CN114242982A - 石墨烯包覆二维金属化合物电极材料及其制备方法和应用 - Google Patents

石墨烯包覆二维金属化合物电极材料及其制备方法和应用 Download PDF

Info

Publication number
CN114242982A
CN114242982A CN202111560111.4A CN202111560111A CN114242982A CN 114242982 A CN114242982 A CN 114242982A CN 202111560111 A CN202111560111 A CN 202111560111A CN 114242982 A CN114242982 A CN 114242982A
Authority
CN
China
Prior art keywords
graphene
electrode material
coated
metal compound
dimensional metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111560111.4A
Other languages
English (en)
Other versions
CN114242982B (zh
Inventor
王敬
郝雪纯
谭国强
王冉
苏岳锋
吴锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Chongqing Innovation Center of Beijing University of Technology
Original Assignee
Beijing Institute of Technology BIT
Chongqing Innovation Center of Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT, Chongqing Innovation Center of Beijing University of Technology filed Critical Beijing Institute of Technology BIT
Priority to CN202111560111.4A priority Critical patent/CN114242982B/zh
Publication of CN114242982A publication Critical patent/CN114242982A/zh
Application granted granted Critical
Publication of CN114242982B publication Critical patent/CN114242982B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种石墨烯包覆二维金属化合物电极材料及其制备方法和应用,该方法将金属单质粉末置于真空管式炉中,然后在惰性气体与CX2气体的混合气氛中进行煅烧,煅烧后随炉冷却即得到,其中,所述X选自S、Se、Te中的一种或多种。本发明利用金属单质与CX2型化合物的金属热反应,原位合成了碳包覆二维金属硫化物电极,碳层的存在形式为石墨烯,有效提升了材料的结构稳定性和导电性,从而提高了负极材料的循环稳定性。本发明提供的合成方法仅需一步完成,方法便捷,成本低廉,适合工业化大规模生产使用。

Description

石墨烯包覆二维金属化合物电极材料及其制备方法和应用
技术领域
本发明涉及锂离子电池材料制备技术领域,特别涉及一种石墨烯包覆二维金属化合物电极材料及其制备方法和应用。
背景技术
锂离子电池作为一种二次储能器件,广泛应用于小型便携式电子产品和电动交通工具,具有极高的应用前景。锂离子电池由正极、负极、隔膜和电解液四大主要原材料构成,其中负极材料是影响锂离子电池容量、循环性能和倍率性能发挥的关键因素之一。当前市场上主流应用的商业石墨负极理论容量仅为372mAh/g,研发具有更高比容量的负极材料是二次电池领域的重要任务。其中,二维金属化合物MX2(M=Mo/W/Sn等,X=S/Se/Te等)独特的层状结构和储锂特性使其可以提供超过600mAh/g的理论比容量,成为一类具有发展前景的新型负极材料。单独的二维金属化合物在电池循环过程中普遍存在着体积膨胀、副产物溶解等问题,导致循环性能不佳,将金属化合物与碳材料复合可以有效缓解上述问题。截止目前,已经有报道采用水热法、化学气相沉积等方法成功合成了具有较高比容量和较稳定的循环性能的相关二维金属化合物/碳材料复合负极材料(如MoS2、WS2、MoSe2等),但目前已报道的方法大多存在制备过程繁琐、产率低、成本高等缺陷,既停留在实验室阶段。
中国专利CN 109671937A公开了一种过渡型金属氧化物/石墨烯复合材料的原位合成方法,其工艺大致为:将可溶性铁盐、可溶性过渡金属盐以及可溶性铈盐于去离子水中溶解混合,得到均匀溶液,向均匀溶液中滴加沉淀剂,陈化后过滤、水洗、烘干,得到过渡金属氢氧化物复合物沉淀;称取石墨和高锰酸钾,混合后加入浓硫酸和磷酸混合酸液中,反应得到灰绿色溶液,冰浴处理后,加入过渡金属氢氧化物复合物沉淀,然后再缓慢加入过氧化氢,搅拌分散后,得到相互包覆生长的过渡型金属氢氧化物/氧化石墨烯的悬浊液,悬浊液经过洗涤、离心、干燥、焙烧后,即得到过渡型金属氧化物/石墨烯复合材料。该专利技术采用原位合成氧化石墨烯的过程中,直接加入过渡金属氢氧化物的复合物,得到具有多孔结构的过渡型金属氧化物/石墨烯复合材料,比表面积达到100-200m2/g,其中,CeO2的加入有利于纳米棒的生成,石墨烯均匀分散在产物颗粒缝隙之间,这种结构能够缓冲金属氧化物在充放电循环过程中的体积膨胀效应,并提高电极反应动力学性能。然而,该专利技术依然存在制备过程繁琐、产率低、成本高等缺陷,无法工业应用。
发明内容
本发明的发明目的在于:针对上述存在的问题,提供一种石墨烯包覆二维金属化合物电极材料及其制备方法和应用,本发明利用金属单质与CX2型化合物的金属热反应,原位合成了碳包覆二维金属硫化物电极,碳层的存在形式为石墨烯,有效提升了材料的结构稳定性和导电性,从而提高了负极材料的循环稳定性,本发明提供的合成方法仅需一步完成,方法便捷,成本低廉,适合工业化大规模生产使用,克服了现有技术所存在的不足。
本发明采用的技术方案如下:一种原位合成石墨烯包覆二维金属化合物电极材料的方法,所述原位合成方法是将金属单质粉末置于真空管式炉中,然后在惰性气体与CX2气体的混合气氛中进行煅烧,煅烧后随炉冷却即得到,其中,所述X选自S、Se、Te中的一种或多种。
进一步,所述金属单质为Mo、W、Sn等中的一种或多种,不限于前三种金属单质。
进一步,煅烧温度为600-1000℃,煅烧时间为4-6h。
进一步,煅烧时,升温速率为2-6℃/min。
进一步,所述惰性气体为氩气,氩气与CX2的体积比为100:1-10。体积比最好在此范围内,如果CX2的体积占比过低,则反应时间较长且转换不彻底,反之,如果CX2的体积占比过高,则CS2浪费较多,成本变高,污染环境。
作为优选,所述金属单质为Mo,所述CX2为CS2
本发明还包括一种石墨烯包覆二维金属化合物电极材料,所述电极材料通过上述方法制备得到。
进一步,所述电极材料的内层为层状金属化合物,外层为石墨烯。
本发明还包括一种锂离子电池,包括负极材料,所述负极材料为上述石墨烯包覆二维金属化合物电极材料。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1、本发明获得的碳包覆二维金属化合物电极材料,其内层为层状金属化合物,外层为石墨烯,具有良好的结构稳定性和导电性,作为二次离子电池的负极可提供较高的比容量和良好的循环稳定性;
2、本发明利用金属单质与CX2型化合物的金属热反应,原位合成了碳包覆二维金属硫化物电极,碳层的存在形式为石墨烯,有效提升了材料的结构稳定性和导电性,从而提高了负极材料的循环稳定性,本发明提供的合成方法仅需一步完成,方法便捷,成本低廉,适合工业化大规模生产使用,克服了现有技术所存在的不足。
附图说明
图1为本发明实施例1中反应前原始钼粉的SEM形貌图;
图2为本发明实施例1中反应后合成的MoS2@graphene的SEM形貌图;
图3为本发明实施例1中MoS2@graphene的TEM图;
图4为本发明实施例1中MoS2@graphene的XRD图谱;
图5为本发明实施例1 MoS2@graphene与对比例1 MoS2的循环曲线图;
图6为本发明实施例2 SnS@graphene与对比例1 SnS的循环曲线图;
图7为本发明实施例3 WS2@graphene与对比例1 WS2的循环曲线图。
具体实施方式
下面结合附图,对本发明作详细的说明。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
试验主要检测设备
X射线衍射(XRD)测试:X射线衍射仪,仪器型号:Rigaku UltimaIV-185,日本。
扫描电子显微镜(SEM)测试:扫描电子显微镜,仪器型号:FEIQuanta,荷兰。
CR2025钮扣电池的组装方法
将电极材料(实施例1、实施例2、实施例3)、乙炔黑、聚偏氟乙烯(PVDF)按照7:2:1的质量比制成浆料并涂覆在铜箔上、烘干,并用裁片机将烘干后的铜箔裁成直径约为1cm的小圆片用作负极,以金属锂片作为对电极、Celgard2500为隔膜、EC/DMC/EMC 1:1:1(W/W)+1M LiPF6为电解液,在氩气氛围的手套箱内组装成CR2025钮扣电池。
电化学性能测试:
采用LANDCT 2001A测试仪(武汉市蓝电电子有限公司)对组装的电池进行电化学性能测试,测试温度30℃,测试电压范围0.01-3V,测试过程中在100mAh/g下进行充放电。
实施例1
一种制备石墨烯包覆MoS2(M=Mo、X=S)电极材料的方法,包括以下步骤:
S1、称取1g的纳米级钼粉放置于管式炉中,然后通入氩气和CS2的混合气体,其中,CS2的体积占比为8%;
S2、设置加热程序为4℃min的升温速度煅烧钼粉,升温至900℃后保温5h,然后随炉冷却即得到石墨烯包覆的MoS2电极材料。
将得到的石墨烯包覆的MoS2电极材料制成负极极片并制作扣式电池作性能对比。其中,负极组成为:复合负极材料:导电添加剂:粘结剂=70:20:10,采用Celgard2500型号隔膜,对电极为锂金属,EC/DMC/EMC 1:1:1(W/W)+1M LiPF6为电解液。
实施例2
一种制备石墨烯包覆SnS电极材料的方法,包括以下步骤:
S1、称取1g的纳米级锡粉放置于管式炉中,然后通入氩气和CS2的混合气体,其中,CS2的体积占比为2%;
S2、设置加热程序为5℃min的升温速度煅烧锡粉,升温至800℃后保温5h,然后随炉冷却即得到石墨烯包覆的SnS2电极材料。
将上述实施例得到的SnS2@graphene电极材料按照实施例1的方法制成电极片作为负极,以金属锂片作为对电极、Celgard2500为隔膜、1M的碳酸酯溶液为电解液(其中,溶剂为体积比为1:1的碳酸乙烯酯和碳酸二甲酯的混合溶液,溶质为LiPF6),在氩气氛围的手套箱内组装成CR2025钮扣电池。在100mA·g-1充放电电流密度下,测试电池性能。
实施例3
一种制备石墨烯包覆WS2(M=W、X=S)电极材料的方法,包括以下步骤:
S1、称取1g的纳米级钨粉放置于管式炉中,然后通入氩气和CS2的混合气体,其中,CS2的体积占比为5%;
S2、设置加热程序为6℃min的升温速度煅烧钨粉,升温至700℃后保温5h,然后随炉冷却即得到石墨烯包覆的WS2电极材料。
将上述实施例得到的WS2@graphene电极材料按照实施例1的方法制成电极片作为负极,以金属锂片作为对电极、Celgard2500为隔膜、1M的碳酸酯溶液为电解液(其中,溶剂为体积比为1:1的碳酸乙烯酯和碳酸二甲酯的混合溶液,溶质为LiPF6),在氩气氛围的手套箱内组装成CR2025钮扣电池。在100mA·g-1充放电电流密度下,测试电池性能。
对比例1
对于市售MoS2样品(麦克林,≥99.5%,100nm)按照实施实例1所述的方法制成负极极片,组装成纽扣电池,在与实施例1相同的测试条件下进行电池测试。
对比例2
对于市售SnS样品(有融材料,99.99%,325目)按照实施实例1所述的方法制成负极极片,组装成纽扣电池,在与实施例1相同的测试条件下进行电池测试。
对比例3
对于市售WS2样品(阿拉丁,99.9%,2μm)按照实施实例1所述的方法制成负极极片,组装成纽扣电池,在与实施例1相同的测试条件下进行电池测试。
通过SEM测试表明,实施例1所得材料具有层状形貌。通过TEM测试表明,实施例1所得材料片层表面有石墨烯层包覆。通过XRD测试表明,实施例1所得材料的主要成分为二硫化钼。通过电池恒流充放电测试结果表明,100mA/g电流密度条件下,实施例1所述的MoS2@graphene负极材料的首次放电比容量为746.6mAh/g,循环100次后容量保持率达77%。实施例2所述的SnS2@graphene负极材料的首次放电比容量为1194mAh/g,循环20次后容量保持率为42%。实施例3所述的WS2@graphene负极材料的首次放电比容量为707mAh/g,循环20次后容量保持率达88%。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种石墨烯包覆二维金属化合物电极材料的原位合成方法,其特征在于,所述原位合成方法为:将金属单质粉末置于真空管式炉中,然后在惰性气体与CX2气体的混合气氛中进行煅烧,煅烧后随炉冷却即得到,其中,所述X选自S、Se、Te中的一种或多种。
2.如权利要求1所述的石墨烯包覆二维金属化合物电极材料的原位合成方法,其特征在于,所述金属单质为Mo、W、Sn中的一种或多种。
3.如权利要求2所述的石墨烯包覆二维金属化合物电极材料的原位合成方法,其特征在于,煅烧温度为600-1000℃,煅烧时间为4-6h。
4.如权利要求3所述的石墨烯包覆二维金属化合物电极材料的原位合成方法,其特征在于,煅烧时,升温速率为2-6℃/min。
5.如权利要求1所述的石墨烯包覆二维金属化合物电极材料的原位合成方法,其特征在于,所述惰性气体为氩气,氩气与CX2的体积比为100:1-10。
6.如权利要求1所述的石墨烯包覆二维金属化合物电极材料的原位合成方法,其特征在于,所述金属单质为Mo,所述CX2为CS2
7.一种石墨烯包覆二维金属化合物电极材料,其特征在于,所述电极材料通过上述权利要求1-6任一所述的原位合成方法制备得到。
8.如权利要求7所述的石墨烯包覆二维金属化合物电极材料,其特征在于,所述电极材料的内层为层状金属化合物,外层为石墨烯。
9.一种锂离子电池,包括负极材料,其特征在于,所述负极材料为权利要求8所述的石墨烯包覆二维金属化合物电极材料。
CN202111560111.4A 2021-12-20 2021-12-20 石墨烯包覆二维金属化合物电极材料及其制备方法和应用 Active CN114242982B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111560111.4A CN114242982B (zh) 2021-12-20 2021-12-20 石墨烯包覆二维金属化合物电极材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111560111.4A CN114242982B (zh) 2021-12-20 2021-12-20 石墨烯包覆二维金属化合物电极材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114242982A true CN114242982A (zh) 2022-03-25
CN114242982B CN114242982B (zh) 2023-11-07

Family

ID=80759033

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111560111.4A Active CN114242982B (zh) 2021-12-20 2021-12-20 石墨烯包覆二维金属化合物电极材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114242982B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173775A (ja) * 2001-12-05 2003-06-20 Japan Storage Battery Co Ltd 非水電解質二次電池
US20060239882A1 (en) * 2003-01-31 2006-10-26 Seo Dong-Kyun Preparation of metal chalcogenides from reactions of metal compounds and chalcogen
US20120121973A1 (en) * 2010-11-15 2012-05-17 Samsung Electro-Mechanics Co., Ltd. Negative active material and lithium secondary battery with the same, and method for manufacturing the lithium secondary battery
CN102522543A (zh) * 2011-12-15 2012-06-27 清华大学 一种制备二硫化锡-石墨烯纳米复合物的方法
US8303926B1 (en) * 2009-01-22 2012-11-06 Stc.Unm Synthetic methods for generating WS2 nanostructured materials
US20140110635A1 (en) * 2011-06-14 2014-04-24 Ulrich Wietelmann Method for producing a carbon-coated lithium sulfide and use thereof
CN105621355A (zh) * 2016-03-08 2016-06-01 上海大学 一种空心石墨烯球负载纳米二硫化锡复合材料及其制备方法
WO2018024183A1 (zh) * 2016-08-01 2018-02-08 福建新峰二维材料科技有限公司 一种三维石墨烯/MoS2复合材料的制备方法
CN107959005A (zh) * 2017-10-25 2018-04-24 温州大学 一种过渡金属硫化物与石墨烯的复合材料及其制备方法与应用
CN108346783A (zh) * 2018-01-11 2018-07-31 三峡大学 一种分层结构MoSxSe2-x/石墨烯负极材料及其制备方法
WO2018148518A1 (en) * 2017-02-10 2018-08-16 University Of North Texas Passivation of lithium metal by two-dimensional materials for rechargeable batteries
CN111530491A (zh) * 2020-06-11 2020-08-14 上海纳米技术及应用国家工程研究中心有限公司 一种三维硫化钼/氮掺杂石墨烯电催化剂的制备及其析氢应用

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173775A (ja) * 2001-12-05 2003-06-20 Japan Storage Battery Co Ltd 非水電解質二次電池
US20060239882A1 (en) * 2003-01-31 2006-10-26 Seo Dong-Kyun Preparation of metal chalcogenides from reactions of metal compounds and chalcogen
US8303926B1 (en) * 2009-01-22 2012-11-06 Stc.Unm Synthetic methods for generating WS2 nanostructured materials
US20120121973A1 (en) * 2010-11-15 2012-05-17 Samsung Electro-Mechanics Co., Ltd. Negative active material and lithium secondary battery with the same, and method for manufacturing the lithium secondary battery
US20140110635A1 (en) * 2011-06-14 2014-04-24 Ulrich Wietelmann Method for producing a carbon-coated lithium sulfide and use thereof
CN102522543A (zh) * 2011-12-15 2012-06-27 清华大学 一种制备二硫化锡-石墨烯纳米复合物的方法
CN105621355A (zh) * 2016-03-08 2016-06-01 上海大学 一种空心石墨烯球负载纳米二硫化锡复合材料及其制备方法
WO2018024183A1 (zh) * 2016-08-01 2018-02-08 福建新峰二维材料科技有限公司 一种三维石墨烯/MoS2复合材料的制备方法
WO2018148518A1 (en) * 2017-02-10 2018-08-16 University Of North Texas Passivation of lithium metal by two-dimensional materials for rechargeable batteries
CN107959005A (zh) * 2017-10-25 2018-04-24 温州大学 一种过渡金属硫化物与石墨烯的复合材料及其制备方法与应用
CN108346783A (zh) * 2018-01-11 2018-07-31 三峡大学 一种分层结构MoSxSe2-x/石墨烯负极材料及其制备方法
CN111530491A (zh) * 2020-06-11 2020-08-14 上海纳米技术及应用国家工程研究中心有限公司 一种三维硫化钼/氮掺杂石墨烯电催化剂的制备及其析氢应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANWER, S等: ""Nature-Inspired, Graphene-Wrapped 3D MoS2 Ultrathin Microflower Architecture as a High-Performance Anode Material for Sodium-Ion Batteries"", 《ACS APPLIED MATERIALS & INTERFACES》, vol. 11, no. 25, pages 22323 - 22331 *
TAN, G等: ""Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries"", 《NATURE ENERGY》, vol. 2, pages 1 - 10 *
白金曼: "过渡金属硫属化合物结构的设计合成及电化学性能研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》, no. 07, pages 016 - 424 *
陈俊杰等: ""二硫化钼/石墨烯复合电极的制备及其储锂性能"", 《武汉大学学报(理学版)》, vol. 62, no. 1, pages 19 - 24 *
韩大伟;江素华;: "WSe_2负载掺氮三维石墨烯的制备及储锂性能", 复旦学报(自然科学版), no. 05 *

Also Published As

Publication number Publication date
CN114242982B (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
CN107248569B (zh) 以1-乙基-3-甲基咪唑二氰胺为碳源制得的锑/氮掺杂碳复合物及其制备方法和应用
CN111591971B (zh) 磷酸钛锂纳米复合材料、制备方法及在水系电池中的应用
CN114597532A (zh) 失效钴酸锂正极直接再生为高电压钴酸锂正极的方法及产物
CN114497549B (zh) 电化学制备正极补锂材料的方法和补锂材料及补锂浆料
CN112928246B (zh) 一种复合材料、其制备方法及应用
CN106058193A (zh) 一种新型钠离子电池负极材料及其制备方法和应用
CN113410459B (zh) 一种内嵌MoSx纳米片的三维有序大孔类石墨烯炭材料、制备与应用
CN113937262A (zh) 一种用于钠离子电池的金属氧化物改性的正极材料及其制备方法和应用
CN110600710B (zh) 硫化铁-碳复合材料及其制备方法、锂离子电池负极材料、锂离子电池负极片和锂离子电池
CN109534401B (zh) 一种钒酸铜的制备方法,该方法制备得到的钒酸铜及其在锂离子电池中的应用
CN106784750A (zh) 一种TiO/C负极材料及其制备方法和应用
CN111244420A (zh) 一种锂电池用NiCo2O4@Ni-B负极材料及其制备方法
CN114094063B (zh) 一种利用空腔前驱体与zif衍生物相结合制备电池负极材料的方法
CN115275151A (zh) 一种二硫化钒/碳化钛复合材料及其制备方法和应用
CN115714172A (zh) 空心石墨烯@iva族氧化物复合材料的制备方法及其产品和应用
CN112234194B (zh) 一种碘修饰MXene材料及其制备方法与应用
CN115084471A (zh) 层状卤化物双钙钛矿锂离子电池负极材料及其制备方法
CN114242982B (zh) 石墨烯包覆二维金属化合物电极材料及其制备方法和应用
CN113540460A (zh) 复合材料及其制备方法和应用
CN111129454A (zh) 一种锂离子电池负极材料及其制备方法和应用
Sun et al. Review on Layered Manganese‐Based Metal Oxides Cathode Materials for Potassium‐Ion Batteries: From Preparation to Modification
CN113651356B (zh) 核壳空腔结构二氧化钛石墨烯复合体制备方法及其应用
CN115583873B (zh) 一种方酸锂材料及其制备方法和应用
CN113725434B (zh) 一种镍基金属有机框架衍生的复合电极及其制备方法
安部勇輔 Charging and Discharging Performances of Advanced Li-ion Batteries Using Eco-friendly Active Materials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant