CN114561125A - 一种可生物降解淀粉基薄膜材料的制备方法 - Google Patents

一种可生物降解淀粉基薄膜材料的制备方法 Download PDF

Info

Publication number
CN114561125A
CN114561125A CN202210119457.9A CN202210119457A CN114561125A CN 114561125 A CN114561125 A CN 114561125A CN 202210119457 A CN202210119457 A CN 202210119457A CN 114561125 A CN114561125 A CN 114561125A
Authority
CN
China
Prior art keywords
water
starch
based film
mass fraction
dissolving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210119457.9A
Other languages
English (en)
Inventor
高书燕
李家栋
刘旭坡
张翠翠
栾自昊
杨天芳
张昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN202210119457.9A priority Critical patent/CN114561125A/zh
Publication of CN114561125A publication Critical patent/CN114561125A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D103/00Coating compositions based on starch, amylose or amylopectin or on their derivatives or degradation products
    • C09D103/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明公开了一种可生物降解淀粉基薄膜材料的制备方法,将马铃薯淀粉和水搅拌分散,静置后烘干并磨成粉末得到物料A;将蒙脱土K‑10分散在水中得到物料B;将柠檬酸溶解在水中得到物料C;将D‑山梨醇溶解在水中得到物料D;在95℃油浴条件下,将聚乙烯醇溶解在水中得到物料E;将物料A、物料B、物料C、物料D和物料E混合,于80~120℃搅拌混合均匀得到物料F;将物料F涂覆在聚四氟乙烯板上并干燥得到目标产物可生物降解淀粉基薄膜。本发明制备的可生物降解淀粉基薄膜材料抗拉强度可达15‑40MPa,接触角高达83.71°,疏水性能优良,因此该薄膜材料在可降解塑料领域具有潜在应用前景。

Description

一种可生物降解淀粉基薄膜材料的制备方法
技术领域
本发明属于可生物降解薄膜材料的制备技术领域,具体涉及一种可生物降解淀粉基薄膜材料的制备方法。
背景技术
环境污染和化石能源枯竭日趋严重,引起了人们对利用多糖和蛋白质等可再生聚合物生产可生物降解材料的兴趣。其中,淀粉是地球上最丰富的可再生生物材料之一,由于其低成本、易于裁剪、生物相容性高、来源广泛、可再生等独特优势,被认为是最有前途代替石油基材料的可生物降解天然聚合物。近年来,淀粉基材料的应用倍受关注,但是天然淀粉存在大量的亲水羟基,使得淀粉很容易被水分子侵蚀,而淀粉的高亲水性通常会降低其力学性能和尺寸稳定性。同时,由于淀粉分子内氢键的相互作用,淀粉基材料的机械性能较差。因此,淀粉基材料的进一步加工与应用变得相对困难。为了加快淀粉基材料的应用,急需开发力学性能优良且疏水性能较好的可生物降解淀粉基材料。
淀粉与其它可降解生物材料共混是提高淀粉基材料性能的有效方法,在可与淀粉产生协同效果的材料中,聚乙烯醇(PVA)是一种成本相对较低、生物相容性较好、无毒、加工方便和水渗透性高的可生物降解材料,是改善淀粉材料性质的优良选择。PVA与淀粉进行共混,能极大程度改善热塑性淀粉的机械性能,且不改变淀粉材料的可生物降解性能。天然矿物材料因其能提升淀粉基材料的力学性能受到研究者的青睐,其中蒙脱土因其较高的粘性模量而得到广泛研究。本发明将蒙脱土作为填料加入到淀粉/PVA共混物中,借助蒙脱土的独特层状结构,在淀粉/PVA共混物中作为插层,有效提升淀粉/PVA共混物的机械性能,在可降解塑料领域具有潜在的应用前景,然而目前尚没有该方面的相关文献记载。
发明内容
本发明解决的技术问题是提供了一种工艺简单且成本相对低廉的可生物降解淀粉基薄膜材料的制备方法,该方法利用淀粉和PVA作为淀粉薄膜的主要材料,利用蒙脱土作为薄膜的增强材料,将D-山梨醇作为淀粉的塑化剂,于80~120℃对混合物料进行加热并机械搅拌促进物料混合均匀,再涂覆在聚四氟乙烯板上制得可生物降解淀粉基薄膜材料。本发明制备的可生物降解淀粉基薄膜材料拉伸性能良好且疏水性显著提高。
本发明为解决上述技术问题采用如下技术方案,一种可生物降解淀粉基薄膜材料的制备方法,其特征在于具体过程为:
步骤S1:将马铃薯淀粉和水于10~90℃搅拌分散,静置1h,然后于50~90℃烘干并磨成粉末得到物料A;
步骤S2:将蒙脱土K-10在水中超声均匀分散1.5h得到物料B,将柠檬酸以10%~15%的质量分数溶解在水中得到物料C,将D-山梨醇以5%~10%的质量分数溶解在水中得到物料D;
步骤S3:在95℃油浴条件下,将聚乙烯醇以10%~20%的质量分数溶解在水中得到物料E;
步骤S4:将物料A、物料C、物料D、物料B依次加入到物料E中,于80~120℃下以600~1200r/min搅拌速率混合3h得到物料F;
步骤S5:将物料F涂覆在聚四氟乙烯板上,再于20~40℃干燥得到目标产物可生物降解淀粉基薄膜。
进一步限定,步骤S1中所述的马铃薯淀粉和水的质量比为1:2。
进一步限定,步骤S2中所述蒙脱土K-10分散在水中的质量分数为10%~15%。
进一步优选,步骤S3中所述聚乙烯醇的平均分子量为105000。
本发明所述的可生物降解淀粉基薄膜材料的制备方法,其特征在于具体步骤为:
步骤S1:将10g马铃薯淀粉和20mL水于室温搅拌分散,静置1h,然后于40℃烘干并磨成粉末得到物料A;
步骤S2:将1~4g蒙脱土K-10以15%的质量分数在水中超声均匀分散1.5h得到物料B,将3g柠檬酸以10%~15%的质量分数溶解在水中得到物料C,将1g D-山梨醇以5%~10%的质量分数溶解在水中得到物料D;
步骤S3:在95℃油浴条件下,将10g聚乙烯醇以10%~20%的质量分数溶解在水中得到物料E;
步骤S4:将物料A、物料C、物料D、物料B依次加入到物料E中,于95℃搅拌混合3h得到物料F;
步骤S5:将物料F涂覆在聚四氟乙烯板上,于25℃干燥得到目标产物可生物降解淀粉基薄膜,该薄膜表现出优异的抗拉强度、疏水性能以及塑性性能。
本发明与现有技术相比具有以下优点和有益效果:
1、本发明选用无毒无害、来源广泛的原材料,能够降低可生物降解材料的制备成本;
2、本发明以淀粉和PVA为基底,添加蒙脱土作为增强剂,可以显著提高样品的拉伸性能;
3、本发明制得的可生物降解淀粉基薄膜材料具有优良的抗拉强度和疏水特性。
附图说明
图1为实施例1制备的目标产物G1的扫描电镜图;
图2为实施例1-3制备的目标产物G1-G3的X射线衍射图;
图3为实施例1-3制备的目标产物G1-G3的红外光谱图;
图4为实施例1-3制备的目标产物G1-G3的热重分析图;
图5为实施例1-3制备的目标产物G3的接触角测试图;
图6为实施例1-3制备的目标产物G1-G3的抗拉强度图。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
步骤S1:将10g马铃薯淀粉和20mL水于室温条件搅拌分散,静置1h,然后于40℃烘干并磨成粉末得到物料A;
步骤S2:将3.88g蒙脱土K-10以15%的质量分数在水中以40KHz超声均匀分散1.5h得到物料B,将3g柠檬酸以15%的质量分数溶解在水中得到物料C,将1g D-山梨醇以5%的质量分数溶解在水中得到物料D;
步骤S3:在95℃油浴条件下,将10g聚乙烯醇(平均分子量105000)以600r/min搅拌速率溶解在90mL水中得到物料E;
步骤S4:将物料A、物料C、物料D、物料B依次加入到物料E中,于95℃以1000r/min搅拌速率混合3h得到物料F;
步骤S5:将物料F涂覆在聚四氟乙烯板上,于25℃干燥得到目标产物G1。
实施例2
步骤S1:将10g马铃薯淀粉和20mL水于60℃搅拌分散,静置1h,然后于60℃烘干并磨成粉末得到物料A;
步骤S2:将1.158g蒙脱土K-10以10%的质量分数在水中以40KHz超声均匀分散1.5h得到物料B,将3g柠檬酸以15%的质量分数溶解在水中得到物料C,将1g D-山梨醇以5%的质量分数溶解在水中得到物料D;
步骤S3:在95℃油浴条件下,将10g聚乙烯醇((平均分子量105000)以600r/min搅拌速率溶解在90mL水中得到物料E;
步骤S4:将物料A、物料C、物料D、物料B依次加入到物料E中,于95℃以1000r/min搅拌速率混合3h得到物料F;
步骤S5:将物料F涂覆在聚四氟乙烯板上,于25℃干燥得到目标产物G2。
实施例3
步骤S1:将10g马铃薯淀粉和20mL水于80℃搅拌分散,静置1h,然后于80℃烘干并磨成粉末得到物料A;
步骤S2:将2.444g蒙脱土K-10以12%的质量分数在水中以40KHz超声均匀分散1.5h得到物料B,将3g柠檬酸以15%的质量分数溶解在水中得到物料C,将1g D-山梨醇以5%的质量分数溶解在水中得到物料D;
步骤S3:在95℃油浴条件下,将10g聚乙烯醇((平均分子量105000)以600r/min搅拌速率溶解在90mL水中得到物料E;
步骤S4:将物料A、物料C、物料D、物料B依次加入到物料E中,于95℃以1000r/min搅拌速率混合3h得到物料F;
步骤S5:将物料F涂覆在聚四氟乙烯板上,于25℃干燥得到目标产物G3。
实施例4
将目标产物G1裁剪为10mm×10mm大小,保证样品干燥,对目标产物进行接触角测试。将目标产物G1裁剪为10mm×40mm大小。使用万能材料实验机对目标产物进行拉伸测试,样品在夹具的有效长度为25mm,夹具夹持部分对样品进行保护,防止样品出现损伤造成数据不准确。用同样的方法测试目标产物G2、G3的拉伸性能。
所有实施例中样品的性能如下:如图5所示,为实施例1所得目标产物G1的接触角为83.71°,测试结果表明目标产物的疏水性能大幅提升。如图6所示,为实施例1-3所得目标产物G1、G2和G3的拉伸曲线,抗拉强度分别为15.87MPa、20.08MPa和38.93MPa。以上结果表明,目标产物G1具有优异的抗拉强度,在可降解塑料领域具有潜在应用前景。
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (5)

1.一种可生物降解淀粉基薄膜材料的制备方法,其特征在于具体过程为:
步骤S1:将马铃薯淀粉和水于10~90℃搅拌分散,静置1h,然后于50~90℃烘干并磨成粉末得到物料A;
步骤S2:将蒙脱土K-10在水中超声均匀分散1.5h得到物料B,将柠檬酸以10%~15%的质量分数溶解在水中得到物料C,将D-山梨醇以5%~10%的质量分数溶解在水中得到物料D;
步骤S3:在95℃油浴条件下,将聚乙烯醇以10%~20%的质量分数溶解在水中得到物料E;
步骤S4:将物料A、物料C、物料D、物料B依次加入到物料E中,于80~120℃下以600~1200r/min搅拌速率混合3h得到物料F;
步骤S5:将物料F涂覆在聚四氟乙烯板上,再于20~40℃干燥得到目标产物可生物降解淀粉基薄膜。
2.根据权利要求1所述的可生物降解淀粉基薄膜材料的制备方法,其特征在于:步骤S1中所述的马铃薯淀粉和水的质量比为1:2。
3.根据权利要求1所述的可生物降解淀粉基薄膜材料的制备方法,其特征在于:步骤S2中所述蒙脱土K-10分散在水中的质量分数为10%~15%。
4.根据权利要求1所述的可生物降解淀粉基薄膜材料的制备方法,其特征在于:步骤S3中所述聚乙烯醇的平均分子量为105000。
5.根据权利要求1所述的可生物降解淀粉基薄膜材料的制备方法,其特征在于具体步骤为:
步骤S1:将10g马铃薯淀粉和20mL水于室温搅拌分散,静置1h,然后于40℃烘干并磨成粉末得到物料A;
步骤S2:将3.88g蒙脱土K-10以15%的质量分数在水中超声均匀分散1.5h得到物料B,将3g柠檬酸以10%~15%的质量分数溶解在水中得到物料C,将1g D-山梨醇以5%~10%的质量分数溶解在水中得到物料D;
步骤S3:在95℃油浴条件下,将10g聚乙烯醇以10%~20%的质量分数溶解在水中得到物料E;
步骤S4:将物料A、物料C、物料D、物料B依次加入到物料E中,于95℃搅拌混合3h得到物料F;
步骤S5:将物料F涂覆在聚四氟乙烯板上,于25℃干燥得到目标产物可生物降解淀粉基薄膜,该薄膜表现出优异的抗拉强度、疏水性能以及塑性性能。
CN202210119457.9A 2022-02-08 2022-02-08 一种可生物降解淀粉基薄膜材料的制备方法 Pending CN114561125A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210119457.9A CN114561125A (zh) 2022-02-08 2022-02-08 一种可生物降解淀粉基薄膜材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210119457.9A CN114561125A (zh) 2022-02-08 2022-02-08 一种可生物降解淀粉基薄膜材料的制备方法

Publications (1)

Publication Number Publication Date
CN114561125A true CN114561125A (zh) 2022-05-31

Family

ID=81713830

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210119457.9A Pending CN114561125A (zh) 2022-02-08 2022-02-08 一种可生物降解淀粉基薄膜材料的制备方法

Country Status (1)

Country Link
CN (1) CN114561125A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115368601A (zh) * 2022-08-11 2022-11-22 河南师范大学 一种超声改性淀粉基可降解薄膜材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101205314A (zh) * 2006-12-19 2008-06-25 河南科技大学 一种热塑性淀粉材料的制备方法
CN101914223A (zh) * 2010-08-06 2010-12-15 西北师范大学 改性淀粉-聚乙烯醇基复合塑料薄膜的制备方法
CN108503898A (zh) * 2018-04-27 2018-09-07 上海理工大学 一种生产高性能塑料薄膜的方法
CN115322445A (zh) * 2022-08-09 2022-11-11 河南师范大学 一种高韧性可生物降解淀粉基薄膜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101205314A (zh) * 2006-12-19 2008-06-25 河南科技大学 一种热塑性淀粉材料的制备方法
CN101914223A (zh) * 2010-08-06 2010-12-15 西北师范大学 改性淀粉-聚乙烯醇基复合塑料薄膜的制备方法
CN108503898A (zh) * 2018-04-27 2018-09-07 上海理工大学 一种生产高性能塑料薄膜的方法
CN115322445A (zh) * 2022-08-09 2022-11-11 河南师范大学 一种高韧性可生物降解淀粉基薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赫玉欣;张玉清;: "热塑性淀粉/聚乙烯醇/蒙脱土三元纳米复合材料" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115368601A (zh) * 2022-08-11 2022-11-22 河南师范大学 一种超声改性淀粉基可降解薄膜材料的制备方法

Similar Documents

Publication Publication Date Title
Ray et al. In situ processing of cellulose nanocomposites
Chen et al. Pea starch‐based composite films with pea hull fibers and pea hull fiber‐derived nanowhiskers
Jiang et al. Preparation and characterization of natural corn starch-based composite films reinforced by eggshell powder
Yue et al. On the improvement of properties of bioplastic composites derived from wasted cottonseed protein by rational cross-linking and natural fiber reinforcement
Zhang et al. Starch-based rehealable and degradable bioplastic enabled by dynamic imine chemistry
CN111333917A (zh) 一种疏水性的纤维素-壳聚糖高阻隔复合薄膜及其制法
CN109337312B (zh) 一种聚乳酸复合材料及其制备方法
CN110408180B (zh) 一种木质素-淀粉组合母粒复合的生物降解聚酯材料及其制备方法
WO2014022666A1 (en) Crosslinked native and waxy starch resin compositions and processes for their manufacture
CN108841151B (zh) 一种可生物降解导电复合材料及其制备方法
CN109825045A (zh) 一种石墨烯复合生物质增强pbs/pbat生物降解复合材料及其制备方法
CN115322543B (zh) 一种聚乳酸/聚己内酯/植物炭黑复合材料及其制备方法
CN112094488A (zh) 一种高韧高耐热聚乳酸复合材料及其制备方法
CN114561125A (zh) 一种可生物降解淀粉基薄膜材料的制备方法
Yang et al. An eco-friendly wood adhesive based on waterborne polyurethane grafted with gelatin derived from chromium shavings waste
CN114163785A (zh) 复合纳米材料改性的淀粉基生物降解食品包装膜及制备方法
KR101124989B1 (ko) 폴리유산 복합재료 조성물
CN111574755B (zh) 一种可生物降解塑料及其制备方法
Raj et al. Biodegradability, thermal, chemical, mechanical and morphological behavior of LDPE/pectin and LDPE/modified pectin blend
CN115322445B (zh) 一种高韧性可生物降解淀粉基薄膜的制备方法
Zhang et al. Enhancement effect of acylated cellulose nanocrystals on waterborne polyurethane
CN113214619B (zh) 微纤化纤维素与聚乳酸复合材料及其制备方法
Qi et al. Preparation and characterization of soluble eggshell membrane protein/chitosan blend films
KR101856496B1 (ko) 개질된 미소섬유상 셀룰로오스 및 이의 제조방법
CN112011165A (zh) 一种改性聚丙撑碳酸酯材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220531