶瓷材料的化学式为(Bi0.2Na0.2K0.2Ba0.2Sr0.2)Ti0.8Nb0.2O3,其烧结温度为1200℃。
上述陶瓷的制备方法包括以下步骤:
(1)选取纯度大于98%的Bi2O3粉体,Na2CO3粉体,K2CO3粉体,BaCO3粉体,SrCO3粉体,TiO2粉体,Nb2O5粉体为原料,按照化学式(Bi0.2Na0.2K0.2Ba0.2Sr0.2)Ti0.8Nb0.2O3称取原料,并加入与粉体等量的无水乙醇,通过一次球磨工艺混合均匀,使粉体混合均匀形成浆料。其中一次球磨时采用无水乙醇和ZrO2球作为球磨介质,转速为225r/min,每隔半个小时调整一次运转方向,球磨时间为12h;
(2)将上述浆料置于90℃下的恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
(3)将粉料置于模具中预压成料块,将料块在密闭条件下于750℃下预烧,保温时间4h,得到预合成的陶瓷粉体;
(4)将预合成的陶瓷料块在研钵中碾碎研磨后得到陶瓷粉体,向得到的粉体中加入等量的无水乙醇,进行二次球磨,该过程中依然采用无水乙醇和ZrO2球作为球磨介质,转速为225r/min,每隔半个小时调整一次运转方向,球磨时间为12h;
(5)将得到的浆料在90℃下烘干,加入8wt%的聚乙烯醇(PVA)作为粘结剂掺入粉料中进行造粒,在将造粒得到的粉块碾碎后,使用60目和140目筛子过筛,取60目和140目筛子中间层的粉料,在200Mpa的压强下模压成型得到陶瓷生胚。其中在造粒时,掺入的粘结剂的质量是粉料质量的5%,掺入的蒸馏水的质量是粉料质量的2.5%;
(6)将陶瓷坯体置于坩埚中盖上盖子并留有缝隙,在650℃下进行排胶处理3h,然后在排胶后的陶瓷坯体上进行烧结,烧结温度为1200℃,升温速率4℃/min,保温时间2h,冷却到室温后得到高储能密度的高熵陶瓷;
(7)将制得的样品加工成两面光滑、厚度约为0.1mm的薄片,镀金电极,然后在室温于10Hz频率下测试其铁电性能,并进行储能性能计算。通过计算得到该陶瓷在160kV/cm电场下充电能量密度(总能量密度,W)达到1.62J/cm3,可用储能密度(可利用储能密度,Wrec)达到1.31J/cm3,储能效率(η)达到80.9%;
(8)将制得的样品两面涂覆银浆,在565℃下进行烧银处理20min,冷却到室温后进行介电性能测试。由测试结果可知陶瓷的介电常数会随着陶瓷所处的温度环境的变化而发生改变,测试结果表明在1MHz下该陶瓷的介电峰对应的温度低于室温。介电温谱中均无明显的Tc,介电峰无明显尖锐。
参照图1,图2,图3分别为以上实施例制备样品在1MHz下的介电常数随温度变化曲线。
参照图4,图5,图6分别为以上实施例制备样品在电场内储能性能。
上述对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种高储能密度的高熵陶瓷材料,其特征在于,该陶瓷材料的化学组成为(Bi0.2Na0.2K0.2Ba0.2Sr0.2)Ti0.8Nb0.2O3
2.根据权利要求1所述的高储能密度的高熵陶瓷材料,其特征在于,该陶瓷材料的烧结温度为1150~1200℃。
3.根据权利要求2所述的高储能密度的高熵陶瓷材料,其特征在于,该陶瓷材料的烧结温度为1150℃时,得到的陶瓷材料在380kV/cm电场下充电能量密度达到6.25J/cm3,可用储能密度达到3.47J/cm3,储能效率达到55.5%。
4.根据权利要求2所述的高储能密度的高熵陶瓷材料,其特征在于,该陶瓷材料的烧结温度为1175℃时,得到的陶瓷材料在340kV/cm电场下充电能量密度达到5.14J/cm3,可用储能密度达到4.53J/cm3,储能效率达到88.1%。
5.根据权利要求2所述的高储能密度的高熵陶瓷材料,其特征在于,该陶瓷材料的烧结温度为1200℃时,得到的陶瓷材料在160kV/cm电场下充电能量密度达到1.62J/cm3,可用储能密度达到1.31J/cm3,储能效率达到80.9%。
6.一种高储能密度的高熵陶瓷材料的制备方法,其特征在于,使用固相反应法制备得到相应的储能陶瓷,具体采用以下步骤:
选取纯度大于98%的Bi2O3粉体,Na2CO3粉体,K2CO3粉体,BaCO3粉体,SrCO3粉体,TiO2粉体,Nb2O5粉体为原料,按照通式(Bi0.2Na0.2K0.2Ba0.2Sr0.2)Ti0.8Nb0.2O3称取原料,并加入与粉体等量的无水乙醇,通过一次球磨工艺混合均匀,使粉体混合均匀形成浆料;
将上述浆料置于90℃下的恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
将粉料置于模具中预压成料块,将料块在密闭条件下于750℃下预烧,保温时间3-4h,得到预合成的陶瓷粉体;
将预合成的陶瓷料块在研钵中碾碎研磨后得到陶瓷粉体,向得到的粉体中加入等量的无水乙醇,进行二次球磨;
将得到的浆料在90℃下烘干,经造粒、过筛、模压成型得到陶瓷生胚;
将陶瓷坯体在600-650℃下进行排胶处理3-4h,将排胶后的陶瓷坯体进行烧结,烧结温度为1150~1200℃,升温速率3-4℃/min,保温时间2-4h,冷却到室温后得到高熵钙钛矿型高储能密度陶瓷。
7.根据权利要求6所述的高储能密度的高熵陶瓷材料的制备方法,其特征在于,一次球磨及二次球磨时采用无水乙醇和ZrO2球作为球磨介质,转速为225r/min,每隔半个小时调整一次运转方向,球磨时间为12h。
8.根据权利要求5所述的高储能密度的高熵陶瓷材料的制备方法,其特征在于,在造粒时使用浓度为8%的聚乙烯醇作为粘结剂掺入粉料中,掺入的粘结剂的质量是粉料质量的5%,掺入的蒸馏水的质量是粉料质量的2.5%,将粉料在研钵中混合均匀后置于模具中,压制成粉块。
9.如权利要求5所述的高储能密度的高熵陶瓷材料的制备方法,其特征在于,将生胚置于坩埚中排胶时,盖在坩埚上的盖子和坩埚之间留有缝隙;在烧结时采用密封烧结,在陶瓷生胚上倒置坩埚密封。
10.根据权利要求5所述的高储能密度的高熵陶瓷材料的制备方法,其特征在于,烧结时升温速率优选为4℃/min,保温时间为2h;
过筛时使用60目和140目筛子过筛,取60目和140目筛子中间层的粉料;
模压成型时的压强控制在200MPa。
CN202210096213.3A 2022-01-26 2022-01-26 一种高储能密度的高熵陶瓷材料及其制备方法 Active CN114621004B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210096213.3A CN114621004B (zh) 2022-01-26 2022-01-26 一种高储能密度的高熵陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210096213.3A CN114621004B (zh) 2022-01-26 2022-01-26 一种高储能密度的高熵陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114621004A true CN114621004A (zh) 2022-06-14
CN114621004B CN114621004B (zh) 2023-07-07

Family

ID=81898163

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210096213.3A Active CN114621004B (zh) 2022-01-26 2022-01-26 一种高储能密度的高熵陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114621004B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115180944A (zh) * 2022-07-11 2022-10-14 中国科学院上海硅酸盐研究所 一种充满型钨青铜结构高熵铁电陶瓷材料及其制备方法
CN116063074A (zh) * 2023-01-19 2023-05-05 同济大学 一种具有高储能密度的陶瓷材料及其制备方法和用途
CN116082034A (zh) * 2023-01-09 2023-05-09 国科大杭州高等研究院 一种高储能特性的钛酸铋钠基高熵陶瓷材料及其制备方法和应用

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203702A (ja) * 1994-02-08 1996-08-09 Teika Corp チタン酸バリウム系半導体磁器およびその製造方法
CN103482973A (zh) * 2013-09-10 2014-01-01 天津大学 无铅四元体系电致应变压电陶瓷材料及制备方法和产品
US8894765B1 (en) * 2009-11-13 2014-11-25 Trs Technologies, Inc. High polarization energy storage materials using oriented single crystals
CN104193333A (zh) * 2014-08-18 2014-12-10 曹静 一种(Bi0.46Na0.46Ba0.06La0.02)ZrxTi(1-x)O3反铁电陶瓷的制备方法
CN104710174A (zh) * 2015-03-10 2015-06-17 桂林电子科技大学 一种同时具备高压电性能与高储能密度无铅陶瓷及其制备方法
CN104891989A (zh) * 2015-05-14 2015-09-09 桂林电子科技大学 Srx(Bi0.47Na0.47Ba0.06)1-xMxTi1-xO3高储能密度陶瓷及其制备方法
CN109354492A (zh) * 2018-10-09 2019-02-19 中国科学院光电技术研究所 铋基无铅高储能密度陶瓷材料及其制备方法
CN110776311A (zh) * 2019-11-06 2020-02-11 常州大学 一种热压烧结制备钙钛矿型复合氧化物高熵陶瓷的方法
CN111039672A (zh) * 2020-01-08 2020-04-21 陕西科技大学 一种高功率密度的Sn掺杂高熵钙钛矿氧化物陶瓷材料及其制备方法
CN111792929A (zh) * 2020-06-03 2020-10-20 西安交通大学 一种使用施主-受主复合掺杂提高钛酸钡基陶瓷储能特性的方法
CN111875389A (zh) * 2020-08-13 2020-11-03 西安科技大学 一种无铅压电陶瓷性能调控的方法
CN112225559A (zh) * 2020-09-25 2021-01-15 陕西科技大学 一种高储能高效率的Zr掺杂高熵钙钛矿氧化物陶瓷材料、制备方法及应用
CN112341192A (zh) * 2020-11-20 2021-02-09 西安合容新能源科技有限公司 一种高储能密度钛酸铋钠基无铅介质材料及其制备方法
CN112960978A (zh) * 2021-02-02 2021-06-15 西北工业大学 一种A位高熵钙钛矿氧化物MeTiO3热电陶瓷及其制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203702A (ja) * 1994-02-08 1996-08-09 Teika Corp チタン酸バリウム系半導体磁器およびその製造方法
US8894765B1 (en) * 2009-11-13 2014-11-25 Trs Technologies, Inc. High polarization energy storage materials using oriented single crystals
CN103482973A (zh) * 2013-09-10 2014-01-01 天津大学 无铅四元体系电致应变压电陶瓷材料及制备方法和产品
CN104193333A (zh) * 2014-08-18 2014-12-10 曹静 一种(Bi0.46Na0.46Ba0.06La0.02)ZrxTi(1-x)O3反铁电陶瓷的制备方法
CN104710174A (zh) * 2015-03-10 2015-06-17 桂林电子科技大学 一种同时具备高压电性能与高储能密度无铅陶瓷及其制备方法
CN104891989A (zh) * 2015-05-14 2015-09-09 桂林电子科技大学 Srx(Bi0.47Na0.47Ba0.06)1-xMxTi1-xO3高储能密度陶瓷及其制备方法
CN109354492A (zh) * 2018-10-09 2019-02-19 中国科学院光电技术研究所 铋基无铅高储能密度陶瓷材料及其制备方法
CN110776311A (zh) * 2019-11-06 2020-02-11 常州大学 一种热压烧结制备钙钛矿型复合氧化物高熵陶瓷的方法
CN111039672A (zh) * 2020-01-08 2020-04-21 陕西科技大学 一种高功率密度的Sn掺杂高熵钙钛矿氧化物陶瓷材料及其制备方法
CN111792929A (zh) * 2020-06-03 2020-10-20 西安交通大学 一种使用施主-受主复合掺杂提高钛酸钡基陶瓷储能特性的方法
CN111875389A (zh) * 2020-08-13 2020-11-03 西安科技大学 一种无铅压电陶瓷性能调控的方法
CN112225559A (zh) * 2020-09-25 2021-01-15 陕西科技大学 一种高储能高效率的Zr掺杂高熵钙钛矿氧化物陶瓷材料、制备方法及应用
CN112341192A (zh) * 2020-11-20 2021-02-09 西安合容新能源科技有限公司 一种高储能密度钛酸铋钠基无铅介质材料及其制备方法
CN112960978A (zh) * 2021-02-02 2021-06-15 西北工业大学 一种A位高熵钙钛矿氧化物MeTiO3热电陶瓷及其制备方法

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
JIA LIU ET AL.: "Dielectric and energy storage properties of flash-sintered high-entropy (Bi0.2Na0.2K0.2Ba0.2Ca0.2)TiO3 ceramic", 《CERAMICS INTERNATIONAL》 *
JIAYI HE ET AL.: "Dielectric stability and energy-storage performance of BNT-based relaxor ferroelectrics through Nb5+ and its excess modification", 《ACS APPL. ELECTRON.MATER.》 *
PENG ZHAO ET AL.: "Aliovalent doping engineering for A- and B- sites with multiple regulatory mechanisms: A strategy to improve energy storage properties of Sr0.7Bi0.2TiO3-based lead-free relaxor ferroelectric ceramics", 《ACS APPL.MATER.INTERFACES》 *
RADHA YANAMANDRA ET AL.: "Enhanced energy storage density in lead free (Na0.5Bi0.48Eu0.02)Ti1-xNbxO3(x=0.00,0.01 & 0.02) ceramics", 《2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS》 *
RIZWAN AHMED MALIK ET AL.: "Thermal-stability of electric field-induced strain and energy storage density in Nb-doped BNKT-ST piezoceramics", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
SHAO-FENG DUAN ET AL.: "Phase structure,piezoelectric, ferroelectric, and electric-field-induced strain properties of Nb-modified 0.8Bi0.5Na0.5TiO3-0.2Sr0.85Bi0.1TiO3 ceramics", 《CERAMICS INTERNATIONAL》 *
WENTAO YANG ET AL.: "High energy storage density and efficiency in nanostructured (Bi0.2Na0.2K0.2La0.2Sr0.2)TiO3 high-entropy ceramics", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *
WENTAO YANG ET AL.: "The influences of lattice distortion on the antiferroelectric transition and relaxation of oxygen vacancies in high-entropy perovskites (Bi0.2Na0.2Ba0.2K0.2X0.2)TiO3 with X=Ca,Sr or La", 《SCRIPTA MATERIALIA》 *
YONGPING PU ET AL.: "Dielectric properties and electrocaloric effect of high-entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic", 《APPL.PHYS.LETT.》 *
ZHANG K ET AL.: "Excellent energy storage performance of paraelectric Ba0.4Sr0.6TiO3 based ceramics through induction of polar nano-regions", 《CERAMICS INTERNATIONAL》 *
卢东亮等: "改性对钛酸钡基陶瓷储能密度的影响", 《电源技术》 *
李伟;张兴祥;刘彩凤;唐国翌;: "储热调温纤维及织物的制备研究进展", 高分子材料科学与工程 *
贺宁;黄国辉;王剑;: "制冷参数测量仪的设计", 计算机测量与控制 *
郝俊杰 等: "无铅压电陶瓷材料制研究现状", 《硅酸盐学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115180944A (zh) * 2022-07-11 2022-10-14 中国科学院上海硅酸盐研究所 一种充满型钨青铜结构高熵铁电陶瓷材料及其制备方法
CN116082034A (zh) * 2023-01-09 2023-05-09 国科大杭州高等研究院 一种高储能特性的钛酸铋钠基高熵陶瓷材料及其制备方法和应用
CN116082034B (zh) * 2023-01-09 2023-11-10 国科大杭州高等研究院 一种高储能特性的钛酸铋钠基高熵陶瓷材料及其制备方法和应用
CN116063074A (zh) * 2023-01-19 2023-05-05 同济大学 一种具有高储能密度的陶瓷材料及其制备方法和用途
CN116063074B (zh) * 2023-01-19 2023-09-26 同济大学 一种具有高储能密度的陶瓷材料及其制备方法和用途

Also Published As

Publication number Publication date
CN114621004B (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
CN114621004B (zh) 一种高储能密度的高熵陶瓷材料及其制备方法
CN112174664B (zh) 一种高储能、高效率的铌酸钠基陶瓷材料及其制备方法
CN108751982B (zh) 一种无铅高储能密度陶瓷材料及其制备方法
CN108623300B (zh) 钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷及其制备方法
CN109180181B (zh) 一种无铅弛豫反铁电陶瓷储能材料及其制备方法
CN110451955B (zh) 钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷及其制备方法
CN111978082B (zh) 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法
CN106699170A (zh) 一种钛酸锶基无铅高储能密度高储能效率陶瓷材料及其制备方法
CN111320468B (zh) 一种掺杂型铁酸铋-钛酸钡无铅压电陶瓷材料的制备方法
CN113213929A (zh) 高储能效率及密度的铌酸钾钠基铁电陶瓷材料及制备方法
CN106915960A (zh) 一种无铅高储能密度和储能效率陶瓷材料及其制备方法
CN111484325A (zh) 一种钛酸锶钡基陶瓷材料及其制备方法和应用
CN112876247A (zh) 一种宽温度稳定性的高储能密度铌酸锶钠基钨青铜陶瓷及制备方法
CN114736016B (zh) 一种宽温度稳定性的高储能密度钛酸铋钾基钙钛矿陶瓷及制备方法
CN102674832A (zh) 一种钛酸钡基无铅含铋弛豫铁电陶瓷材料及制备方法
CN112521145B (zh) 钛酸锶钡基高储能密度和功率密度陶瓷及其制备方法
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
CN110282970B (zh) 一种二氧化锡掺杂钛酸钡基高储能密度陶瓷材料及其制备方法
CN109320236B (zh) 一种高储能密度和充放电性能的复合材料及其制备方法
CN111253151A (zh) 具有高储能密度和高功率密度的铁酸铋钛酸钡基陶瓷及制备方法
CN111217604A (zh) 具有高储能密度和效率的钛酸铋钠基电子陶瓷及制备方法
CN111825451A (zh) 稀土元素Tm掺杂的铌酸银反铁电陶瓷材料及其制备方法
CN106986629B (zh) 一种钛酸铋基铋层状结构铁电陶瓷靶材的制备方法
CN115368132A (zh) 一种钛酸钡基陶瓷材料及制备方法
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant