CN114210337B - 钨酸镍铜纳米异质结颗粒及其制备方法和催化产氢应用 - Google Patents

钨酸镍铜纳米异质结颗粒及其制备方法和催化产氢应用 Download PDF

Info

Publication number
CN114210337B
CN114210337B CN202111259549.9A CN202111259549A CN114210337B CN 114210337 B CN114210337 B CN 114210337B CN 202111259549 A CN202111259549 A CN 202111259549A CN 114210337 B CN114210337 B CN 114210337B
Authority
CN
China
Prior art keywords
solution
nickel
nano heterojunction
nickel copper
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111259549.9A
Other languages
English (en)
Other versions
CN114210337A (zh
Inventor
李�浩
廖锦云
冯裕发
张婉玲
刘全兵
王慧泽
陈晓东
张雪峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huizhou University
Original Assignee
Huizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou University filed Critical Huizhou University
Priority to CN202111259549.9A priority Critical patent/CN114210337B/zh
Publication of CN114210337A publication Critical patent/CN114210337A/zh
Application granted granted Critical
Publication of CN114210337B publication Critical patent/CN114210337B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明属于催化领域及储氢材料领域。一种钨酸镍铜纳米异质结颗粒,所述钨酸镍铜纳米异质结颗粒的分子式为NixCu1‑xWO4,其中,0<x<1。本发明颗粒形貌可控,金属负载量可调,机械强度高,催化性能好,在氨硼烷醇解制氢领域具有良好的应用前景。

Description

钨酸镍铜纳米异质结颗粒及其制备方法和催化产氢应用
技术领域
本发明属于催化领域及储氢材料领域,具体涉及一种钨酸镍铜纳米异质结颗粒及其制备方法和催化产氢应用。
背景技术
氨硼烷(NH3BH3,AB)含氢量高,释氢速率快,具有较好稳定性,环境友好,被认为是最具潜力的储氢材料之一。氨硼烷分解制氢的方式包括热解、水解及醇解。氨硼烷醇解产物NH4B(OCH3)4在室温下可与LiAlH4和NH4Cl反应生产氨硼烷,制氢产物易回收,生产应用成本低。
氨硼烷醇解制氢在没有催化剂催化的条件下,反应速率缓慢,制氢速率低。提高氨硼烷醇解制氢速率的关键在于降低其反应活化能,即需要一种催化性能好、催化活性高的催化剂。常用的贵金属催化剂(如Pt、Pd、Rh、Ru等)对氨硼烷醇解有较高的催化活性和选择性,但贵金属催化剂成本过高,不适于大规模商业应用。单组分的非贵金属催化剂由于其本身的电子结构不佳,其催化性能远不如贵金属,需要引入其他金属元素来改善其自身的电子结构,并通过调控其形貌来提升其催化性能。在纳米尺寸下,非贵金属的比表面积和反应活性大大增加,但是较高的比表面能会导致催化剂颗粒更易发生团聚现象,降低其循环寿命。因此,需要一种生产成本低、形貌可控、催化性能好的,能够用于工业化氨硼烷醇解制氢的催化剂。
发明内容
本发明所要解决的技术问题是提供一种钨酸镍铜纳米异质结颗粒,该颗粒金属负载量可调,颗粒形貌可控,机械强度高,催化性能好,在氨硼烷醇解制氢领域具有良好的应用前景。
本发明钨酸镍铜纳米异质结颗粒制备过程操作简单,环境友好,生产成本低,实验重现性好,易于工业化生产,可规模化生产NixCu1-xWO4复合钨酸盐异质结。
本发明钨酸镍铜纳米异质结颗粒作为催化剂具有极高的催化活性,将其应用于氨硼烷醇解制氢中,TOF值最高可达59.0molhydrogenmin-1molcat -1
本发明的技术方案如下:
一种钨酸镍铜纳米异质结颗粒,所述钨酸镍铜纳米异质结颗粒的分子式为NixCu1-xWO4,其中,0<x<1。
一种所述的钨酸镍铜纳米异质结颗粒的制备方法,包括以下步骤:
S1.将可溶性的二价铜盐、二价镍盐溶于超纯水中,制得混合盐溶液A;
S2.将钨酸钠溶于超纯水中形成溶液B;
S3.将水杨酸钠加入所述溶液A中,搅拌溶解后滴加所述溶液B,制得溶液C;
S4.将所述溶液C移至反应釜,120-200℃反应2-18h,过滤洗涤后移至马弗炉,300-700℃反应0.5-5h,即得NixCu1-xWO4钨酸镍铜纳米异质结。
进一步的,所述二价铜盐为氯化铜、硝酸铜、硫酸铜、醋酸铜中的至少一种。
进一步的,所述二价镍盐为氯化镍、硝酸镍、硫酸镍、醋酸镍中的至少一种。
进一步的,步骤S1中,所述溶液A中混合盐浓度为0.01-0.1mmol/ml。
进一步的,步骤S2中,所述混合B中钨酸钠浓度为0.01-0.1mmol/ml。
进一步的,步骤S3中,所述水杨酸钠与混合盐的摩尔比为1-3:1。
一种所述的钨酸镍铜纳米异质结颗粒在氨硼烷醇解制氢中作为催化剂的应用。
本发明具有如下有益效果:
本发明钨酸镍铜纳米异质结颗粒形貌可控,金属负载量可调,机械强度高,催化性能好,在氨硼烷醇解制氢领域具有良好的应用前景。
本发明采用水热合成法制备钨酸镍铜纳米异质结颗粒,制备过程操作简单,反应条件温和,环境友好,生产成本低,实验重现性好,易于工业化生产,可规模化生产NixCu1- xWO4复合钨酸盐异质结。可通过改变反应物浓度、反应温度和反应时间控制材料的形貌和尺寸大小。水杨酸钠作为络合剂,可控制金属离子的释放速率,提高金属分散性,使制得的材料纯度高、物尺寸均一、形貌规整。在钨酸根离子存在的条件下生成前驱物,煅烧后制得的高钨酸盐复合物具有良好的稳定性、机械强度和催化活性。
本发明钨酸镍铜纳米异质结颗粒作为催化剂具有极高的催化活性,尤其以Ni0.2Cu0.8WO4催化活性最高,将其应用于在氨硼烷醇解制氢中,TOF值高达59.0molhydrogenmin-1molcat -1,该值是目前文献报道的最高TOF值之一,可实现大规模工业化催化产氢,有效提高产氢效率。
附图说明
图1为本发明实施例1制备的Ni0.8Cu0.2WO4的TEM图;
图2为本发明实施例2制备的Ni0.6Cu0.4WO4的TEM图;
图3为本发明实施例3制备的Ni0.4Cu0.6WO4的TEM图;
图4为本发明实施例4制备的Ni0.2Cu0.8WO4的TEM图;
图5为本发明实施例4制备的Ni0.2Cu0.8WO4的HRTEM图;
图6为本发明实施例4制备的Ni0.2Cu0.8WO4的HRTEM图。
具体实施方式
下面结合实施例对本发明进行详细的说明,实施例仅是本发明的优选实施方式,不是对本发明的限定。
实施例1
一种钨酸镍铜纳米异质结颗粒的制备方法,包括以下步骤:
S1.将硝酸镍1.6mmol和硝酸铜0.4mmol溶于40mL超纯水中搅拌5min,制得混合盐溶液A;
S2.将2mmol钨酸钠溶于40mL超纯水中形成溶液B;
S3.将4mmol水杨酸钠加入所述溶液A中,搅拌溶解后通过分液漏斗缓慢滴加所述溶液B,搅拌5min,制得溶液C;
S4.将所述溶液C移至100mL反应釜,170℃反应5h,反应釜底固体抽滤洗涤后移至马弗炉,500℃反应2h,即得Ni0.8Cu0.2WO4钨酸镍铜纳米异质结,其形貌如图1所示。
将制得的钨酸镍铜纳米异质结颗粒Ni0.8Cu0.2WO4作为催化剂应用于氨硼烷醇解制氢中,其转化频率(turnoverfrequency)为7.6molhydrogenmin-1molcat -1
实施例2
一种钨酸镍铜纳米异质结颗粒的制备方法,包括以下步骤:
S1.将硝酸镍1.2mmol和硝酸铜0.8mmol溶于40mL超纯水中搅拌10min,制得混合盐溶液A;
S2.将2mmol钨酸钠溶于40mL超纯水中形成溶液B;
S3.将4mmol水杨酸钠加入所述溶液A中,搅拌溶解后通过分液漏斗缓慢滴加所述溶液B,搅拌5min,制得溶液C;
S4.将所述溶液C移至100mL反应釜,170℃反应5h,反应釜底固体抽滤洗涤后移至马弗炉,500℃反应2h,即得Ni0.6Cu0.4WO4钨酸镍铜纳米异质结,其形貌如图2所示。
将制得的钨酸镍铜纳米异质结颗粒Ni0.6Cu0.4WO4作为催化剂应用于氨硼烷醇解制氢中,其转化频率(turnoverfrequency)为8.3molhydrogenmin-1molcat -1
实施例3
一种钨酸镍铜纳米异质结颗粒的制备方法,包括以下步骤:
S1.将硝酸镍0.8mmol和硝酸铜1.2mmol溶于40mL超纯水中搅拌10min,制得混合盐溶液A;
S2.将2mmol钨酸钠溶于40mL超纯水中形成溶液B;
S3.将4mmol水杨酸钠加入所述溶液A中,搅拌溶解后通过分液漏斗缓慢滴加所述溶液B,搅拌5min,制得溶液C;
S4.将所述溶液C移至100mL反应釜,170℃反应5h,反应釜底固体抽滤洗涤后移至马弗炉,500℃反应2h,即得Ni0.4Cu0.6WO4钨酸镍铜纳米异质结,其形貌如图3所示。
将制得的钨酸镍铜纳米异质结颗粒Ni0.4Cu0.6WO4作为催化剂应用于氨硼烷醇解制氢中,其转化频率(turnoverfrequency)为27.7molhydrogenmin-1molcat -1
实施例4
一种钨酸镍铜纳米异质结颗粒的制备方法,包括以下步骤:
S1.将硝酸镍0.4mmol和硝酸铜1.6mmol溶于40mL超纯水中搅拌10min,制得混合盐溶液A;
S2.将2mmol钨酸钠溶于40mL超纯水中形成溶液B;
S3.将4mmol水杨酸钠加入所述溶液A中,搅拌溶解后通过分液漏斗缓慢滴加所述溶液B,搅拌5min,制得溶液C;
S4.将所述溶液C移至100mL反应釜,170℃反应5h,反应釜底固体抽滤洗涤后移至马弗炉,500℃反应2h,即得Ni0.2Cu0.8WO4钨酸镍铜纳米异质结,其形貌如图4-6所示。
将制得的钨酸镍铜纳米异质结颗粒Ni0.2Cu0.8WO4作为催化剂应用于氨硼烷醇解制氢中,其转化频率(turnoverfrequency)为59.0molhydrogenmin-1molcat -1
实施例5
一种钨酸镍铜纳米异质结颗粒的制备方法,包括以下步骤:
S1.将硫酸镍1.8mmol和硫酸铜0.2mmol溶于20mL超纯水中搅拌10min,制得混合盐溶液A;
S2.将2mmol钨酸钠溶于20mL超纯水中形成溶液B;
S3.将6mmol水杨酸钠加入所述溶液A中,搅拌溶解后通过分液漏斗缓慢滴加所述溶液B,搅拌10min,制得溶液C;
S4.将所述溶液C移至100mL反应釜,120℃反应5h,反应釜底固体抽滤洗涤后移至马弗炉,300℃反应5h,即得Ni0.9Cu0.1WO4钨酸镍铜纳米异质结。
将制得的钨酸镍铜纳米异质结颗粒Ni0.9Cu0.1WO4作为催化剂应用于氨硼烷醇解制氢中,其转化频率(turnoverfrequency)为7.1 molhydrogenmin-1molcat -1
实施例6
一种钨酸镍铜纳米异质结颗粒的制备方法,包括以下步骤:
S1.将硫酸镍0.2mmol和硫酸铜1.8mmol溶于20mL超纯水中搅拌10min,制得混合盐溶液A;
S2.将2mmol钨酸钠溶于20mL超纯水中形成溶液B;
S3.将6mmol水杨酸钠加入所述溶液A中,搅拌溶解后通过分液漏斗缓慢滴加所述溶液B,搅拌10min,制得溶液C;
S4.将所述溶液C移至100mL反应釜,120℃反应5h,反应釜底固体抽滤洗涤后移至马弗炉,300℃反应5h,即得Ni0.9Cu0.1WO4钨酸镍铜纳米异质结。
将制得的钨酸镍铜纳米异质结颗粒Ni0.1Cu0.9WO4作为催化剂应用于氨硼烷醇解制氢中,其转化频率(turnoverfrequency)为 48.2molhydrogenmin-1molcat -1
实施例7
一种钨酸镍铜纳米异质结颗粒的制备方法,包括以下步骤:
S1.将氯化镍1.4mmol和氯化铜0.6mmol溶于40mL超纯水中搅拌5min,制得混合盐溶液A;
S2.将2mmol钨酸钠溶于40mL超纯水中形成溶液B;
S3.将4mmol水杨酸钠加入所述溶液A中,搅拌溶解后通过分液漏斗缓慢滴加所述溶液B,搅拌5min,制得溶液C;
S4.将所述溶液C移至100mL反应釜,200℃反应2h,反应釜底固体抽滤洗涤后移至马弗炉,700℃反应0.5h,即得Ni0.7Cu0.3WO4钨酸镍铜纳米异质结。
将制得的钨酸镍铜纳米异质结颗粒Ni0.7Cu0.3WO4作为催化剂应用于氨硼烷醇解制氢中,其转化频率(turnoverfrequency)为15.9molhydrogenmin-1molcat -1
实施例8
一种钨酸镍铜纳米异质结颗粒的制备方法,包括以下步骤:
S1.将氯化镍0.6mmol和氯化铜1.4mmol溶于40mL超纯水中搅拌5min,制得混合盐溶液A;
S2.将2mmol钨酸钠溶于40mL超纯水中形成溶液B;
S3.将4mmol水杨酸钠加入所述溶液A中,搅拌溶解后通过分液漏斗缓慢滴加所述溶液B,搅拌5min,制得溶液C;
S4.将所述溶液C移至100mL反应釜,200℃反应2h,反应釜底固体抽滤洗涤后移至马弗炉,700℃反应0.5h,即得Ni0.3Cu0.7WO4钨酸镍铜纳米异质结。
将制得的钨酸镍铜纳米异质结颗粒Ni0.3Cu0.7WO4作为催化剂应用于氨硼烷醇解制氢中,其转化频率(turnoverfrequency)为21.6molhydrogenmin-1molcat -1
实施例9
一种钨酸镍铜纳米异质结颗粒的制备方法,包括以下步骤:
S1.将硝酸镍1mmol和硝酸铜1mmol溶于40mL超纯水中搅拌5min,制得混合盐溶液A;
S2.将2mmol钨酸钠溶于40mL超纯水中形成溶液B;
S3.将4mmol水杨酸钠加入所述溶液A中,搅拌溶解后通过分液漏斗缓慢滴加所述溶液B,搅拌5min,制得溶液C;
S4.将所述溶液C移至100mL反应釜,170℃反应5h,反应釜底固体抽滤洗涤后移至马弗炉,500℃反应2h,即得Ni0.5Cu0.5WO4钨酸镍铜纳米异质结。
将制得的钨酸镍铜纳米异质结颗粒Ni0.5Cu0.5WO4作为催化剂应用于氨硼烷醇解制氢中,其转化频率(turnoverfrequency)为36.5molhydrogenmin-1molcat -1
对比例
一种钨酸镍铜纳米颗粒的制备方法,包括以下步骤:
S1.将硝酸镍0.4mmol和硝酸铜1.6mmol溶于40mL超纯水中搅拌10min,制得混合盐溶液A;
S2.将2mmol钨酸钠溶于40mL超纯水中形成溶液B;
S3.将溶液A通过分液漏斗缓慢滴加所述溶液B,搅拌5min,制得溶液C;
S4.将所述溶液C移至100mL反应釜,170℃反应5h,反应釜底固体抽滤洗涤后移至马弗炉,500℃反应2h,即得Ni0.2Cu0.8WO4钨酸镍铜纳米颗粒。
将制得的钨酸镍铜纳米颗粒Ni0.2Cu0.8WO4作为催化剂应用于氨硼烷醇解制氢中,其转化频率(turnoverfrequency)为4.9 molhydrogenmin-1molcat -1
可见,合成过程中没有使用水杨酸钠,产品的催化活性有显著下降,在合成过程中水杨酸钠的添加对钨酸镍铜纳米异质结颗粒的催化性能的提高起到重要作用。
本发明钨酸镍铜纳米异质结颗粒形貌可控,金属负载量可调,机械强度高,催化性能好,在氨硼烷醇解制氢领域具有良好的应用前景。

Claims (5)

1.一种钨酸镍铜纳米异质结颗粒在氨硼烷醇解制氢中作为催化剂的应用,其特征在于,所述钨酸镍铜纳米异质结颗粒的分子式为NixCu1-xWO4,其中,0<x<1,制备方法包括以下步骤:
S1.将可溶性的二价铜盐、二价镍盐溶于超纯水中,制得混合盐溶液A;
S2.将钨酸钠溶于超纯水中形成溶液B;
S3.将水杨酸钠加入所述溶液A中,水杨酸钠与混合盐溶液A中的混合盐的摩尔比为1~3:1,搅拌溶解后滴加所述溶液B,制得溶液C;
S4.将所述溶液C移至反应釜,120~200℃反应2~18h,过滤洗涤后移至马弗炉,300~700℃反应0.5~5h,即得NixCu1-xWO4钨酸镍铜纳米异质结。
2.根据权利要求1所述的应用,其特征在于,所述二价铜盐为氯化铜、硝酸铜、硫酸铜、醋酸铜中的至少一种。
3.根据权利要求1所述的应用,其特征在于,所述二价镍盐为氯化镍、硝酸镍、硫酸镍、醋酸镍中的至少一种。
4.根据权利要求1所述的应用,其特征在于,步骤S1中,所述溶液A中混合盐浓度为0.01~0.1mmol/ml。
5.根据权利要求1所述的应用,其特征在于,步骤S2中,所述溶液B中钨酸钠浓度为0.01~0.1mmol/ml。
CN202111259549.9A 2021-10-28 2021-10-28 钨酸镍铜纳米异质结颗粒及其制备方法和催化产氢应用 Active CN114210337B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111259549.9A CN114210337B (zh) 2021-10-28 2021-10-28 钨酸镍铜纳米异质结颗粒及其制备方法和催化产氢应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111259549.9A CN114210337B (zh) 2021-10-28 2021-10-28 钨酸镍铜纳米异质结颗粒及其制备方法和催化产氢应用

Publications (2)

Publication Number Publication Date
CN114210337A CN114210337A (zh) 2022-03-22
CN114210337B true CN114210337B (zh) 2024-02-13

Family

ID=80696256

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111259549.9A Active CN114210337B (zh) 2021-10-28 2021-10-28 钨酸镍铜纳米异质结颗粒及其制备方法和催化产氢应用

Country Status (1)

Country Link
CN (1) CN114210337B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116779828A (zh) * 2023-08-16 2023-09-19 河南科隆新能源股份有限公司 一种改性钠离子层状正极材料制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107986977A (zh) * 2017-10-26 2018-05-04 苏州盖德精细材料有限公司 一种以氧化铝为载体的负载型催化剂催化制备对氨基苯酚的方法
CN109225284A (zh) * 2017-07-11 2019-01-18 中国科学院理化技术研究所 一种储氢材料分解放氢体系
CN111137927A (zh) * 2019-10-31 2020-05-12 惠州卫生职业技术学院 一种钴酸镍铜纳米颗粒的制备方法及其在催化氨硼烷水解产氢上的应用
CN113293404A (zh) * 2020-10-23 2021-08-24 台州学院 一种异质结光阳极材料及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100945035B1 (ko) * 2008-01-29 2010-03-05 재단법인서울대학교산학협력재단 텅스텐계 산화물을 이용한 가시광 응답형 광촉매 조성물 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109225284A (zh) * 2017-07-11 2019-01-18 中国科学院理化技术研究所 一种储氢材料分解放氢体系
CN107986977A (zh) * 2017-10-26 2018-05-04 苏州盖德精细材料有限公司 一种以氧化铝为载体的负载型催化剂催化制备对氨基苯酚的方法
CN111137927A (zh) * 2019-10-31 2020-05-12 惠州卫生职业技术学院 一种钴酸镍铜纳米颗粒的制备方法及其在催化氨硼烷水解产氢上的应用
CN113293404A (zh) * 2020-10-23 2021-08-24 台州学院 一种异质结光阳极材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ramakrishnan Kalai Selvan等.The sonochemical synthesis and characterization of Cu1−xNixWO4 nanoparticles/nanorods and their application in electrocatalytic hydrogen evolution.Nanotechnology.2009,第20卷第105602(1-7)页. *
The sonochemical synthesis and characterization of Cu1−xNixWO4 nanoparticles/nanorods and their application in electrocatalytic hydrogen evolution;Ramakrishnan Kalai Selvan等;Nanotechnology;第20卷;第105602(1-7)页 *

Also Published As

Publication number Publication date
CN114210337A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
CN109876843B (zh) 铜合金修饰二氧化钛/氮化碳异质结光催化剂及制备方法
CN111346677B (zh) 一种用于催化甲酸自分解制取氢气的钯/富氨基多孔聚合物催化剂的制备方法
CN109482235B (zh) 一种n-掺杂介孔碳负载的金属纳米催化剂的制备方法及其应用
CN114471639B (zh) 过渡金属元素掺杂及具有硫空位的硫化镉负载过渡金属磷化物光催化材料及其制备方法
CN114210337B (zh) 钨酸镍铜纳米异质结颗粒及其制备方法和催化产氢应用
CN113621987A (zh) 一种钴钼合金与钴钼混合氧化物电催化剂及其制备方法与应用
CN110202127B (zh) 亚10纳米孪晶二十面体PdCuPt纳米合金的合成方法及应用
CN109174143B (zh) 一种钙钛矿基复合纳米光催化材料及制备方法与用途
CN105148918B (zh) 一种Co-B/Ni-B非晶纳米球复合合金催化剂的制备方法及其应用
CN108745403B (zh) 一种氮化硼负载Ni-MoOx纳米催化剂的制备方法及应用
CN111137927A (zh) 一种钴酸镍铜纳米颗粒的制备方法及其在催化氨硼烷水解产氢上的应用
CN112962109B (zh) 一种锑掺杂铜/氧化亚铜电催化材料的制备方法及其应用
CN110975921B (zh) 具有磁性多孔结构的氮掺杂钴基碳材料的制备方法及应用
CN110064386A (zh) 一种锡纳米颗粒修饰的具氧空位四氧化三锡纳米片复合光催化材料及制备方法
CN111760572B (zh) 一种NiZnCu纳米复合脱氢催化剂及其制备方法
CN113083325A (zh) 一种氨硼烷水解制氢用催化剂Ru1-xCox/P25及其制备方法
CN113774404A (zh) 一种核壳链状镍基硒化物/羟基氧化铁复合催化剂及其制备方法与应用
CN115634693B (zh) 一种空心管结构的纳米复合材料的制备方法及其在催化氨硼烷醇解产氢上的应用
CN117138784B (zh) 高载量高分散Cu基催化剂及其合成方法与应用
CN115739094B (zh) 一种铜镍氧化物复合物纳米线薄膜的制备方法及其应用
CN115445665B (zh) 一种用于水合肼分解产氢的复合纳米催化剂及其制备方法和应用
CN116099553B (zh) 光催化还原二氧化碳制备甲烷的催化剂及其制备方法
CN110756207A (zh) Fe/CN-H纳米复合材料及其制备方法和应用
CN114904546B (zh) 一种用于氨硼烷水解产氢的Ni/P-Mo@Mo2C复合纳米催化剂及其制备方法和应用
CN113150299B (zh) 一种硫化氢氧化物双纳米框架材料的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant