CN114199807B - 用afm-ir检测聚酰亚胺表面分子链取向结构的方法 - Google Patents

用afm-ir检测聚酰亚胺表面分子链取向结构的方法 Download PDF

Info

Publication number
CN114199807B
CN114199807B CN202111514122.9A CN202111514122A CN114199807B CN 114199807 B CN114199807 B CN 114199807B CN 202111514122 A CN202111514122 A CN 202111514122A CN 114199807 B CN114199807 B CN 114199807B
Authority
CN
China
Prior art keywords
coating
orientation
ito glass
afm
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111514122.9A
Other languages
English (en)
Other versions
CN114199807A (zh
Inventor
滕超
薛奇
李剑
李林玲
王勇
章晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202111514122.9A priority Critical patent/CN114199807B/zh
Publication of CN114199807A publication Critical patent/CN114199807A/zh
Application granted granted Critical
Publication of CN114199807B publication Critical patent/CN114199807B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • G01N2021/3572Preparation of samples, e.g. salt matrices

Landscapes

  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Liquid Crystal (AREA)

Abstract

一种检测摩擦取向前后液晶显示面板中聚酰亚胺取向剂涂层表面分子链取向结构变化的AFM‑IR方法,通过该方法可对摩擦力作用下PI分子链中官能团的空间取向结构进行定性分析。该方法操作简单,可快速、准确地表征摩擦取向前后PI涂层表面分子链的取向结构变化;AFM‑IR技术的检测灵敏度高,空间分辨率可达10nm以下,可从纳米尺度上检测PI涂层表面摩擦取向程度,通过比较摩擦取向前后红外强度的变化程度,判断PI分子链的取向排列的各向异性。

Description

用AFM-IR检测聚酰亚胺表面分子链取向结构的方法
技术领域
本发明涉及到聚合物表面分子取向结构微观的表征,尤其涉及利用原子力显微成像-红外光谱方法(AFM-IR)检测聚酰亚胺液晶取向层表面分子链的取向结构。
背景技术
在液晶显示(LCD)面板制造过程中,通常需要在玻璃基板表面涂布一层聚酰亚胺(Polyimide,PI)液晶取向剂,再经过特定的取向工艺处理,使PI表面产生各向异性,进而可诱导杂乱无章的液晶分子产生有序均匀地取向排列。工业生产上,PI取向层常用的取向工艺分为摩擦取向和光控取向两种。前者是利用表面贴附有绒毛的摩擦布对PI取向层表面进行单向的机械摩擦,在绒毛摩擦力的作用下,在PI取向层表面形成密纹或促使PI分子链发生取向。PI液晶取向层的性能,特别是表面分子链的取向结构会直接影响到液晶分子的排列效果,进而影响到LCD的对比度、阈值电压、相应时间和视角等显示特性。
目前,已有的专利主要是针对聚酰亚胺取向层摩擦取向方法和摩擦取向参数的研究,如中国专利CN106462013A,CN104749822A和CN102236212A等,较少涉及到摩擦取向对聚酰亚胺材料本身分子链取向结构的影响。尽管有学术研究报道,使用近边缘X射线吸收精细结构(NEXAFS)、掠入射X射线散射(GISAXS)和反射异向性光谱(RAS)等方法研究了摩擦取向后PI分子链的各向异性,但这些方法未能从分子层面给出摩擦力作用下PI分子链中官能团结构变化的信息。利用灵敏度极高的表面增强拉曼光谱(SERS)法,薛奇,周东山用表面增强拉曼散射(SERS)发现摩擦取向过程中PI分子链的侧基发生了翻转取向(Langmuir 2002,18,4559-4561)。然而,受表征手段空间分辨率的限制,SERS只能给出样品表面宏观尺寸的平均信号,无法对纳米尺度上PI取向层表面的摩擦取向行为进行表征。
发明内容
本发明的目的在于提供一种可检测摩擦取向前后液晶显示面板中聚酰亚胺涂层表面10nm分辨率的尺度分子链取向结构变化的AFM-IR方法,通过该方法可对摩擦力作用下PI分子链中官能团的空间取向结构进行定性分析。
为实现上述技术目的,本发明采用了如下技术方案:
利用AFM-IR检测液晶取向剂聚酰亚胺表面的分子链取向结构:首先,配置质量浓度为1~5%的具有长链烷烃侧基的聚酰胺酸/N-甲基吡咯烷酮溶液,利用旋涂法在干净的ITO玻璃上涂布一层聚酰胺酸,涂层厚度为20~100nm;将涂有聚酰胺酸的ITO玻璃置于热台上80℃处理30min除去溶剂后,再置于200~250℃烘箱中高温固化反应2~10h,自然冷却至室温,得到表面涂布有聚酰亚胺涂层的ITO玻璃样品;裁取约2cm×2cm大小的表面涂布有PI涂层的ITO玻璃,利用AFM-IR仪器对ITO玻璃上PI涂层的任意位置进行测试,获得PI涂层的纳米红外光谱,并确定该PI的主要特征峰;固定AFM-IR红外检测波长为PI的某一特征峰波长,在ITO玻璃上PI涂层表面随机选择1μm×1μm的区域,对区域内PI涂层表面进行逐点扫描,获得该特征波长下ITO玻璃上PI涂层的红外吸收强度的信息;用数据处理软件对ITO玻璃上PI涂层表面所测区域内各点的红外强度进行作图,获得该区域内ITO玻璃上PI涂层所对应特征峰红外强度的三维图像;将上述表面涂布有PI涂层的ITO玻璃(取向层朝上)真空吸附于摩擦台上,设置摩擦次数为2~5次,辊筒转速为500~1000rpm,基板走速为10~30mm/s,摩擦深度为0.1~0.5mm,对ITO玻璃表面的PI涂层进行摩擦取向;最后,再裁取约2cm×2cm大小的表面含摩擦取向PI涂层的ITO玻璃,进行与上述未摩擦取向的PI涂层样品相同的AFM-IR测试和数据处理步骤,获得摩擦取向后PI涂层所对应特征峰红外强度的三维图像;通过对比摩擦取向前后PI涂层的红外强度信息,可定性地判断PI涂层表面分子链的取向程度。
本发明中所有AFM-IR实验都是在美国MVI公司的Vista-IR光诱导力显微镜上完成的。
AFM-IR的原理:
AFM-IR将原子力显微成像技术与红外光谱联用,利用了光诱导力技术,通过尖端增强的光照得到样品的局部极化,使用机械测量的方法来测量探针针尖与样品间的局部极化力,该局部极化力反映了针尖与样品间的近场光学相互作用。用这种方法代替传统的光学检测方法,可实现有机材料纳米级光谱的分析。光诱导力技术的应用不但具有了超高检测灵敏度,同时大大提高了红外光谱的分辨率,其分辨率≤10nm。利用该技术既可以检测样品表面任一位置上高分子的纳米红外光谱,根据红外吸收峰的波长和相对应的基团的关系,判断高分子的种类;还可以通过固定高分子的特征红外波长,对样品表面进行化学成像扫描。当在摩擦力等作用下,高分子链发生了一定的摩擦取向,其中的一些极性官能团发生取向极化,这会对AFM-IR检测的红外强度产生一定的影响。因此,通过检测区域内高分子链上官能团特征峰红外的相对强度的变化,一定程度上可以反映高分子链上官能团的空间取向排列情况。
本发明方法,具有如下优点:
1:该方法操作简单,可快速、准确地表征摩擦取向前后PI涂层表面分子链的取向结构变化;
2:AFM-IR技术的检测灵敏度高,空间分辨率可达10nm以下,可从纳米尺度上检测PI涂层表面摩擦取向程度;
3:通过比较摩擦取向前后红外强度的变化程度,可以定性地判断PI分子链的取向排列的各向异性。
附图说明
图1为聚酰亚胺取向剂的分子结构;
图2为摩擦取向前聚酰亚胺涂层的1710cm-1特征峰红外强度的三维图像;
图3为摩擦取向后聚酰亚胺涂层的1710cm-1特征峰红外强度的三维图像;
具体实施方式
下面将结合实施例和附图对本发明的技术方案进一步描述。
实施例1
本实施例选取一款自制的具有长链烷烃侧基的PI液晶取向剂作为研究对象,其分子结构如图1所示。首先配置质量浓度为2%的该聚酰胺酸/N-甲基吡咯烷酮溶液,利用旋涂法在干净的ITO玻璃上涂布一层均匀的厚度为50nm的聚酰胺酸涂层;
将涂有取向剂的ITO玻璃置于热台上80℃预烘处理30min除去溶剂后,再置于220℃烘箱中高温固化反应4h,自然冷却至室温,得到ITO玻璃表面涂布有聚酰亚胺涂层的样品;
裁取约2cm×2cm大小的表面涂布有PI涂层的ITO玻璃,利用AFM-IR仪器对其表面PI涂层的任意位置进行测试,获得PI涂层的纳米红外光谱,并得到该PI的一些主要特征峰;
固定AFM-IR红外检测波长为PI中羰基结构的特征峰波长1710cm-1,在ITO玻璃表面随机选择1μm×1μm的区域,对区域内ITO玻璃上PI涂层表面进行逐点扫描,获取1710cm-1特征波长下ITO玻璃上PI涂层的红外吸收强度的信息;利用Vista-IR仪器的数据处理软件Surface Works对ITO玻璃上PI涂层表面所测区域内各点的红外强度进行作图,获得该区域内PI涂层摩擦取向前的1710cm-1特征峰红外强度的三维图像,见图2;
将上述制备的表面涂布有PI涂层的ITO玻璃(取向层朝上)真空吸附于摩擦台上,设置摩擦次数为2次,辊筒转速为700rpm,基板走速为20mm/s,摩擦深度为0.3mm,对ITO玻璃表面的PI涂层进行摩擦取向,获得表面含摩擦取向PI涂层的ITO玻璃样品;
再裁取约2cm×2cm大小的表面含摩擦取向PI涂层的ITO玻璃,固定AFM-IR红外检测波长为1710cm-1,在ITO玻璃上PI涂层表面随机选择1μm×1μm的区域,对区域内摩擦取向的PI涂层表面进行逐点扫描,获取1710cm-1特征波长下该PI涂层的红外吸收强度的信息。进一步软件处理得到该区域内PI涂层摩擦取向后的1710cm-1特征峰红外强度的三维图像,见图3;
对比摩擦取向前后PI涂层1710cm-1特征峰红外强度的三维图像,可非常直观地看出,摩擦后的PI取向层中分子链发生了一定程度的取向,极性基团羰基在摩擦过程中受到机械应力的作用,沿着摩擦的方向发生极化。基于AFM探针和样品偶极相互作用的AFM-IR方法对这种基团的极化取向行为特别敏感,摩擦取向后的PI涂层样品的红外强度发生了明显的增强。

Claims (1)

1.用AFM-IR检测聚酰亚胺表面分子链取向结构的方法,首先,配置质量浓度为1~5%的具有长链烷烃侧基的聚酰胺酸/N-甲基吡咯烷酮溶液,用旋涂法在干净的ITO玻璃上涂布一层聚酰胺酸,涂层厚度为20~100nm;将涂有聚酰胺酸的ITO玻璃置于热台上80℃处理30min除去溶剂后,再置于200~250℃烘箱中高温固化反应2~10h,冷却,得到表面涂布有聚酰亚胺膜的ITO玻璃样品;其特征在于用AFM-IR仪器对ITO玻璃上PI涂层的任意位置进行测试,获得PI涂层的纳米红外光谱,并确定主要特征峰;固定AFM-IR红外检测波长为PI的特征峰波长,对ITO玻璃上PI表面进行逐点扫描,获得该特征波长下PI涂层的红外吸收强度的信息;用数据处理软件对ITO玻璃上PI表面所测区域内各点的红外强度进行作图,获得ITO玻璃上PI涂层所对应特征峰红外强度的三维图像;然后对ITO玻璃上PI涂层进行摩擦取向;对摩擦取向后的PI涂层进行相同的AFM-IR测试和数据处理步骤,获得摩擦取向后PI涂层所对应特征峰红外强度的三维图像;通过对比摩擦取向前后PI涂层的红外强度信息,判断PI涂层表面分子链的取向程度。
CN202111514122.9A 2021-12-10 2021-12-10 用afm-ir检测聚酰亚胺表面分子链取向结构的方法 Active CN114199807B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111514122.9A CN114199807B (zh) 2021-12-10 2021-12-10 用afm-ir检测聚酰亚胺表面分子链取向结构的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111514122.9A CN114199807B (zh) 2021-12-10 2021-12-10 用afm-ir检测聚酰亚胺表面分子链取向结构的方法

Publications (2)

Publication Number Publication Date
CN114199807A CN114199807A (zh) 2022-03-18
CN114199807B true CN114199807B (zh) 2023-09-22

Family

ID=80652698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111514122.9A Active CN114199807B (zh) 2021-12-10 2021-12-10 用afm-ir检测聚酰亚胺表面分子链取向结构的方法

Country Status (1)

Country Link
CN (1) CN114199807B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06229921A (ja) * 1993-02-04 1994-08-19 Matsushita Electric Ind Co Ltd ポリイミド配向膜の硬化度評価方法
JPH08122785A (ja) * 1994-10-24 1996-05-17 Toshiba Corp 配向膜評価装置および配向膜評価方法
JPH09113412A (ja) * 1995-10-20 1997-05-02 Nec Corp 有機薄膜配向検査方法及び検査装置
JP2001004534A (ja) * 1999-06-16 2001-01-12 Nec Corp 薄膜分子配向評価法及び評価装置並びに記録媒体
JP2014149151A (ja) * 2013-01-31 2014-08-21 Sumitomo Metal Mining Co Ltd ポリイミドフィルムの評価方法
CN105745517A (zh) * 2013-10-04 2016-07-06 阿克索梅特里克斯公司 用于测量光学各向异性参数的方法和装置
CN112595700A (zh) * 2020-12-08 2021-04-02 南方科技大学 一种液晶排列取向的检测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4158801B2 (ja) * 2005-03-29 2008-10-01 セイコーエプソン株式会社 液晶パネルの製造方法及び液晶パネル用基板の製造方法
AU2006244486A1 (en) * 2005-05-06 2006-11-16 Platypus Technologies, Llc Liquid crystal based analyte detection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06229921A (ja) * 1993-02-04 1994-08-19 Matsushita Electric Ind Co Ltd ポリイミド配向膜の硬化度評価方法
JPH08122785A (ja) * 1994-10-24 1996-05-17 Toshiba Corp 配向膜評価装置および配向膜評価方法
JPH09113412A (ja) * 1995-10-20 1997-05-02 Nec Corp 有機薄膜配向検査方法及び検査装置
JP2001004534A (ja) * 1999-06-16 2001-01-12 Nec Corp 薄膜分子配向評価法及び評価装置並びに記録媒体
JP2014149151A (ja) * 2013-01-31 2014-08-21 Sumitomo Metal Mining Co Ltd ポリイミドフィルムの評価方法
CN105745517A (zh) * 2013-10-04 2016-07-06 阿克索梅特里克斯公司 用于测量光学各向异性参数的方法和装置
CN112595700A (zh) * 2020-12-08 2021-04-02 南方科技大学 一种液晶排列取向的检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Effect of surface acoustic waves on curing of polyimide films;Ching-Chung Yin;《2009 IEEE International Ultrasonics Symposium》(第1期);全文 *
傅立叶变换红外光谱漫反射技术用于分析分子取向的研究;江善根;《光谱学与光谱分析》(第1期);全文 *
激光诱导聚酰亚胺纳米微结构中分子链取向排列的研究;路庆华;《高等学校化学学报》(第10期);全文 *

Also Published As

Publication number Publication date
CN114199807A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
Somers et al. Measurement of the Casimir torque
Carpick et al. First observation of mechanochromism at the nanometer scale
Rotella et al. Segmental mobility and glass transition temperature of freely suspended ultrathin polymer membranes
Kim et al. Orientations of liquid crystals on mechanically rubbed films of bovine serum albumin: a possible substrate for biomolecular assays based on liquid crystals
Cossy-Favre et al. X-PEEM study on surface orientation of stylized and rubbed polyimides
Roshidi et al. Optical Studies of Graphene Oxide/poly (amidoamine) Dendrimer Composite Thin Film and Its Potential for Sensing Hg 2+ Using Surface Plasmon Resonance Spectroscopy.
Yang et al. Effects of aging on the multiscale properties of SBS-modified asphalt
TW201520531A (zh) 用以測量光學異向性的屬性之方法與裝置
CN114199807B (zh) 用afm-ir检测聚酰亚胺表面分子链取向结构的方法
WO2016090653A1 (zh) 一种光配向特性检测方法、装置及***
KR0171637B1 (ko) 배향막 평가 장치
JP3123497B2 (ja) 原子間力顕微鏡による液晶配向膜の配向性評価法
JP3275944B2 (ja) 異方性薄膜検査法、異方性薄膜検査装置、液晶配向膜検査方法、液晶配向膜検査装置
Gong et al. Ultraviolet-light induced liquid-crystal alignment on polyimide films
KR20080061196A (ko) 액정 배향막 러빙각도 측정장치 및 그 측정방법
Diakoumakos et al. In situ monitoring of thermal transitions in thin polymeric films via optical interferometry
JP5160956B2 (ja) 液体の表面物性の異方性評価方法およびそれに用いる装置
Nishiyama et al. Single-shot birefringence measurement using radial polarizer fabricated by direct atomic force microscope stroking method
KR100974478B1 (ko) 액정 배향막 표면 검사 장치 및 방법
Wanasekara et al. Effect of accelerated ultraviolet and thermal exposure on nanoscale mechanical properties of nylon fibers
Yagi et al. Optical recognition of surface chirality at Au (hkl) single crystalline surfaces by second harmonic generation rotational anisotropy
Moretti et al. Tip Enhanced Raman Spectroscopy of Rhodamine 6G on nanostructured gold substrate
Putthanarat et al. Influence of polishing time on thermo-oxidation characterization of isothermally aged PMR-15 resin
Mao et al. Correction of height-fluctuation-induced systematic errors in polymers by AFM-based nanomechanical measurements
Patil et al. Measurement of Nanoscale Interfacial Contact Area Using Vibrational Spectroscopy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant