CN114594185B - 基于LDHs的水产品中喹诺酮类药物残留的检测方法与用途 - Google Patents

基于LDHs的水产品中喹诺酮类药物残留的检测方法与用途 Download PDF

Info

Publication number
CN114594185B
CN114594185B CN202210244853.4A CN202210244853A CN114594185B CN 114594185 B CN114594185 B CN 114594185B CN 202210244853 A CN202210244853 A CN 202210244853A CN 114594185 B CN114594185 B CN 114594185B
Authority
CN
China
Prior art keywords
solution
quinolone
standard
supernatant
vortex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210244853.4A
Other languages
English (en)
Other versions
CN114594185A (zh
Inventor
范广宇
乔柱
梁振纲
王毅谦
孟祥龙
徐文科
王恒
周毅
王静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lianyungang Customs Comprehensive Technical Center
Original Assignee
Lianyungang Customs Comprehensive Technical Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lianyungang Customs Comprehensive Technical Center filed Critical Lianyungang Customs Comprehensive Technical Center
Priority to CN202210244853.4A priority Critical patent/CN114594185B/zh
Publication of CN114594185A publication Critical patent/CN114594185A/zh
Application granted granted Critical
Publication of CN114594185B publication Critical patent/CN114594185B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

本发明是基于LDHs的水产品中喹诺酮类药物残留的检测方法,称取粉碎均匀的水产品样品于塑料离心管中,取内标混合标准溶液加入样品中,加入乙腈,涡旋混合均匀,超声提取,加入无水硫酸钠,旋涡混合均匀,离心,取上清液,加入层状双金属氢氧化物Mg‑Al‑LDH,涡旋混匀后静置,弃去上清液,吸附材料加入饱和氯化钠溶液洗脱,乙腈反萃取,离心,上清液过滤膜后上液相色谱串联质谱仪测定。本发明还公开了层状双金属氢氧化物的新用途。本发明该方法利用LDHs高效的吸附特性,建立简单、快速、高灵敏度来检测水产品中喹诺酮类残留量。

Description

基于LDHs的水产品中喹诺酮类药物残留的检测方法与用途
技术领域
本发明涉及一种水产品中残留的检测方法,特别是一种基于LDHs的水产品中喹诺酮类药物残留的检测方法。属检测技术领域。本发明还涉及层状双金属氢氧化物的新用途。
背景技术
层状双金属氢氧化物(Layered double hydroxides,LDHs),是指由数层带正电荷的层与存在其中间平衡电荷的阴离子组成的特殊层状材料。该类化合物的化学通式一般可以表示为
Figure BDA0003544189480000011
LDHs因其特殊的结构,所以表现出很多特有的物理、化学性质:酸碱双功能性、记忆效应、阴离子交换能力和热稳定性。近年来LDHs在医药、生物、催化、电化学和水处理领域得到广泛的应用。LDHs可用来当作吸附剂,可以高效吸附目标物,很多研究者制备了不同元素组成和结构的LDHs用于吸附无机离子、染料、农药和抗生素等。但目前还未见将LDHs用于水产品中喹诺酮类药物残留检测前处理的文献报道。
随着集约化养殖模式的发展,大量的抗生素被用于养殖业,但抗生素在养殖业中的滥用能诱导动物产生抗药基因,并且绝大多数口服抗生素未经动物吸收或者代谢,直接以原形被排出,因此抗生素及抗药基因可能随之迁移至土壤及周围水体中,最终通过作物吸收和累积进入食物链,对动物和人体构成潜在威胁。喹诺酮(quinolone)是一类人工合成的含4-喹诺酮基本结构、对细菌DNA螺旋酶具有选择性抑制的抗菌剂。喹诺酮类抗菌药物与其他抗生素相比具有抗菌谱广、抗菌力强、安全性高、价格低廉、毒副作用低等特性,使得喹诺酮类抗生素被长期广泛地应用于水生动物疾病的防治。随着对喹诺酮类抗生素在环境中的残留和风险评价研究的不断深入,***粮农组织、欧盟、美国、日本等国家和组织都对养殖业中使用喹诺酮类药物有非常严格的限制,不少喹诺酮类也被我国归为食品动物生产过程中的禁用药物。因此,建立简单、高效、高灵敏度的水产品喹诺酮类检测方法十分必要。
由于水产品基质较为复杂,不仅含有大量的蛋白质和脂肪,还含有许多碳水化合物以及色素等杂质,处理不当将造成结果不准确、仪器污染等问题。同时由于水产品中喹诺酮类药物通常残留水平低,对于禁用药物限量要求要低,需要高选择性、高灵敏度的检测方法。在喹诺酮类药物分析中目前常用的前处理方法主要有液液萃取法、固相萃取法、加速溶剂萃取法、基质分散固相萃取法和分散固相萃取法等。
发明内容
本发明所要解决的技术问题是针对现有技术的不足,提供一种用基于层状双金属氢氧化物基质分散固相萃取法应用于水产品中喹诺酮类药物残留量的检测方法,该方法利用LDHs高效的吸附特性,建立简单、快速、高灵敏度来检测水产品中喹诺酮类残留量。
本发明所要解决的另一个技术问题是提供层状双金属氢氧化物用于水产品中喹诺酮类药物残留量检测中作吸附材料的用途。
本发明所要解决的技术问题是通过以下的技术方案来实现的。本发明是基于LDHs的水产品中喹诺酮类药物残留的检测方法,其特征在于,其步骤如下:称取粉碎均匀的水产品样品5.00g于50mL塑料离心管中,从1mg/L的内标混合标准溶液中取25μL加入样品中,加入乙腈10.0mL,涡旋混合均匀,超声提取10min,加入5g无水硫酸钠,旋涡混合均匀,3500r/min离心5min,取5mL上清液,加入10mg层状双金属氢氧化物Mg-Al-LDH,涡旋混匀后静置2min,弃去上清液,吸附材料加入0.1mL饱和氯化钠溶液洗脱,1mL乙腈反萃取,3500r/min离心,上清液过0.22μm滤膜后上液相色谱串联质谱仪测定;
所述喹诺酮类药物残留选自下述中的一种或多种:
恩诺沙星、麻保沙星、奥比沙星、诺氟沙星、氟罗沙星、培氟沙星、氧氟沙星、司帕沙星、丹诺沙星、依诺沙星、萘啶酸、氟甲喹、双氟沙星、沙拉沙星、环丙沙星、洛美沙星;
标准溶液配制方法如下:
准确称取适量上述喹诺酮类药物标准品,用甲醇溶解定容配制成100mg/L的标准储备液,制得单标储备液;
分别取一定量的单标储备液用乙腈稀释成1mg/L的16种喹诺酮类药物混合标准溶液和1mg/L的5种氘代内标混合标准溶液,使用之前再稀释至所需浓度;5种氘代为环丙沙星-D8、恩诺沙星-D5、诺氟沙星-D5、培氟沙星-D5和氧氟沙星-D3
本发明所述的基于LDHs的水产品中喹诺酮类药物残留的检测方法,其进一步优选的技术方案是:层状双金属氢氧化物Mg-Al-LDH的制备方法如下:
溶解适量Mg(NO3)2·6H2O和Al(NO3)3·9H2O于100mL超纯水中,配制成含75mM Mg(NO3)2和25mM Al(NO3)3的混合盐溶液a;
配制含1mol/L NaOH和0.3mol/L Na2CO3的混合碱性溶液b 200mL;
在强磁力搅拌下将b溶液以速度1滴/s滴加到a溶液中,滴加完继续搅拌20min,然后超声处理10min;
在强磁力搅拌下90℃水浴老化3h;然后将得到的白色沉淀过滤,并用超纯水反复清洗直到pH值至7;最后将获得的沉淀在真空干燥箱中60℃真空干燥过夜,所得粉末研磨过150目筛即得Mg-Al-LDH。
本发明所述的基于LDHs的水产品中喹诺酮类药物残留的检测方法,其进一步优选的技术方案是:液相色谱条件为:
ACE UltraCore 2.5Super C18柱,100mm×2.1mm,2.5μm;柱温40℃;流速0.3mL/min;进样体积5μL;含V/V0.1%甲酸溶液A和甲醇B作为流动相;梯度洗脱程序如下:
Figure BDA0003544189480000041
本发明所述的基于LDHs的水产品中喹诺酮类药物残留的检测方法,其进一步优选的技术方案是:质谱条件为:
电喷雾离子源ESI;正离子扫描、多反应监测MRM模式;去溶剂温度TEM为500℃;电喷雾电压IS为5.5kV;入口电压EP和碰撞室出口电压CXP分别为10V、6V;所用气体均为高纯氮气;碰撞气CAD、气帘气CUR、雾化气GS1、辅助气GS2的压力分别为41.4kPa、207kPa、345kPa、345kPa;16种喹诺酮类药物和5种氘代内标物的质谱参数如下:
Figure BDA0003544189480000042
Figure BDA0003544189480000051
与现有技术相比,本发明具有以下有益效果:
本发明方法是基于层状双金属氢氧化物的分散固相萃取测定水产品中16种喹诺酮类残留量的方法。方法仅用10mg Mg-Al-LDH即可将目标物吸附富集,有机溶剂用量小,方法简单、快速灵敏度高。将该方法应用于多种水产品样品的检测,其中有多批次多品种样品检出喹诺酮类药物残留,恩诺沙星的检出率依然较高,在食品检验中有良好的应用前景。
附图说明
图1为不同方法制备Mg-Al-LDH的X射线衍射对比图
图2为Mg-Al-LDH晶面数据图;
图3为Mg-Al-LDH的SEM图;
图4为16种喹诺酮类药物的提取离子色谱图;
图5为不同提取溶剂对提取效果的影响图;
图6、图7为吸附剂用量对吸附效率的影响图;
图8、图9为吸附时间对吸附效率的影响图;
图10为洗脱剂体积对回收率的影响图。
具体实施方式
为了进一步了解本发明的发明内容、发明特点及功效,兹列举以下实施例,并详细说明,但本发明不限于这些实施例。
实施例1,基于LDHs的水产品中喹诺酮类药物残留的检测方法实验:
1.1仪器与试剂
Qtrap 4500液相色谱-三重四极杆复合线性离子阱质谱仪,配备电喷雾离子源,Analyst工作站(美国AB SCIEX公司);EmpyreanX-射线衍射仪(荷兰PANalytical公司);QUANTA FEG 450扫描电子显微镜(美国FEI公司);XW-80A型漩涡混合器(上海青浦沪西仪器厂);XS 205分析天平(瑞士Mettler公司);KH-800KDB型高功率数控超声波(昆山禾创超声仪器有限公司);A10 Milli-Q超纯水机(美国Millipore公司);TDL-40B型离心机(上海安亭科学仪器厂);DZF-6020真空干燥箱(上海精宏实验设备有限公司);79-1磁力加热搅拌器(上海和欣科技设备有限公司);HWS-12电热恒温水浴锅(上海一恒科学仪器有限公司)。
恩诺沙星(enrofloxacin)、麻保沙星(marbofloxacin)、奥比沙星(orbifloxacin)、诺氟沙星(norfloxacin)、氟罗沙星(fleroxacin)、培氟沙星(pefloxacin)、氧氟沙星(ofloxacin)、司帕沙星(sparfloxacin)、丹诺沙星(danofloxacin)、依诺沙星(enoxacin)、萘啶酸(nalidixic acid)、氟甲喹(flumequine)、双氟沙星(difloxacin)、沙拉沙星(sarafloxacin)、环丙沙星(ciprofloxacin)、洛美沙星(lomefloxacin)购自德国Dr.Ehrenstorfer公司(纯度>92%);环丙沙星-D8(ciprofloxacin-D8)、恩诺沙星-D5(enrofloxacin-D5)、诺氟沙星-D5(norfloxacin-D5)、培氟沙星-D5(pefloxacin-D5)和氧氟沙星-D3(ofloxacin-D3)五种氘代内标购自德国Witega公司(纯度>99%);甲醇和乙腈均色谱纯(Fisher公司);六水合硝酸镁、九水合硝酸铝、六水合硝酸镍、无水碳酸钠、氢氧化钠、氯化钠、无水硫酸钠、甲酸和乙酸为优级纯(中国国药试剂公司);实验用水为自制超纯水;样品购自本地市场。
1.2标准溶液配制
单标储备液:准确称取适量上述标准品,用甲醇溶解定容配制成100mg/L的标准储备液。
混合标准溶液:分别取一定量的单标储备液用乙腈稀释成1mg/L的16种喹诺酮类混合标准溶液和1mg/L的5种氘代内标混合标准溶液,使用之前再稀释至所需浓度。
1.3层状双金属氢氧化物的制备
溶解适量Mg(NO3)2·6H2O和Al(NO3)3·9H2O于100mL超纯水中,配制成含75mM Mg(NO3)2和25mM Al(NO3)3的混合盐溶液A。配制含1mol/L NaOH和0.3mol/L Na2CO3的混合碱性溶液B 200mL。在强磁力搅拌下将B溶液以速度1滴/s滴加到A溶液中,滴加完继续搅拌20min,然后超声处理10min。在强磁力搅拌下90℃水浴老化3h。然后将得到的白色沉淀过滤,并用超纯水反复清洗直到pH值接近7。最后将获得的沉淀在真空干燥箱中60℃真空干燥过夜,所得粉末研磨过150目筛即得Mg-Al-LDH。
1.4液相色谱条件
ACE UltraCore 2.5Super C18柱(100mm×2.1mm,2.5μm);柱温40℃;流速0.3mL/min;进样体积5μL;含0.1%(V/V)甲酸的水溶液(A)和甲醇(B)作为流动相;梯度洗脱程序见表1。
表1梯度洗脱程序
Figure BDA0003544189480000081
1.5质谱条件
电喷雾离子源(ESI);正离子扫描、多反应监测(MRM)模式;去溶剂温度(TEM)为500℃;电喷雾电压(IS)为5.5kV;入口电压(EP)和碰撞室出口电压(CXP)分别为10V、6V;所用气体均为高纯氮气;碰撞气(CAD)、气帘气(CUR)、雾化气(GS1)、辅助气(GS2)的压力分别为41.4kPa、207kPa、345kPa、345kPa。16种喹诺酮类药物和5种氘代内标物的质谱参数见表2。
表2 16种喹诺酮类药物及5种内标物的质谱参数
Figure BDA0003544189480000091
Figure BDA0003544189480000101
注:*定量离子
1.6样品处理方法
称取粉碎均匀的水产品样品5.00g于50mL塑料离心管中,从1mg/L的内标混合标准溶液中取25μL加入样品中,加入乙腈10.0mL,涡旋混合均匀,超声提取10min,加入5g无水硫酸钠,旋涡混合均匀,3500r/min离心5min,取5mL上清液,加入10mg Mg-Al-LDH,涡旋混匀后静置2min,弃去上清液,吸附材料加入0.1mL饱和氯化钠溶液洗脱,1mL乙腈反萃取,3500r/min离心,上清液过0.22μm滤膜后上液相色谱串联质谱仪测定。
2结果与讨论
2.1材料的选择、制备与表征
根据参考文献报道,已有层状双金属氢氧化物用于水中喹诺酮类的吸附和萃取,所用到的LDHs为Mg-Al-LDH和Ni-Al-LDH,因此选择这两种LDHs制备试验。
LDHs的制备方法有共沉淀法、水热法、溶胶凝胶法等,共沉淀法操作简单,不需要特殊的设备,是常用的层状双金属氢氧化物制备方法,本研究选择用常规共沉淀法和超声辅助共沉淀法制备层状双金属氢氧化物,制备了Mg:Al 3:1的Mg-Al-LDH和Ni:Al 3:1的Ni-Al-LDH。通过X射线衍射(X-ray diffraction,XRD)数据对比,发现采用超声辅助共沉淀法制备的材料结晶度较高,强度高、杂峰少;同时Mg-Al-LDH结晶度要好于Ni-Al-LDH,所以,后续采用了超声辅助共沉淀法制备Mg-Al-LDH实验。
Mg-Al-LDH的XRD和扫描电镜(SEM)进行了表征,由图1-2可以看出,各衍射峰与标准卡片PDF#00-054-1030相吻合,前三强峰分别是003、006和112晶面。取材料进行了电子扫描电镜,可以看出其层状结构,见图3。
2.2液相色谱条件选择
由于喹诺酮类药物属于酸碱两性化合物并且在水溶液中以离子形式存在,所以考虑在流动相组成中加入酸性溶液成分,根据文献方法考察了液相流动相的影响,分别对有机相甲醇和乙腈,水相甲酸溶液和乙酸铵溶液进行了对比。发现甲醇和乙腈两种有机相差异不大,色谱峰型和响应值、信噪比均近似,最终选择了甲醇作为有机相。对比乙酸铵溶液和0.1%(V/V)甲酸水溶液作为流动相时喹诺酮类药物色谱行为,发现乙酸铵溶液作为流动相时色谱峰拖尾明显,且信噪比较差,因此水相流动相选择0.1%(V/V)甲酸水溶液,最终选择甲醇-0.1%(V/V)甲酸水溶液为流动相进行分离。色谱柱选用ACE UltraCore 2.5SuperC18柱(100mm×2.1mm,2.5μm),梯度洗脱。在优化条件下16种喹诺酮类药物的提取离子色谱图见图4。
2.3质谱条件选择
采用直接进样方式注入0.1mg/L的16种喹诺酮类药物的混合标准溶液和0.2mg/L的5种氘代喹诺酮类内标混合标准溶液,ESI正离子模式下进行一级质谱分析,确定每种药物的母离子[M+H]+,再对母离子进行二级质谱扫描,选取两个相对丰度较高的碎片离子分别作为定量和定性离子,优化去簇电压和碰撞电压,优化后参数见表2。
2.4前处理方法选择
水产品中喹诺酮类残留检测常用的前处理方法中分散固相萃取法因为操作简单、无需特殊设备、有机试剂用量少,在食品药物残留检测中的应用越来越多。本研究基于新型层状双金属氢氧化物,采用分散固相萃取法富集待测物。
2.5提取条件选择
喹诺酮类检测最常用的提取溶剂为乙腈及其酸化溶液,因此比较了乙腈、1%(V/V)甲酸乙腈和1%(V/V)乙酸乙腈作为提取溶剂时对提取效果的影响,结果如图5。乙腈的提取效率最佳,1%乙酸乙腈和1%甲酸乙腈的回收率则明显下降,这可能是酸性条件影响富集材料的效果,并且酸性越强各目标物的提取效率下降越明显,因此选择乙腈作为提取剂。
2.6吸附材料用量的选择
考察了LDH吸附材料的使用量,分别采用2、4、6、8、10和15mg的材料对添加了25μg/kg的阴性鲽鱼样品进行吸附性能试验,结果详见图6-7。随着材料用量的增加,喹诺酮类药物的峰面积逐渐增加,因为吸附剂用量越大,其吸附量也越大,故峰面积也就越大,但当吸附剂用量达到10mg之后,各目标化合物的峰面积不再明显变化,因此选择10mg材料进行后续实验。
2.7吸附时间的选择
在提取液中加入吸附材料涡旋混合后,分别静置0、0.5、1、1.5、2和5min,考察吸附时间对吸附效率的影响,结果见图8-9,随着时间增加,喹诺酮类药物的峰面积逐渐增加,到2min时基本趋于稳定,随着吸附时间延长各目标化合物物的峰面积提高并不明显,表明吸附剂在吸附2min时即可达到最佳吸附效果。
2.8洗脱溶剂的选择
洗脱液是从吸附材料上将待测物解吸的关键因素,考虑该材料具有层状双金属氢氧化物及插层碳酸根离子的特殊结构,需要采用水相洗脱,然后用有机相对水相进行反萃取。在水相中加入无机盐可以增加水相的离子强度,可以降低目标物在水相中的溶解度,并使水相与有机相之间出现明显分离。所以选用饱和氯化钠溶液进行解吸,然后再加入1mL乙腈进行反萃取,实验分别对比了0.1、0.2、0.5和1mL饱和氯化钠溶液的洗脱效率,结果见图10。随着饱和氯化钠溶液用量的增加,各目标物的回收率逐渐下降,主要是因为反萃取过程中目标物在两相之间存在一定的分配系数,所以在乙腈体积一定的情况下,饱和氯化钠溶液的体积越大,反萃取就会越难。最终选用0.1mL饱和氯化钠溶液作为洗脱溶剂,然后1mL乙腈反萃取。
2.9方法学实验
2.9.1标准曲线、线性关系、检出限和定量限
取标准工作液配制0.25、1.25、2.5、12.5、25μg/L的混合标准系列溶液,内标的质量浓度均为2.5μg/L。上机测试,以目标物的质量浓度(X)为横坐标,定量离子对与对应的内标峰面积之比(Y)为纵坐标绘制标准曲线。结果显示,16种喹诺酮类化合物在0.25-25μg/L的浓度范围内线性良好,相关系数均大于0.995。以信噪比≥3确定方法的检出限(LOD),以信噪比≥10确定方法的定量限(LOQ),具体数值见表3。
表3 16种喹诺酮类药物的线性范围、回归方程、相关系数、检出限和定量限
Figure BDA0003544189480000131
Figure BDA0003544189480000141
2.9.2回收率和精密度
选择阴性的石鲽鱼样品,加标水平分别为0.5,1和5μg/kg,每个水平重复测定6次,按照3.2.5的方法处理,计算添加回收率和精密度,除了萘啶酸和氟甲喹的回收率略低(61.4%~67.4%)以外,其余14种喹诺酮类药物的平均添加回收率为77.3%~99.0%,平均相对标准偏差为2.3~15.3%,方法的回收率和精密度结果见表4。
表4 16种喹诺酮类药物的回收率和精密度(n=6)
Figure BDA0003544189480000142
Figure BDA0003544189480000151
2.10实际样品测定
将本方法应用于30批次水产样品的检测,其中包括泥鳅12批次、大闸蟹2批次,小黄鱼3批次、星斑川鲽4批次、毛绀2批次、对虾2批次、文蛤3批次和多宝鱼2批次,其中检出恩诺沙星6批次,环丙沙星4批次,氧氟沙星1批次高于方法定量限,具体含量见表5,其它样品未检出。结果说明水产品养殖过程中喹诺酮类药物使用依然较多,在1个批次的多宝鱼中不仅检出了农业部停止使用的氧氟沙星,而且恩诺沙星的残留也超过了国家规定的最大残留限量,风险较大。同时韩国要求鱼类和甲壳类中氧氟沙星不得检出,并且对水产品中氧氟沙星的控制限低至0.1μg/kg,对恩诺沙星和环丙沙星的限量要求为100μg/kg。
表5样品的检测结果
Figure BDA0003544189480000161
注:ND(not detected)表示未检出。
3结论
本研究建立了一种基于层状双金属氢氧化物的分散固相萃取测定水产品中16种喹诺酮类残留量的方法。方法仅用10mgMg-Al-LDH即可将目标物吸附富集,方法简单、快速灵敏度高。将该方法应用于多种水产品样品的检测,其中有多批次多品种样品检出喹诺酮类药物残留,恩诺沙星的检出率依然较高。并且随着层状双金属氢氧化物制备和应用技术研究的深入,其将在食品检验中有良好的应用前景。

Claims (1)

1.基于LDHs的水产品中喹诺酮类药物残留的检测方法,其特征在于,其步骤如下:称取粉碎均匀的水产品样品5.00g于50mL塑料离心管中,从1mg/L的内标混合标准溶液中取25μL加入样品中,加入乙腈10.0mL,涡旋混合均匀,超声提取10min,加入5g无水硫酸钠,旋涡混合均匀,3500r/min离心5min,取5mL上清液,加入10mg层状双金属氢氧化物Mg-Al-LDH,涡旋混匀后静置2min,弃去上清液,吸附材料加入0.1mL饱和氯化钠溶液洗脱,1mL乙腈反萃取,3500r/min离心,上清液过0.22μm滤膜后上液相色谱串联质谱仪测定;
所述喹诺酮类药物为:
恩诺沙星、麻保沙星、奥比沙星、诺氟沙星、氟罗沙星、培氟沙星、氧氟沙星、司帕沙星、丹诺沙星、依诺沙星、萘啶酸、氟甲喹、双氟沙星、沙拉沙星、环丙沙星和洛美沙星;
标准溶液配制方法如下:
准确称取适量上述喹诺酮类药物标准品,用甲醇溶解定容配制成100mg/L的标准储备液,制得单标储备液;
分别取一定量的单标储备液用乙腈稀释成1mg/L的16种喹诺酮类药物混合标准溶液和1mg/L的5种氘代内标混合标准溶液,使用之前再稀释至所需浓度;5种氘代内标为环丙沙星-D8、恩诺沙星-D5、诺氟沙星-D5、培氟沙星-D5和氧氟沙星-D3
层状双金属氢氧化物Mg-Al-LDH的制备方法如下:
溶解适量Mg(NO3)2·6H2O和Al(NO3)3·9H2O于100mL超纯水中,配制成含75mMMg(NO3)2和25mM Al(NO3)3的混合盐溶液a;
配制含1mol/L NaOH和0.3mol/L Na2CO3的混合碱性溶液b 200mL;
在强磁力搅拌下将b溶液以速度1滴/s滴加到a溶液中,滴加完继续搅拌20min,然后超声处理10min;
在强磁力搅拌下90℃水浴老化3h;然后将得到的白色沉淀过滤,并用超纯水反复清洗直到pH值至7;最后将获得的沉淀在真空干燥箱中60℃真空干燥过夜,所得粉末研磨过150目筛即得Mg-Al-LDH;
液相色谱条件为:
ACE UltraCore 2.5Super C18柱,100mm×2.1mm,2.5μm;柱温40℃;流速0.3mL/min;进样体积5μL;含V/V 0.1%甲酸溶液A和甲醇B作为流动相;梯度洗脱程序如下:
Figure FDA0004241214830000011
质谱条件为:
电喷雾离子源ESI;正离子扫描、多反应监测MRM模式;去溶剂温度TEM为500℃;电喷雾电压IS为5.5kV;入口电压EP和碰撞室出口电压CXP分别为10V、6V;所用气体均为高纯氮气;碰撞气CAD、气帘气CUR、雾化气GS1、辅助气GS2的压力分别为41.4kPa、207kPa、345kPa、345kPa;16种喹诺酮类药物和5种氘代内标物的质谱参数如下:
Figure FDA0004241214830000021
Figure FDA0004241214830000031
CN202210244853.4A 2022-03-13 2022-03-13 基于LDHs的水产品中喹诺酮类药物残留的检测方法与用途 Active CN114594185B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210244853.4A CN114594185B (zh) 2022-03-13 2022-03-13 基于LDHs的水产品中喹诺酮类药物残留的检测方法与用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210244853.4A CN114594185B (zh) 2022-03-13 2022-03-13 基于LDHs的水产品中喹诺酮类药物残留的检测方法与用途

Publications (2)

Publication Number Publication Date
CN114594185A CN114594185A (zh) 2022-06-07
CN114594185B true CN114594185B (zh) 2023-07-04

Family

ID=81817145

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210244853.4A Active CN114594185B (zh) 2022-03-13 2022-03-13 基于LDHs的水产品中喹诺酮类药物残留的检测方法与用途

Country Status (1)

Country Link
CN (1) CN114594185B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101315351B (zh) * 2008-06-26 2011-01-05 江南大学 一种同时检测19种喹诺酮类药物的hplc-esi-ms/ms测定方法
DE102013018260A1 (de) * 2013-10-30 2015-04-30 Sartorius Stedim Biotech Gmbh Integritäts- und Funktionaltitätstest für adsorptive Tiefenfilterschichten mit anorganischem Schichtdoppelhydroxid
CN109991337B (zh) * 2019-04-30 2022-03-18 武汉海关技术中心 同时检测中华绒螯蟹蟹黄中四类药物及其代谢物的方法
CN112162052A (zh) * 2020-11-06 2021-01-01 深圳市格物正源质量标准***有限公司 一种水产品中兽药多残留的测定方法
CN113289577B (zh) * 2021-05-01 2022-09-06 宁夏大学 抗生素固相萃取材料的制备方法及其应用

Also Published As

Publication number Publication date
CN114594185A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
Fang et al. Simultaneous determination of arsenic and mercury species in rice by ion-pairing reversed phase chromatography with inductively coupled plasma mass spectrometry
CN106706829B (zh) 免疫亲和净化-液相色谱串联质谱测定贝类中腹泻性贝类毒素的方法
Hu et al. Development of a pH-dependent homogeneous liquid-liquid extraction by cold-induced phase separation in acetonitrile/water mixtures for determination of quinolone residues in animal-derived foods
He et al. Facile synthesis of boronic acid-functionalized magnetic metal–organic frameworks for selective extraction and quantification of catecholamines in rat plasma
Viana de Carvalho et al. Two‐dimensional coordination polymer matrix for solid‐phase extraction of pesticide residues from plant Cordia salicifolia
WO2005111062A1 (de) Verfahren und kit zur isolierung phosphorylierter peptide
CN114594185B (zh) 基于LDHs的水产品中喹诺酮类药物残留的检测方法与用途
CN109908879B (zh) 一种检测四环素类抗生素的方法
CN105954404A (zh) 采用uio-66-nh2材料测定血清中唾液酸含量的方法
CN109212108B (zh) 一种同时测定稻米和大豆中三种痕量喹啉类除草剂的气相色谱-质谱联用法
CN108132309B (zh) 一种测定铁皮石斛中噻菌铜残留量的分析方法
CN114354805B (zh) 一种基于mof的spme-dllme-hplc-ms检测食品中杀虫剂的方法和应用
Mu et al. Development and evaluation of a semi-automatic single-step clean-up apparatus for rapid analysis of 18 antibiotics in fish samples
CN114062584B (zh) 一种检测甲氧基丙烯酸酯类杀菌剂的方法及其试剂盒和应用
CN111474279B (zh) 检测大环内酯抗生素化合物的方法和试剂盒
Chen et al. High‐throughput 96‐well solid‐phase extraction for preparation of tetracycline followed by liquid chromatography and mass spectrometry analysis
CN110161169B (zh) 一种水环境中多种药物活性物质的快速检测方法
CN107037139B (zh) 免疫亲和柱净化-超高效液相色谱-串联质谱检测鱼虾中3-甲基-喹噁啉-2-羧酸的方法
Howe et al. Column chromatography and verification of phytosiderophores by phenylisothiocyanate derivatization and UV detection
CN113075313B (zh) 一种测定环境水体和鱼类中的喹诺酮类药物的方法
CN111474278A (zh) 检测大环内酯类化合物的代谢物的方法和试剂盒
CN115047108B (zh) 一种羊肉中抗生素药物残留的快速高通量筛查方法
CN114019042B (zh) 基于石墨烯的黄颡鱼蛋白酶抑制剂含量测定方法及装置
CN114720570B (zh) 一种检测鱼肉中8种***的方法
CN109580808A (zh) 一种QuEChERS-LC-MS/MS同时测定卷烟烟气中10种芳香胺的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant