CN114395750A - 一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层及其制备方法 - Google Patents

一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层及其制备方法 Download PDF

Info

Publication number
CN114395750A
CN114395750A CN202111249344.2A CN202111249344A CN114395750A CN 114395750 A CN114395750 A CN 114395750A CN 202111249344 A CN202111249344 A CN 202111249344A CN 114395750 A CN114395750 A CN 114395750A
Authority
CN
China
Prior art keywords
titanium alloy
mullite
sio
oxidation
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111249344.2A
Other languages
English (en)
Other versions
CN114395750B (zh
Inventor
崔雄华
张磊
曹海涛
杨哲一
崔锦文
王弘喆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Thermal Power Research Institute Co Ltd
Original Assignee
Xian Thermal Power Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Thermal Power Research Institute Co Ltd filed Critical Xian Thermal Power Research Institute Co Ltd
Priority to CN202111249344.2A priority Critical patent/CN114395750B/zh
Publication of CN114395750A publication Critical patent/CN114395750A/zh
Application granted granted Critical
Publication of CN114395750B publication Critical patent/CN114395750B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明一种SiO2‑莫来石‑Al2O3多组分梯度防氧化涂层及其制备方法,该制备方法包括:先对钛合金基体进行机械打磨,再进行抛光处理,超声清洗;将清洗后的钛合金基体在鼓风干燥箱中进行烘干处理;将烘干后的基体采用直流溅射方式在钛合金表面镀覆Si单质层;将镀Si基片在高温下进行氧化处理;将钛合金基板取出,在表面均匀铺覆一层铝箔;将钛合金基板置于真空炉中,在高温下保温使其完全熔融,均匀涂覆在钛合金基板表面;将钛合金基板在空气中进行氧化处理得到SiO2和Al2O3,并通过二者之间的反应生成莫来石相,获得SiO2‑莫来石‑Al2O3多组分梯度防氧化涂层。本发明能够提高钛合金基体的抗氧化性能。

Description

一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层及其制备方法
技术领域
本发明属于金属材料表面改性技术领域,具体涉及一种SiO2-莫来石(3Al2O3·2SiO2)-Al2O3多组分梯度防氧化涂层及其制备方法。
背景技术
钛合金因具有密度低、比强度高、比模量高的特点成为航空航天和工业领域重要的结构材料。但是钛合金在高温下抗氧化性较差的弱点大大限制了其在高温条件下的应用。防氧化涂层是提高高温结构件使用性能的常用方法,通过在工件表面镀覆具有良好高温稳定性的氧化物涂层(如SiO2、Cr2O3、Al2O3等)是延长工件寿命的有效途径。
SiO2、Cr2O3、Al2O3等氧化物涂层已经在高温抗氧化涂层领域得到了广泛的应用。然而单一组分的涂层抗氧化性能非常有限,为了提高涂层的高温抗氧化性和使用寿命,涂层的设计也从简单的单层、单一组分向多组分、多层梯度的方向发展。通过外层活性物质(如Al)在高温下形成的致密氧化保护膜来阻止氧气的扩散,而内层物质与扩散进入的氧气结合后,进一步阻止钛合金基体的氧化,从而大大提高工件的使用寿命。
目前,制备抗氧化涂层的方法主要包括粉末包埋、电弧离子镀、离子液体镀、PVD(物理气相沉积)、化学气相沉积、等离子喷涂等工艺。但通过这些工艺制备的涂层存在但不限于成分、厚度不均匀,成本较高,不适合大型或形状复杂零部件,涂层结合力较差、易剥落等问题。
发明内容
本发明提供一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层及其制备方法。该方法以钛合金作为基板,利用Si作为靶材,先通过磁控溅射法在钛合金表面溅射镀覆一层Si单质层,将其在高温下氧化后得到SiO2氧化层;再在其表面铺覆一层铝箔,并通过真空热处理使铝箔熔融后均匀涂覆在表面形成Al层;最后将其在高温下氧化后得到SiO2和Al2O3,并通过二者之间的反应生成莫来石相,获得SiO2-莫来石-Al2O3多组分梯度防氧化涂层,从而提高钛合金基体的抗氧化性能。
本发明采用如下技术方案来实现的:
一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层的制备方法,包括以下步骤:
步骤1,先对钛合金基体进行机械打磨,再进行抛光处理;
步骤2,将经步骤1得到的钛合金基体依次使用无水乙醇和去离子水进行超声清洗;
步骤3,将经步骤2得到的钛合金基体在鼓风干燥箱中进行烘干处理;
步骤4,将经步骤3得到的基体置于磁控溅射仪的样品台上,在靶基座上装上Si靶,采用直流溅射方式在钛合金表面镀覆Si单质层;
步骤5,将经步骤4得到的镀Si基片在高温下进行氧化处理;
步骤6,将经步骤5制备的钛合金基板取出,在表面均匀铺覆一层铝箔;
步骤7,将经步骤6制备的钛合金基板置于真空炉中,在高温下保温使其完全熔融,均匀涂覆在钛合金基板表面;
步骤8,将步骤7中得到的钛合金基板在空气中进行氧化处理得到SiO2和Al2O3,并通过二者之间的反应生成莫来石相,获得SiO2-莫来石-Al2O3多组分梯度防氧化涂层。
本发明进一步的改进在于,步骤1中依次进行500#,1000#,1500#,2000#砂纸打磨,并用研磨膏进行抛光处理。
本发明进一步的改进在于,步骤2中,超声清洗时间为10~20min。
本发明进一步的改进在于,步骤3中,钛合金基板在鼓风干燥箱中的烘干温度为60~90℃,烘干时间为60~80min。
本发明进一步的改进在于,步骤4中,Si靶材的纯度为99.99%,本底真空度为3×10-4Pa,沉积温度为300~500℃,腔体气压为10-3~10-2Pa,偏压为200~300V,氩气流量为15~25mL/min,持续溅射时间为60~120min得到Si单质层。
本发明进一步的改进在于,步骤5中,在高温下进行氧化处理的温度为400~600℃,时间为1~2h。
本发明进一步的改进在于,步骤6中,铺覆的铝箔的厚度为50~100μm。
本发明进一步的改进在于,步骤7,高温热处理的温度为750~850℃,保温时间为1~2h。
本发明进一步的改进在于,步骤8,在空气中氧化的温度为700~900℃,时间为2~4h,得到SiO2-莫来石-Al2O3多组分梯度防氧化涂层。
一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层,采用所述的制备方法制备得到。
本发明至少具有如下有益的技术效果:
1.本发明提供一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层及其制备方法。采用直流磁控溅射工艺与涂覆熔渗相结合的方式制备梯度防氧化涂层,可以获得表面平整、致密的涂层,改善了多弧离子镀制备膜层的表面粗糙、不均匀的问题;且其制备工艺简单、成本低廉,更有利实际应用和大规模生产。
2.本发明提供一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层及其制备方法,采用磁控溅射工艺、涂覆熔渗、原位反应相结合的方式制备多组分梯度防氧化涂层,所得涂层更加致密、与基板结合力强,能有效提高涂层的使用寿命。
3.本发明制备得到的SiO2-莫来石-Al2O3多组分抗氧化涂层,同时利用氧化后生成的SiO2和Al2O3致密保护层,以及原位反应生成的莫来石相来提高涂层的抗氧化性。与单层Al2O3涂层相比,SiO2-莫来石-Al2O3涂层在900℃的氧化增重降低了近3倍,其抗氧化性能得到了大大的提高。
附图说明
图1是本发明制备的SiO2-莫来石-Al2O3多组分抗氧化涂层的XRD图;
图2是本发明制备的SiO2-莫来石-Al2O3多组分抗氧化涂层表面的SEM图;
图3是本发明制备的SiO2-莫来石-Al2O3多组分抗氧化涂层横截面的SEM图;
图4是本发明制备的SiO2-莫来石-Al2O3多组分抗氧化涂层在900℃的氧化增重图。
具体实施方式
下面结合具体实施方式对本发明进行详细说明,
本发明涉及一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层及其制备方法,具体按照以下步骤实施:
步骤1,对钛合金基板依次利用500#,1000#,1500#,2000#砂纸进行打磨,并用研磨膏进行抛光处理;
步骤2,将经步骤1得到的钛合金基体依次使用无水乙醇和去离子水进行超声清洗,清洗时间为10~20min;
步骤3,将经步骤2得到的钛合金基体在鼓风干燥箱中进行烘干处理,烘干温度为60~90℃,烘干时间为60~80min;
步骤4,将经步骤3得到的基体置于磁控溅射仪的样品台上,在靶基座上装上Si靶,采用直流溅射方式在钛合金表面镀覆Si单质层,Si靶材的纯度为99.99%,本底真空度约为3×10-4Pa,沉积温度为300~500℃,腔体气压为10-3~10-2Pa,偏压为200~300V,氩气流量为15~25mL/min,持续溅射时间为60~120min;
步骤5,将经步骤4得到的镀Si基片在高温下进行氧化处理,氧化温度为400~600℃,时间为1~2h;
步骤6,将经步骤5制备的钛合金基板取出,在表面均匀铺覆一层铝箔,铺覆的铝箔的厚度为50~100μm;
步骤7,将经步骤6制备的钛合金基板置于真空炉中,在高温下保温使其完全熔融,均匀涂覆在钛合金基板表面,高温热处理的温度为750~850℃,保温时间为1~2h;
步骤8,将步骤7中得到的钛合金基板在空气中进行氧化处理得到SiO2和Al2O3,并通过二者之间的反应生成莫来石相,获得SiO2-莫来石-Al2O3多组分梯度防氧化涂层,氧化的温度为700~900℃,时间为2~4h。
实施案例1
步骤1,对钛合金基板依次利用500#,1000#,1500#,2000#砂纸进行打磨,并用研磨膏进行抛光处理;
步骤2,将经步骤1得到的钛合金基体依次使用无水乙醇和去离子水进行超声清洗,清洗时间为10min;
步骤3,将经步骤2得到的钛合金基体在鼓风干燥箱中进行烘干处理,烘干温度为60℃,烘干时间为60min;
步骤4,将经步骤3得到的基体置于磁控溅射仪的样品台上,在靶基座上装上Si靶,采用直流溅射方式在钛合金表面镀覆Si单质层,Si靶材的纯度为99.99%,本底真空度约为3×10-4Pa,沉积温度为300℃,腔体气压为10-3Pa,偏压为200V,氩气流量为15mL/min,持续溅射时间为60min;
步骤5,将经步骤4得到的镀Si基片在高温下进行氧化处理,氧化温度为400℃,时间为1h;
步骤6,将经步骤5制备的钛合金基板取出,在表面均匀铺覆一层铝箔,铺覆的铝箔的厚度为50μm;
步骤7,将经步骤6制备的钛合金基板置于真空炉中,在高温下保温使其完全熔融,均匀涂覆在钛合金基板表面,高温热处理的温度为750℃,保温时间为1h;
步骤8,将步骤7中得到的钛合金基板在空气中进行氧化处理得到SiO2和Al2O3,并通过二者之间的反应生成莫来石相,获得SiO2-莫来石-Al2O3多组分梯度防氧化涂层,氧化的温度为700℃,时间为2h。
实施案例2
步骤1,对钛合金基板依次利用500#,1000#,1500#,2000#砂纸进行打磨,并用研磨膏进行抛光处理;
步骤2,将经步骤1得到的钛合金基体依次使用无水乙醇和去离子水进行超声清洗,清洗时间为20min;
步骤3,将经步骤2得到的钛合金基体在鼓风干燥箱中进行烘干处理,烘干温度为90℃,烘干时间为80min;
步骤4,将经步骤3得到的基体置于磁控溅射仪的样品台上,在靶基座上装上Si靶,采用直流溅射方式在钛合金表面镀覆Si单质层,Si靶材的纯度为99.99%,本底真空度约为3×10-4Pa,沉积温度为500℃,腔体气压为10-2Pa,偏压为300V,氩气流量为25mL/min,持续溅射时间为120min;
步骤5,将经步骤4得到的镀Si基片在高温下进行氧化处理,氧化温度为600℃,时间为2h;
步骤6,将经步骤5制备的钛合金基板取出,在表面均匀铺覆一层铝箔,铺覆的铝箔的厚度为100μm;
步骤7,将经步骤6制备的钛合金基板置于真空炉中,在高温下保温使其完全熔融,均匀涂覆在钛合金基板表面,高温热处理的温度为850℃,保温时间为2h;
步骤8,将步骤7中得到的钛合金基板在空气中进行氧化处理得到SiO2和Al2O3,并通过二者之间的反应生成莫来石相,获得SiO2-莫来石-Al2O3多组分梯度防氧化涂层,氧化的温度为900℃,时间为4h。
实施例3
步骤1,对钛合金基板依次利用500#,1000#,1500#,2000#砂纸进行打磨,并用研磨膏进行抛光处理;
步骤2,将经步骤1得到的钛合金基体依次使用无水乙醇和去离子水进行超声清洗,清洗时间为15min;
步骤3,将经步骤2得到的钛合金基体在鼓风干燥箱中进行烘干处理,烘干温度为80℃,烘干时间为60min;
步骤4,将经步骤3得到的基体置于磁控溅射仪的样品台上,在靶基座上装上Si靶,采用直流溅射方式在钛合金表面镀覆Si单质层,Si靶材的纯度为99.99%,本底真空度约为3×10-4Pa,沉积温度为400℃,腔体气压为5×10-3Pa,偏压为250V,氩气流量为17.5mL/min,持续溅射时间为80min;
步骤5,将经步骤4得到的镀Si基片在高温下进行氧化处理,氧化温度为500℃,时间为1.5h;
步骤6,将经步骤5制备的钛合金基板取出,在表面均匀铺覆一层铝箔,铺覆的铝箔的厚度为80μm;
步骤7,将经步骤6制备的钛合金基板置于真空炉中,在高温下保温使其完全熔融,均匀涂覆在钛合金基板表面,高温热处理的温度为800℃,保温时间为1.5h;
步骤8,将步骤7中得到的钛合金基板在空气中进行氧化处理得到SiO2和Al2O3,并通过二者之间的反应生成莫来石相,获得SiO2-莫来石-Al2O3多组分梯度防氧化涂层,氧化的温度为800℃,时间为3h。
实施例4
步骤1,对钛合金基板依次利用500#,1000#,1500#,2000#砂纸进行打磨,并用研磨膏进行抛光处理;
步骤2,将经步骤1得到的钛合金基体依次使用无水乙醇和去离子水进行超声清洗,清洗时间为18min;
步骤3,将经步骤2得到的钛合金基体在鼓风干燥箱中进行烘干处理,烘干温度为75℃,烘干时间为70min;
步骤4,将经步骤3得到的基体置于磁控溅射仪的样品台上,在靶基座上装上Si靶,采用直流溅射方式在钛合金表面镀覆Si单质层,Si靶材的纯度为99.99%,本底真空度约为3×10-4Pa,沉积温度为350℃,腔体气压为8×10-3Pa,偏压为280V,氩气流量为22mL/min,持续溅射时间为100min;
步骤5,将经步骤4得到的镀Si基片在高温下进行氧化处理,氧化温度为550℃,时间为1.5h;
步骤6,将经步骤5制备的钛合金基板取出,在表面均匀铺覆一层铝箔,铺覆的铝箔的厚度为60μm;
步骤7,将经步骤6制备的钛合金基板置于真空炉中,在高温下保温使其完全熔融,均匀涂覆在钛合金基板表面,高温热处理的温度为780℃,保温时间为1.5h;
步骤8,将步骤7中得到的钛合金基板在空气中进行氧化处理得到SiO2和Al2O3,并通过二者之间的反应生成莫来石相,获得SiO2-莫来石-Al2O3多组分梯度防氧化涂层,氧化的温度为850℃,时间为3.5h。
利用本发明方法制备的一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层的XRD图,如图1所示,涂层中除了检测到SiO2、Al2O3外,还检测到3Al2O3·2SiO2相,说明成功制备了SiO2-莫来石-Al2O3多组分涂层。
利用本发明方法制备的一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层表面的SEM图,如图2所示,基体表面较为平整、致密,改善了多弧离子镀制备膜层的表面粗糙、厚度不均匀的问题;
利用本发明方法制备的一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层横截面的SEM图,如图3所示,可以清晰观察到明显的层状结构,且各层之间结合得非常紧密,多层结构能够有效地阻挡氧气进入到内部与钛合金基板接触,大大提高了构件的抗氧化性和使用寿命。
利用本发明制备的一种SiO2-莫来石-Al2O3多组分抗氧化涂层在900℃的氧化增重图,如图4所示,随着氧化时间的延长氧化增重逐渐趋于平缓,与单层Al2O3涂层相比,SiO2-莫来石-Al2O3涂层在900℃的氧化增重降低了近3倍,说明同时利用氧化后生成的SiO2和Al2O3致密保护层,以及原位反应生成的莫来石相来提高了涂层的抗氧化性。
本发明制备得到的SiO2-莫来石-Al2O3多组分抗氧化涂层,不仅利用了Si和Al氧化后生成的SiO2和Al2O3致密保护层来提高钛合金的抗氧化性;同时原位反应生成的3Al2O3·2SiO2莫来石相具有更好的高温稳定性和耐高温性能,能提高合金在高温下长时间使用的性能。

Claims (10)

1.一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层的制备方法,其特征在于,包括以下步骤:
步骤1,先对钛合金基体进行机械打磨,再进行抛光处理;
步骤2,将经步骤1得到的钛合金基体依次使用无水乙醇和去离子水进行超声清洗;
步骤3,将经步骤2得到的钛合金基体在鼓风干燥箱中进行烘干处理;
步骤4,将经步骤3得到的基体置于磁控溅射仪的样品台上,在靶基座上装上Si靶,采用直流溅射方式在钛合金表面镀覆Si单质层;
步骤5,将经步骤4得到的镀Si基片在高温下进行氧化处理;
步骤6,将经步骤5制备的钛合金基板取出,在表面均匀铺覆一层铝箔;
步骤7,将经步骤6制备的钛合金基板置于真空炉中,在高温下保温使其完全熔融,均匀涂覆在钛合金基板表面;
步骤8,将步骤7中得到的钛合金基板在空气中进行氧化处理得到SiO2和Al2O3,并通过二者之间的反应生成莫来石相,获得SiO2-莫来石-Al2O3多组分梯度防氧化涂层。
2.根据权利要求1所述的一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层的制备方法,其特征在于,步骤1中依次进行500#,1000#,1500#,2000#砂纸打磨,并用研磨膏进行抛光处理。
3.根据权利要求1所述的一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层的制备方法,其特征在于,步骤2中,超声清洗时间为10~20min。
4.根据权利要求1所述的一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层的制备方法,其特征在于,步骤3中,钛合金基板在鼓风干燥箱中的烘干温度为60~90℃,烘干时间为60~80min。
5.根据权利要求1所述的一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层的制备方法,其特征在于,步骤4中,Si靶材的纯度为99.99%,本底真空度为3×10-4Pa,沉积温度为300~500℃,腔体气压为10-3~10-2Pa,偏压为200~300V,氩气流量为15~25mL/min,持续溅射时间为60~120min得到Si单质层。
6.根据权利要求1所述的一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层的制备方法,其特征在于,步骤5中,在高温下进行氧化处理的温度为400~600℃,时间为1~2h。
7.根据权利要求1所述的一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层的制备方法,其特征在于,步骤6中,铺覆的铝箔的厚度为50~100μm。
8.根据权利要求1所述的一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层的制备方法,其特征在于,步骤7,高温热处理的温度为750~850℃,保温时间为1~2h。
9.根据权利要求1所述的一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层的制备方法,其特征在于,步骤8,在空气中氧化的温度为700~900℃,时间为2~4h,得到SiO2-莫来石-Al2O3多组分梯度防氧化涂层。
10.一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层,其特征在于,采用权利要求1至9中任一项所述的制备方法制备得到。
CN202111249344.2A 2021-10-26 2021-10-26 一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层及其制备方法 Active CN114395750B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111249344.2A CN114395750B (zh) 2021-10-26 2021-10-26 一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111249344.2A CN114395750B (zh) 2021-10-26 2021-10-26 一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN114395750A true CN114395750A (zh) 2022-04-26
CN114395750B CN114395750B (zh) 2024-01-23

Family

ID=81226026

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111249344.2A Active CN114395750B (zh) 2021-10-26 2021-10-26 一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN114395750B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3073770A (en) * 1961-04-24 1963-01-15 Bell Telephone Labor Inc Mullite synthesis
CN1448535A (zh) * 2002-04-04 2003-10-15 西北工业大学 一种刚玉-莫来石复相陶瓷涂层的制备方法
CN1448534A (zh) * 2002-04-04 2003-10-15 西北工业大学 一种氧化铝-氧化硅复合氧化物薄膜制备工艺
US20060093833A1 (en) * 2002-03-05 2006-05-04 Dirk Meyer Components having crystalline coatings of the aluminum oxide/silicon oxide system and method for the production thereof
CN101974734A (zh) * 2010-11-30 2011-02-16 上海纳米技术及应用国家工程研究中心有限公司 具有多层复合防护膜的基底材料的制备方法
CN102002673A (zh) * 2010-09-17 2011-04-06 陕西师范大学 纳米晶硅-氧化铝/氧化硅热电薄膜材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3073770A (en) * 1961-04-24 1963-01-15 Bell Telephone Labor Inc Mullite synthesis
US20060093833A1 (en) * 2002-03-05 2006-05-04 Dirk Meyer Components having crystalline coatings of the aluminum oxide/silicon oxide system and method for the production thereof
CN1448535A (zh) * 2002-04-04 2003-10-15 西北工业大学 一种刚玉-莫来石复相陶瓷涂层的制备方法
CN1448534A (zh) * 2002-04-04 2003-10-15 西北工业大学 一种氧化铝-氧化硅复合氧化物薄膜制备工艺
CN102002673A (zh) * 2010-09-17 2011-04-06 陕西师范大学 纳米晶硅-氧化铝/氧化硅热电薄膜材料的制备方法
CN101974734A (zh) * 2010-11-30 2011-02-16 上海纳米技术及应用国家工程研究中心有限公司 具有多层复合防护膜的基底材料的制备方法

Also Published As

Publication number Publication date
CN114395750B (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
TWI276704B (en) Y2O3 spray-coated member and production method thereof
CN103794445B (zh) 用于等离子体处理腔室的静电夹盘组件及制造方法
US20180135157A1 (en) Plasma resistant coating film and fabricating method thereof
US20090161285A1 (en) Electrostatic chuck and method of forming
CN108359927A (zh) 一种NiCr/Al2O3复合涂层的制备方法
CN109504947B (zh) 一种CrN涂层、制备方法及应用
CN108977781B (zh) 一种硬质合金表面磁控溅射复合技术沉积w-n硬质膜的方法
CN102500912B (zh) 利用超声纳米焊接方法对金属进行表面改性的方法
US8795840B2 (en) Coated article and method for making the same
CN105970215A (zh) 一种轴承的复合层制备方法及其轴承
JP4006596B2 (ja) 希土類酸化物溶射部材および溶射用粉
JP2003268571A (ja) 複合硬質皮膜、その製造方法及び成膜装置
CN114395750A (zh) 一种SiO2-莫来石-Al2O3多组分梯度防氧化涂层及其制备方法
CN109554656B (zh) 一种常温大气氛围下致密陶瓷涂层的制备方法和***
CN103774092B (zh) 一种在镁合金表面制备导电且耐腐蚀涂层的方法
CN110438421A (zh) 一种铝合金材料及铝合金固溶处理+pvd涂层同步强化方法
JP2009029686A (ja) 耐食性部材およびその製造方法ならびに処理装置
CN109554667B (zh) 一种TA15合金表面耐磨Nb-N共渗层及其制备方法与应用
CN113981397A (zh) 一种用于钛合金的Cr2O3/Al2O3梯度抗氧化涂层及其制备方法
US8765268B2 (en) Coated article and method for making said article
CN113278931A (zh) 复合材料表面磁控溅射镀层增厚方法
KR101922805B1 (ko) 박리방지를 위한 용사코팅층 제조방법 및 이를 이용한 용사코팅층
JP2011162865A (ja) 複合硬質皮膜部材及びその製造方法
CN113957439B (zh) 一种钛合金用Al2O3_莫来石梯度防氧化涂层及其制备方法
JP2728264B2 (ja) 通電性に優れるコンダクターロールの製造方法およびコンダクターロール

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant