CN114210319A - 一种基于反铁电-铁电相变的热释电催化剂的低温快速制备方法 - Google Patents

一种基于反铁电-铁电相变的热释电催化剂的低温快速制备方法 Download PDF

Info

Publication number
CN114210319A
CN114210319A CN202111461107.2A CN202111461107A CN114210319A CN 114210319 A CN114210319 A CN 114210319A CN 202111461107 A CN202111461107 A CN 202111461107A CN 114210319 A CN114210319 A CN 114210319A
Authority
CN
China
Prior art keywords
phase transition
antiferroelectric
pyroelectric
catalyst
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111461107.2A
Other languages
English (en)
Inventor
朱睿健
张茂茹
徐诺言
邵彤彤
徐晓彤
轩宇辉
何林恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Technology
Original Assignee
Nanjing Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Technology filed Critical Nanjing Institute of Technology
Priority to CN202111461107.2A priority Critical patent/CN114210319A/zh
Publication of CN114210319A publication Critical patent/CN114210319A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种基于反铁电‑铁电相变的热释电催化剂的低温快速制备方法,该催化剂0.94(Bi0.5Na0.5)TiO3‑0.06Ba(Ti0.75Zr0.25)O3(BNT‑BZT)能够利用室温附近温度变化导致的铁电‑反铁电相变过程中,自发极化从零到有导致的巨热释电效应,从而快速降解有机污染物。该制备方法是基于低温快速的微波水热法,通过成分,矿化剂浓度和反应时间优化,得到晶化程度高,均匀一致的催化剂纳米颗粒,仅6次循环,就能降解55%的罗丹明B,9次循环后降解了97%,其降解效率相较于之前报道的大幅提高。

Description

一种基于反铁电-铁电相变的热释电催化剂的低温快速制备 方法
技术领域
本发明属于C02F水处理领域,具体是通过微波水热法低温快速制备出0.94(Bi0.5Na0.5)TiO3-0.06Ba(Ti0.75Zr0.25)O3纳米颗粒,利用昼夜温差变化或者生产废热来降解有机污染物的技术。
背景技术
随着人类生产生活的日益发展,有机污染物的排放也日益增加,从而对生态环境和人类健康造成越来越多的伤害,开发简单,高效,绿色节能,可推广应用的有机污染物的降解技术迫在眉睫。目前的物理处理法如活性炭吸附等只是将有机污染物转移,并没有降解。传统化学法如氯气法,电化学处理法需要消耗大量的能源或者化学试剂,也容易造成二次污染。目前备受青睐的光催化法有着可见光响应弱,低能见度有色废水难以降解,和催化剂容易中毒的问题。热释电催化降解是通过热释电材料在温度变化下自发极化大小改变,产生表面电荷,继而产生自由基以降解有机污染物的方法,由于热能无处不在,不受黑暗环境和低能见度影响,是一种普遍的存在的绿色能源,因此收集热能以降解污染物是一种简单绿色环保可推广的技术,但是目前存在的问题是热释电降解速率较低,例如专利CN11250143A中,利用铁电-铁电相变的BZT-BCT热释电催化剂,9次冷热循环后,热释电降解了49.75%的罗丹明B,文献Chemosphere 199(2018)531–537中,NaNbO3纳米棒24次冷热循环降解了96%罗丹明B,文献中Ceram.Int.44(2018)21835–21841中,BaTiO3复合钯72次降解了95%罗丹明B。目前基于热释电效应降解有机污染的效率还不高,难以实际应用。
发明内容
本发明提供了一种基于0.94(Bi0.5Na0.5)TiO3-0.06Ba(Ti0.75Zr0.25)O3(BNT-BZT)反铁电-铁电相变的热释电催化剂的低温快速制备方法,相比于文献Chemosphere 199(2018)531–537和文献Ceram.Int.44(2018)21835–21841中的简单热释电效应,温度升高导致的自发极化减弱,和专利CN 11250143A中R-T铁电相变导致的自发极化转向,反铁电-铁电相变中自发极化从零到有,自发极化相对变化率大,从而导致室温下超高的热释电系数,达到27.2×10-4C·m-2K-1,大大提高了热释电降解效率。
本发明采用以下技术方案:基于0.94(Bi0.5Na0.5)TiO3-0.06Ba(Ti0.75Zr0.25)O3(BNT-BZT)成分无铅热释电材料,在室温附件存在反铁电-铁电相变导致的超高热释电性能,通过微波水热法,Ti,Bi,Ba,Zr源为金属盐,浓度为0.1mol/L,Na源为NaOH,浓度为12mol/L,溶液填充率为30%,经过180℃,80分钟的反应,经过洗涤过滤烘干,即可得到结晶良好的近似方形纳米颗粒。将纳米颗粒加入到有机污染物溶液中,再通过穿越反铁电-铁电相变温度的升温-降温冷热循环,产生自由基以降解污染物,而且能实际化应用,可以俘获昼夜温差能量来实现绿色无能耗降解。
具体包括以下步骤:
步骤1、根据0.94(Bi0.5Na0.5)TiO3-0.06Ba(Ti0.75Zr0.25)O3的成分,微波水热反应釜的容积,填充率和反应物浓度(0.1mol/L)及所用的Ti,Bi,Ba,Zr盐的分子量,计算出Ti,Bi,Ba,Zr盐所需的重量;
步骤2、称量一定量的去离子水和NaOH溶液,配置成12mol/L的NaOH溶液,倒入反应釜;
步骤3、将称量好的Ti,Bi,Ba,Zr盐依次加入到NaOH溶液,搅拌均匀;
步骤4、将反应釜装好放入微波水热合成仪中,加热至180℃然后保温,总时长为80分钟;
步骤5、反应冷却后,将粉末取出用稀硝酸和去离子水洗涤过滤4-6次,然后烘干;
步骤6、取出一定量的粉末,加入到有机污染物溶液中,经过一定次数的冷热循环即可降解有机污染物。
有益效果:本发明提出的BNT-BZT热释电催化剂,不含铅无贵金属;相对于水热法10小时以上的反应时间,简单快速能耗低;降解效率相对于之前的热释电催化剂大大提高,冷热循环9次后降解了97%的罗丹明B,也可在自然环境中,利用昼夜温差降解有机污染物。
本发明公开了一种基于反铁电-铁电相变的热释电催化剂的低温快速制备方法,该催化剂0.94(Bi0.5Na0.5)TiO3-0.06Ba(Ti0.75Zr0.25)O3(BNT-BZT)能够利用室温附近温度变化导致的铁电-反铁电相变过程中,自发极化从零到有导致的巨热释电效应,从而快速降解有机污染物。该制备方法是基于低温快速的微波水热法,通过成分,矿化剂浓度和反应时间优化,得到晶化程度高,均匀一致的催化剂纳米颗粒,仅6次循环,就能降解55%的罗丹明B,9次循环后降解了97%,其降解效率相较于之前报道的大幅提高。而且此材料的反铁电-铁电相变温度在室温附近,因此可以利用昼夜温度变化来回穿越相变温度,从而在自然环境下利用昼夜温差或者生产废热零功耗高效降解有机污染物。
附图说明
图1热释电、铁电-铁电相变、反铁电-铁电相变示意图;
图2不同Zr:Ti比的BNT-BZT粉末9次冷热循环罗丹明B降解量;
图3不同NaOH浓度的BNT-BZT粉末XRD图谱;
图4不同NaOH浓度的BNT-BZT粉末9次冷热循环罗丹明B降解量;
图5不同反应时间的BNT-BZT粉末XRD图谱;
图6不同反应时间的BNT-BZT粉末SEM照片;
具体实施方式
下面结合实施例和附图对本发明做更进一步的解释。下列实施例仅用于说明本发明,但并不用来限定发明的实施范围。
实施例1:
步骤1、如图1所示,相对于简单热释电效应,自发极化只有较小的变化,铁电-铁电相变产生自发极化转向,能产生较大的自发极化变化,而反铁电-铁电相变从零到有产生更大的自发极化变化,从而拥有强热释电效应。根据0.94(Bi0.5Na0.5)TiO3-0.06Ba(TixZr1-x)O3的成分,选用金属盐为钛酸四丁酯,二水合氯化钡,八水合氯氧化锆,五水合硝酸铋,100mL的反应釜,填充率为30%,计算出四种试剂的重量,进行不同Zr:Ti比成分优化,如图2所示,Zr:Ti比为0.25/0.75时,9次循环降解效率最高,达到97%。
步骤2、称量去离子水和NaOH,配置成不同浓度的NaOH溶液,进行矿化剂浓度优化,如图3所示,在NaOH浓度为6mol/L和9mol/L时晶体衍射峰较弱,晶化不完全,浓度为12mol/L和15mol/L时,晶化完全,如图4所示,12mol/L降解效率最高。
步骤3、进行反应时间优化,如图5和6所示,反应时间为40分钟,晶化不完全,XRD峰很弱,反应80分钟,形成了结晶良好的近似方形纳米颗粒,尺寸约为50-130nm,XRD峰明显,反应120分钟,晶体长大,尺寸约为120-200nm,尺寸增加会导致总表面积减小,不利于催化降解反应的发生,因此反应时间优化为80分钟;
步骤4、取出50mg的Zr:Ti比为0.25/0.75,NaOH浓度为12mol/L,反应80分钟条件下制备的BZT-BNT粉末,加入到50mL的5mg/L的罗丹明B溶液中,交替循环放入0℃和60℃的冷水热水中,经过一次定数的循环,降解前后的浓度可以用紫外-可见光分光光度计去检测,9次降解后降解了97%。
实施例2:
步骤1、根据0.94(Bi0.5Na0.5)TiO3-0.06Ba(Ti0.75Zr0.25)O3的成分,选用金属盐为钛酸四丁酯,乙酸钡,乙酰丙酮锆,五水合硝酸铋,100mL的反应釜,填充率为30%,需要四种试剂的重量分别为计算出Ti,Bi,Ba,Zr盐所需的重量分别为;1.006g,0.046g,0.022g,0.684g;
步骤2、称量20g去离子水和14.4gNaOH,配置成12mol/L的NaOH溶液,倒入反应釜;
步骤3、将称量好的钛酸四丁酯,二水合氯化钡,八水合氯氧化锆,五水合硝酸铋依次加入到NaOH溶液,搅拌均匀;
步骤4、将反应釜装好放入微波水热合成仪中,300W功率10分钟加热至140℃,然后400W功率加热至180℃然后保温,总时长为80分钟;
步骤5、反应冷却后,将粉末取出用稀硝酸和去离子水洗涤过滤5次,然后在烘箱中120℃烘干;
步骤6、取出50mg的BZT-BNT粉末,加入到50mL的5mg/L的罗丹明B溶液中,放在室外经受自然环境中的昼夜温差变化,经过10个昼夜,罗丹明B降解了91%。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

1.一种基于反铁电-铁电相变的热释电催化剂的低温快速制备方法,其特征在于,通过低温快速的微波水热法,通过成分,矿化剂浓度和反应时间优化,得到晶化程度高,均匀一致的BNT-BZT催化剂纳米颗粒,基于其室温附近的铁电-反铁电相变从而快速降解有机污染物。
2.根据权利要求1所述的制备方法,其特征在于,BNT-BZT催化剂成分为无铅的0.94(Bi0.5Na0.5)TiO3-0.06Ba(Ti0.75Zr0.25)O3,该成分的材料在室温附近存在反铁电-铁电相变,拥有超高的热释电系数。
3.根据权利要求1所述的制备方法,其特征在于,制备方法为低温快速微波水热法,经过180℃,80分钟的反应,经过洗涤过滤烘干,即可得到纳米颗粒的催化剂。
4.根据权利要求1所述的制备方法,其特征在于,水热反应的Ti,Bi,Ba,Zr源为金属盐,浓度为0.1mol/L,Na源为NaOH,浓度为12mol/L,溶液填充率为30%。
5.根据权利要求1所述的制备方法,其特征在于,热释电催化剂的催化降解方法,为将BNT-BZT纳米颗粒加入到有机染料溶液中,经过穿越反铁电-铁电相变温度的升温-降温冷热循环,产生自由基以降解污染物。
CN202111461107.2A 2021-11-30 2021-11-30 一种基于反铁电-铁电相变的热释电催化剂的低温快速制备方法 Pending CN114210319A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111461107.2A CN114210319A (zh) 2021-11-30 2021-11-30 一种基于反铁电-铁电相变的热释电催化剂的低温快速制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111461107.2A CN114210319A (zh) 2021-11-30 2021-11-30 一种基于反铁电-铁电相变的热释电催化剂的低温快速制备方法

Publications (1)

Publication Number Publication Date
CN114210319A true CN114210319A (zh) 2022-03-22

Family

ID=80699468

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111461107.2A Pending CN114210319A (zh) 2021-11-30 2021-11-30 一种基于反铁电-铁电相变的热释电催化剂的低温快速制备方法

Country Status (1)

Country Link
CN (1) CN114210319A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114914087A (zh) * 2022-05-09 2022-08-16 同济大学 一种高储能特性的钛酸铋钠-锆钛酸钡电介质薄膜及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160333A (ja) * 1997-08-21 1999-03-02 Toyota Central Res & Dev Lab Inc 圧電セラミックス
CN102205988A (zh) * 2011-03-15 2011-10-05 陕西科技大学 微波水热方法制备锂掺杂铌酸钾钠基无铅压电陶瓷粉体的方法
CN110981467A (zh) * 2019-12-09 2020-04-10 华中科技大学 一种无铅热释电复合陶瓷材料及其制备方法
CN112250143A (zh) * 2020-10-22 2021-01-22 东南大学 一种基于相变的热释电效应降解有机染料的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160333A (ja) * 1997-08-21 1999-03-02 Toyota Central Res & Dev Lab Inc 圧電セラミックス
CN102205988A (zh) * 2011-03-15 2011-10-05 陕西科技大学 微波水热方法制备锂掺杂铌酸钾钠基无铅压电陶瓷粉体的方法
CN110981467A (zh) * 2019-12-09 2020-04-10 华中科技大学 一种无铅热释电复合陶瓷材料及其制备方法
CN112250143A (zh) * 2020-10-22 2021-01-22 东南大学 一种基于相变的热释电效应降解有机染料的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MENG SHEN ET AL.: ""High room-temperature pyroelectric property in lead-free BNT-BZT ferroelectric ceramics for thermal energy harvesting"", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》, vol. 301, pages 1810 - 1818 *
戴中华;谢景龙;琚思懿;刘卫国;: "BT基无铅压电陶瓷的最新进展", 电子元件与材料, no. 08, pages 5 - 13 *
朱志斌;: "BNT基无铅压电陶瓷材料的溶胶-凝胶法制备及电性能研究", 现代技术陶瓷, no. 02, pages 7 - 11 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114914087A (zh) * 2022-05-09 2022-08-16 同济大学 一种高储能特性的钛酸铋钠-锆钛酸钡电介质薄膜及其制备方法与应用
CN114914087B (zh) * 2022-05-09 2023-08-29 同济大学 一种高储能特性的钛酸铋钠-锆钛酸钡电介质薄膜及其制备方法与应用

Similar Documents

Publication Publication Date Title
Shi et al. Enhancement of visible‐light photocatalytic degradation performance over nitrogen‐deficient g‐C3N4/KNbO3 heterojunction photocatalyst
CN104128184A (zh) 一种漂浮型CoFe2O4/TiO2/漂珠复合光催化剂及其制备方法
CN101745402B (zh) 高比表面基底负载Bi2WO6光催化膜、方法及应用
CN104888819A (zh) 一种磷酸镍钠光催化剂的制备及其光催化应用
CN104014326A (zh) 一种钒酸铋纳米棒高效光催化剂及其制备方法
CN109395761B (zh) 一种氮掺杂BiOIO3光催化剂的制备方法及其应用
CN102000584A (zh) 一种钴掺杂改性Beta-氧化铋光催化剂的制备方法
Gao et al. Template-free hydrothermal synthesis and high photocatalytic activity of ZnWO4 nanorods
CN102728342A (zh) 一种钒酸铋可见光光催化材料的制备方法
CN105597729A (zh) 一种铌酸盐光催化剂Bi3Nb17O47的制备方法及其应用
CN113663732A (zh) 一种ZIF-67(Co)/空心微球状β-Bi2O3/g-C3N4可见光催化剂
Li et al. Tuning red emission and photocatalytic properties of highly active ZnO nanosheets by Eu addition
CN114210319A (zh) 一种基于反铁电-铁电相变的热释电催化剂的低温快速制备方法
CN103372424A (zh) 一种高活性n-f共掺杂钒酸铋可见光光催化材料的合成方法
CN102698735B (zh) 花球状Bi4V2O11可见光催化剂的制备方法
CN106315690A (zh) 一种多孔四氧化三钴纳米片的制备方法
CN111302398A (zh) 一种氧化钨可逆光致变色材料及其制备方法和应用
WO2020019647A1 (zh) 一种利用季铵碱制备c,n共掺杂纳米管/棒催化材料的方法
CN102716759A (zh) 钒-氮共掺杂TiO2/凹凸棒光催化复合材料及其制备
CN107159220B (zh) 水热法制备铜镍掺杂纳米氧化锌光催化材料工艺
CN108607591B (zh) 一种碳氮烯/溴化银共修饰溴氧铋复合纳米光催化材料及其制备方法和应用
CN105498814A (zh) 一种镧掺杂磷酸铋光催化剂的制备方法
CN112547100A (zh) 一种银/卤氧化铋复合光催化剂及其制备方法和应用
CN109482191B (zh) 一种泡沫镍负载钛酸锌/电气石光催化材料及其制备方法
CN103447033A (zh) 一种介孔AgGaO2光催化材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220322