CN114457311A - 一种用于质子交换膜燃料电池双极板的高熵合金纳米晶涂层及制备方法 - Google Patents

一种用于质子交换膜燃料电池双极板的高熵合金纳米晶涂层及制备方法 Download PDF

Info

Publication number
CN114457311A
CN114457311A CN202111680633.8A CN202111680633A CN114457311A CN 114457311 A CN114457311 A CN 114457311A CN 202111680633 A CN202111680633 A CN 202111680633A CN 114457311 A CN114457311 A CN 114457311A
Authority
CN
China
Prior art keywords
entropy alloy
bipolar plate
fuel cell
coating
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111680633.8A
Other languages
English (en)
Inventor
徐江
彭爽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202111680633.8A priority Critical patent/CN114457311A/zh
Publication of CN114457311A publication Critical patent/CN114457311A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种用于质子交换膜燃料电池双极板的高熵合金纳米晶涂层及制备方法。利用双阴极等离子溅射沉积技术,在纯钛表面形成具有纳米等轴晶结构的TiZrHfMoW高熵合金涂层。双阴极等离子溅射沉积的可调工艺参数为靶材电压,工件电压,工件与靶材的间距,氩气气压,沉积时间等。该涂层由单相BCC结构高熵合金固溶体相构成,具有纳米尺度等轴晶结构,与钛基体结合良好,提高了双极板的表面硬度,并在含氟离子酸性介质中具有较低的腐蚀速率和良好的抗点蚀能力,够满足燃料电池金属双极板高性能、长时间的使用要求。

Description

一种用于质子交换膜燃料电池双极板的高熵合金纳米晶涂层 及制备方法
技术领域
本发明涉及高熵合金涂层及制备方法,特别涉及一种用于质子交换膜燃料电池双极板的高熵合金纳米晶涂层及制备方法。
背景技术
随着制氢技术和合金储氢技术的日趋成熟,清洁、高效且可再生的氢能将作为绿色能源大规模进入社会。燃料电池能直接将储存在氢气中的化学能转化为电能,其转化效率不受卡诺循环限制,是目前广泛使用的氢能转换装置。在众多种类的燃料电池中,质子交换膜燃料电池(PEMFC)具有较高的能量密度、较短的启动时间和较低的运行噪声,常作为汽车、无人机等移动设备上的稳定电能供应装置。PEMFC堆栈的基本结构可分为质子交换膜、催化剂层、扩散层以及双极板(集流层)。其中,双极板的主要功能为提供气体和冷却液流通渠道,分隔氢气和氧气,均匀分配反应介质,在串联的阴阳两极之间建立电流通路,导热散热和排除反应产物水等。目前,最广泛应用的双极板材料是金属材料。相比于石墨材料,金属材料具有良好的机械强度,导电导热性能,气密性和易于加工成薄板的优点。考虑到PEMFC中酸性和潮湿的工作环境以及双极板在总堆栈重量中的高占比,纯钛(CP-Ti)的高耐蚀性和低密度使其相比于其他金属材料受到了更多关注。然而,由于质子交换膜在电池运行过程中的逐步劣化,其释放的氟离子会与钛表面的钝化膜反应,降低钛双极板的耐蚀性。为了进一步提高纯钛双极板的耐蚀性,在双极板上制备涂层是一种有效的保护方案。高熵合金由于其独特的高混合熵特性,具有比传统合金更高的耐蚀性能和力学性能。同时,相比于过渡金属氮化物和碳化物涂层,高熵合金涂层与纯钛基体的模量差异更小。因此高熵合金涂层是一种有潜力的双极板耐蚀涂层。
发明内容
发明目的:本发明目的是提供一种用于质子交换膜燃料电池双极板的高熵合金纳米晶涂层。
本发明的另一目的是提供所述高熵合金纳米晶涂层的制备方法。
技术方案:本发明所述的用于质子交换膜燃料电池双极板的高熵合金纳米晶涂层的制备方法,利用双阴极等离子溅射沉积技术,在纯钛(CP-Ti)表面形成具有纳米等轴晶结构的TiZrHfMoW高熵合金涂层。
进一步地、所用靶材由纯度≥99.9%,粒径为300目的Ti,Zr,Hf,Mo,W高纯金属粉混合后经真空热压烧结制备而成,其成分配比为8.01wt.%Ti,15.27wt.%Zr,29.88wt.%Hf,16.06wt.%Mo,30.78%W。靶材电压900-950V。工件电压300-350V。极间距10mm。氩气气压35-40Pa。沉积时间3-3.5h。沉积温度700-800℃。一种PEMFC金属双极板耐蚀TiZrHfMoW高熵合金纳米晶涂层采用上述方法制备得到。
本专利采用双阴极等离子溅射沉积技术制备的TiZrHfMoW高熵合金涂层具有较好的耐蚀性能。如图1所示,TiZrHfMoW高熵合金涂层由纳米尺寸的等轴晶构成,且Ti、Zr、Hf、Mo和W元素在涂层中均匀分布。如图2所示,在0.5M H2SO4+6ppm HF溶液中的动电位极化测试表明,该涂层较纯钛有更低的自腐蚀电流密度和更正的自腐蚀电位,表现出优异的耐蚀性能。
TiZrHfMoW高熵合金涂层能够提高纯钛表面硬度。如图3所示,该涂层将纯钛的硬度从5.4±0.3GPa提升为9.6±0.5GPa,能减小双击板表面遭受的划痕损伤。同时,涂层的弹性模量为152.9±6.2GPa,与纯钛的弹性模量130.5±4.1GPa具有较好的弹性模量匹配度,使得涂层与基体具有更好的结合能力。
TiZrHfMoW高熵合金涂层能够提高纯钛的点蚀抗性。如图4所示,在0.5M H2SO4+6ppm HF溶液中恒电位极化48小时后,纯钛表面出现明显的点蚀坑,而涂层几乎没有腐蚀迹象,表现出较好的抗点蚀性能。
有益效果:本发明与现有技术相比,具有如下优势:
本发明由单相BCC结构高熵合金固溶体相构成,并具有纳米尺度等轴晶结构。相比于纯钛,涂层具有更高的硬度,更低的腐蚀速率和更好的抗点蚀能力,提升钛双极板在PEMFC环境中的服役时间,能够满足燃料电池金属双极板高性能、长时间的使用要求。
附图说明
图1为TiZrHfMoW高熵合金涂层的TEM图像以及Ti,Zr,Hf,Mo,W和N元素的mapping图片;
图2为该高熵合金涂层和纯钛在0.5M H2SO4+6ppm HF溶液中的动电位极化曲线;
图3为该高熵合金涂层和纯钛在最大载荷为40mN的纳米压入测试中的载荷位移曲线;
图4为该高熵合金涂层和纯钛在0.5M H2SO4+6ppm HF溶液中恒电位极化48小时后的表面形貌SEM图;
图5为TiZrHfMoW高熵合金涂层的截面SEM图像。
具体实施方式
实施例1:
TiZrHfMoW高熵合金涂层制备工艺,利用双阴极等离子溅射沉积法,在纯钛表面形成的涂层由单相BCC高熵合金固溶体相构成,并具有纳米纳米等轴晶结构。其中
a.双阴极等离子溅射工艺参数:
Figure BDA0003445566980000031
b.溅射的靶材:混合Ti-Zr-Hf-Mo-W靶,成分配比(质量分数,%):8.01wt.%Ti,15.27wt.%Zr,29.88wt.%Hf,16.06wt.%Mo,30.78%W;
c.工件材料的种类:纯钛(CP-Ti)。
图1为TiZrHfMoW高熵合金氮化物涂层的TEM图像以及Ti,Zr,Hf,Mo,W和N元素的mapping图片。TEM图片表明涂层由纳米等轴晶构成,且Ti,Zr,Hf,Mo和W在涂层中均匀分布。在最大载荷为40N的纳米压入测试中,该涂层显著提高了纯钛的表面硬度,同时涂层的弹性模量与纯钛相当,有利于提高涂层与基体的结合能力。在0.5M H2SO4+6ppm HF溶液中的动电位极化测试表明,该涂层较纯钛有更低的自腐蚀电流密度和更正的自腐蚀电位,表现出优异的耐蚀性能。在0.5M H2SO4+6ppm HF溶液中恒电位极化48小时后,纯钛表面出现明显的点蚀坑,而涂层几乎没有腐蚀迹象,表现出较好的抗点蚀性能。
实施例2:
高熵合金纳米晶涂层制备工艺,利用双阴极等离子溅射沉积法,在纯钛表面形成的涂层由单相BCC高熵合金固溶体相构成,且具有纳米等轴晶结构。其中a.双阴极等离子溅射沉积的工艺参数:靶材电压900V,工件电压350V,极间距10mm,氩气气压40Pa,沉积温度700℃~800℃,沉积时间3.5h。b.混合Ti-Zr-Hf-Mo-W靶,成分配比(质量分数,%):8.01wt.%Ti,15.27wt.%Zr,29.88wt.%Hf,16.06wt.%Mo,30.78%W;c.工件材料的种类:纯钛(CP-Ti)。所得涂层综合性能略低于实施例1。
实施例3:
高熵合金纳米晶涂层制备工艺,利用双阴极等离子溅射沉积法,在纯钛表面形成的涂层由单相BCC高熵合金固溶体相构成,且具有纳米等轴晶结构。其中a.双阴极等离子溅射沉积的工艺参数:靶材电压950V,工件电压350V,极间距10mm,氩气气压35Pa沉积温度700℃~800℃,沉积时间3h。b.混合Ti-Zr-Hf-Mo-W靶,成分配比(质量分数,%):8.01wt.%Ti,15.27wt.%Zr,29.88wt.%Hf,16.06wt.%Mo,30.78%W; c.工件材料的种类:纯钛(CP-Ti)。所得涂层综合性能略低于实施例1。

Claims (9)

1.一种用于质子交换膜燃料电池双极板的高熵合金纳米晶涂层的制备方法,其特征在于:利用双阴极等离子溅射沉积技术,在纯钛(CP-Ti)表面形成具有纳米等轴晶结构的TiZrHfMoW高熵合金涂层。
2.根据权利要求1所述的用于质子交换膜燃料电池双极板的高熵合金纳米晶涂层的制备方法,其特征在于:所用靶材由纯度≥99.9%,粒径为300目的Ti,Zr,Hf,Mo,W高纯金属粉混合后经真空热压烧结制备而成,其成分配比为8.01wt.%Ti,15.27wt.%Zr,29.88wt.%Hf,16.06wt.%Mo,30.78%W。
3.根据权利要求1所述的用于质子交换膜燃料电池双极板的高熵合金纳米晶涂层的制备方法,其特征在于:靶材电压900-950V。
4.根据权利要求1所述的用于质子交换膜燃料电池双极板的高熵合金纳米晶涂层的制备方法,其特征在于:工件电压300-350V。
5.根据权利要求1所述的用于质子交换膜燃料电池双极板的高熵合金纳米晶涂层的制备方法,其特征在于:极间距10mm。
6.根据权利要求1所述的用于质子交换膜燃料电池双极板的高熵合金纳米晶涂层的制备方法,其特征在于:氩气气压35-40Pa。
7.根据权利要求1所述的用于质子交换膜燃料电池双极板的高熵合金纳米晶涂层的制备方法,其特征在于:沉积时间3-3.5h。
8.根据权利要求1所述的用于质子交换膜燃料电池双极板的高熵合金纳米晶涂层的制备方法,其特征在于:沉积温度700-800℃。
9.一种PEMFC金属双极板耐蚀TiZrHfMoW高熵合金纳米晶涂层采用权利要求1-8任一项的方法制备得到。
CN202111680633.8A 2021-12-30 2021-12-30 一种用于质子交换膜燃料电池双极板的高熵合金纳米晶涂层及制备方法 Pending CN114457311A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111680633.8A CN114457311A (zh) 2021-12-30 2021-12-30 一种用于质子交换膜燃料电池双极板的高熵合金纳米晶涂层及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111680633.8A CN114457311A (zh) 2021-12-30 2021-12-30 一种用于质子交换膜燃料电池双极板的高熵合金纳米晶涂层及制备方法

Publications (1)

Publication Number Publication Date
CN114457311A true CN114457311A (zh) 2022-05-10

Family

ID=81408591

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111680633.8A Pending CN114457311A (zh) 2021-12-30 2021-12-30 一种用于质子交换膜燃料电池双极板的高熵合金纳米晶涂层及制备方法

Country Status (1)

Country Link
CN (1) CN114457311A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106374116A (zh) * 2016-12-01 2017-02-01 上海电机学院 一种燃料电池金属双极板上的高熵合金复合涂层和工艺
US20170314097A1 (en) * 2016-05-02 2017-11-02 Korea Advanced Institute Of Science And Technology High-strength and ultra heat-resistant high entropy alloy (hea) matrix composites and method of preparing the same
CN110137525A (zh) * 2019-05-17 2019-08-16 北京中氢绿能科技有限公司 一种燃料电池金属双极板涂层及制备技术
CN110453131A (zh) * 2019-09-09 2019-11-15 沈阳工业大学 一种具有良好热加工性能的高熵合金及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170314097A1 (en) * 2016-05-02 2017-11-02 Korea Advanced Institute Of Science And Technology High-strength and ultra heat-resistant high entropy alloy (hea) matrix composites and method of preparing the same
CN106374116A (zh) * 2016-12-01 2017-02-01 上海电机学院 一种燃料电池金属双极板上的高熵合金复合涂层和工艺
CN110137525A (zh) * 2019-05-17 2019-08-16 北京中氢绿能科技有限公司 一种燃料电池金属双极板涂层及制备技术
CN110453131A (zh) * 2019-09-09 2019-11-15 沈阳工业大学 一种具有良好热加工性能的高熵合金及其制备方法

Similar Documents

Publication Publication Date Title
US20110256451A1 (en) Nanotube-based nanomaterial membrane
WO2000001025A1 (fr) Pile a combustible electrolytique en polymere solide
CN112421048A (zh) 一种低成本制备石墨包覆纳米硅锂电池负极材料的方法
US8841045B2 (en) Method for fabricating bi-polar plate of fuel cell
CN110767891B (zh) 一种多孔球形硅基复合负极材料的制备方法
CN101800318A (zh) 一种质子交换膜燃料电池用金属双极板及其制备方法
JP4206058B2 (ja) 燃料電池用触媒層の製造方法
CN112885997A (zh) 一种锂离子电池新型硅基复合多孔负极材料的制备方法及其应用
JPH10255823A (ja) 固体高分子型燃料電池
CN105185988A (zh) 一种三维泡沫MoS2/石墨烯的制备方法
CN114481048B (zh) 高导电耐蚀非晶/纳米晶复合共存的涂层及其制法与应用
JP2001351642A (ja) 燃料電池用セパレータ
CN112820847A (zh) 硅基负极材料及其制备方法、锂离子电池以及电器
KR20230131896A (ko) 음극 소재 및 그의 제조 방법, 리튬 이온 배터리
JPWO2008059950A1 (ja) 燃料電池用セパレータおよびその製造方法
CN109671958B (zh) 一种固体氧化物燃料电池及其制备方法
JP2005150014A (ja) 燃料電池及びそれに用いられる冷却用セパレータ
CN112234186B (zh) 一种MXene纳米点包覆改性的锂离子电池正极材料及其制备方法
US7741243B2 (en) Production method of catalyst layer
CN114457311A (zh) 一种用于质子交换膜燃料电池双极板的高熵合金纳米晶涂层及制备方法
CN113151790B (zh) 离子/电子共导体薄膜及其制备方法、固态电池及电动车
JP3404363B2 (ja) 燃料電池用セパレータ
CN112221892A (zh) 一种新型金属双极板表面改性的方法
CN111769293A (zh) 一种低接触电阻的燃料电池电堆及其应用的燃料电池
CN112687892B (zh) 一种固体氧化物燃料电池自组装高性能核壳结构阴极及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220510

RJ01 Rejection of invention patent application after publication