CN114196938B - 一种双层非晶碳膜及其制备方法 - Google Patents

一种双层非晶碳膜及其制备方法 Download PDF

Info

Publication number
CN114196938B
CN114196938B CN202111549122.2A CN202111549122A CN114196938B CN 114196938 B CN114196938 B CN 114196938B CN 202111549122 A CN202111549122 A CN 202111549122A CN 114196938 B CN114196938 B CN 114196938B
Authority
CN
China
Prior art keywords
amorphous carbon
carbon film
layer
double
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111549122.2A
Other languages
English (en)
Other versions
CN114196938A (zh
Inventor
吴春春
杨挺
王涛
张云飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZJU Hangzhou Global Scientific and Technological Innovation Center
Original Assignee
ZJU Hangzhou Global Scientific and Technological Innovation Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZJU Hangzhou Global Scientific and Technological Innovation Center filed Critical ZJU Hangzhou Global Scientific and Technological Innovation Center
Priority to CN202111549122.2A priority Critical patent/CN114196938B/zh
Publication of CN114196938A publication Critical patent/CN114196938A/zh
Application granted granted Critical
Publication of CN114196938B publication Critical patent/CN114196938B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not

Abstract

本发明提供一种双层非晶碳膜及其制备方法,涉及金属涂层材料制备技术。所述所述双层非晶碳膜包括第一层非晶碳膜和第二层非晶碳膜,且所述第一层非晶碳膜为采用类石墨结构为主的GLC非晶碳膜层,所述第二层非晶碳膜为采用类金刚石为主的DLC膜层。本发明克服了现有技术的不足,通过不同结构的非晶碳的组合,避免了单一结构非晶碳膜硬度高、内应力大、摩擦系数高或者硬度低、内应力小、摩擦系数小的极端问题,有效满足精密器件的保护与装配配合度性能要求。

Description

一种双层非晶碳膜及其制备方法
技术领域
本发明涉及金属涂层材料制备技术,具体涉及一种双层非晶碳膜及其制备方法。
背景技术
非晶碳膜具有化学性质稳定、硬度高、耐磨性能好等特点,其可分为以SP2结构为主的类石墨非晶碳结构(GLC)和以SP3结构为主的类金刚石结构(DLC)。
类石墨结构GLC具有较好的导电性能和附着力,但硬度较低;而类金刚石结构DLC则硬度高、疏水性能好、导电性能差,二者在性能上有较大差异。
在精密器件加工领域,需要密合的精密器件部件对表面加工精度要求很高,在承受高应力的条件下,如果发生形变将严重影响器件的密合程度,因而对其表面的耐磨性能要求很高。
人们一般通过阳极氧化和电镀工艺来提高表面的磨损性能,但这些工艺对环境污染严重,另一方面,这两种工艺处理过的器件表面的精度也将下降,器件部件之间发生摩擦也会对阳极氧化层或电镀层产生破坏。此外,对于生物医学金属材料在用于夹具、螺钉和螺纹等机械接口时,往往具有较差的摩擦学性能,从而导致有限的重新定位、不均匀的扭矩参数,甚至机械接头被卡住或剥离等现象。
发明内容
针对现有技术不足,本发明提供一种双层非晶碳膜及其制备方法,通过不同结构的非晶碳的组合,避免了单一结构非晶碳膜硬度高、内应力大、摩擦系数高或者硬度低、内应力小、摩擦系数小的极端问题,有效满足精密器件的保护与装配配合度性能要求。
为实现以上目的,本发明的技术方案通过以下技术方案予以实现:
一种双层非晶碳膜,所述双层非晶碳膜包括第一层非晶碳膜和第二层非晶碳膜,所述第一层非晶碳膜和第二层非晶碳膜具有不同比率的SP2结构类石墨非晶碳和SP3结构类金刚石非晶碳,且所述第一层非晶碳膜为采用类石墨结构为主的GLC非晶碳膜层,所述第二层非晶碳膜为采用类金刚石为主的DLC膜层。
优选的,所述双层非晶碳膜是等离子体增强化学气相沉积膜。
优选的,所述第一层非晶碳膜中类石墨非晶碳与类金刚石非晶碳的组分比例为4∶1-3∶1;所述第二层非晶碳膜中类石墨非晶碳与类金刚石非晶碳的组分比例为1∶5-1∶8。
优选的,所述第一层非晶碳膜厚度为200nm-5um;所述第二层非晶碳膜厚度为500nm-1um。
所述双层非晶碳膜的制备方法包括以下步骤:
(1)第一层非晶碳膜制备:将基材于中空腔室中抽真空后,通过离子源向中空腔室内通入乙炔气体,再以石墨为溅射靶材,向溅射靶内通入氩气,同时基材施加脉冲偏压在基材表面沉积非晶碳膜层,得到第一层非晶碳膜;
(2)第二层非晶碳膜制备:将上述放置基材的中空腔室抽真空,通过离子源向中空腔室内通入乙炔气体,同时对基材施加脉冲偏压在基材上沉积第二层非晶碳膜,得到双层非晶碳膜。
优选的,所述步骤(1)中通入乙炔气体的通入流量为30-40sccm,离子源电流为0.10-0.15A。
优选的,所述步骤(1)中氩气流量为40-60sccm,氩气溅射电流为1A。
优选的,所述步骤(1)中对基材施加脉冲偏压为-150V,步骤(2)中对基材施加脉冲偏压为-200V。
优选的,所述步骤(1)中沉积时间为40min,步骤(2)中沉积时间为20min。
优选的,所述步骤(2)中乙炔气体的通入流量为30-40sccm,离子源电流为0.20-0.25A。
本发明提供一种双层非晶碳膜及其制备方法,与现有技术相比优点在于:
(1)本发明制备的双层非晶碳膜可以通过不同结构的非晶碳的组合,避免了单一结构非晶碳膜硬度高、内应力大、摩擦系数高或者硬度低、内应力小、摩擦系数小的极端问题,在第一层采用类石墨结构为主的GLC非晶碳涂层提高与基材的结合力、降低内应力,在第二层则通过类金刚石为主的DLC结构提高涂层体系的硬度、降低摩擦系数,使得本发明所制备的非晶碳膜在稳态、未润滑和环境大气条件下的摩擦系数值小于0.06;
(2)本发明提供的双层非晶碳膜具有高附着力、低应力、低摩擦系数和高硬度,与器件结合力高、可完全满足精密器件的保护与装配配合度性能要求。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面结合本发明实施例对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
双层非晶碳膜的制备:
(1)第一层非晶碳膜制备(类石墨非晶碳膜GLC为主):将基材不锈钢锭(直径15mm,高度7mm)放置在PECVD的中空腔室,抽真空,通过离子源向放置基材的中空腔室内通入流量为30sccm的乙炔气体,离子源电流为0.15A,然后以石墨为溅射靶材,向溅射靶内通入氩气,氩气流量为40sccm,氩气溅射电流为1A,向基材施加脉冲偏压-150V,沉积时间为40min,得到薄膜厚度为200nm~5um的非晶碳膜;
(2)第二层非晶碳膜制备(类金刚石非晶碳膜DLC为主):在上述步骤(1)结束后,将放置基材的中空腔室抽真空,然后通过离子源向中空腔室内通入流量为30sccm的乙炔气体,离子源电流为0.25A,同时施加-200V的脉冲偏压,沉积时间为20min,得到薄膜厚度为500nm~1um的非晶碳膜。
实施例2:
双层非晶碳膜的制备:
(1)第一层非晶碳膜制备(类石墨非晶碳膜GLC为主):将基材不锈钢锭(直径15mm,高度7mm)放置在PECVD的中空腔室,抽真空,通过离子源向放置基材的中空腔室内通入流量为40sccm的乙炔气体,离子源电流为0.10A,然后以石墨为溅射靶材,向溅射靶内通入氩气,氩气流量为60sccm,氩气溅射电流为1A,向基材施加脉冲偏压-150V,沉积时间为40min,得到薄膜厚度为200nm~5um的非晶碳膜;
(2)第二层非晶碳膜制备(类金刚石非晶碳膜DLC为主):在上述步骤(1)结束后,将放置基材的中空腔室抽真空,然后通过离子源向中空腔室内通入流量为40sccm的乙炔气体,离子源电流为0.20A,同时施加-200V的脉冲偏压,沉积时间为20min,得到薄膜厚度为500nm~1um的非晶碳膜。
实施例3:
双层非晶碳膜的制备:
(1)第一层非晶碳膜制备(类石墨非晶碳膜GLC为主):将基材不锈钢锭(直径15mm,高度7mm)放置在PECVD的中空腔室,抽真空,通过离子源向放置基材的中空腔室内通入流量为35sccm的乙炔气体,离子源电流为0.13A,然后以石墨为溅射靶材,向溅射靶内通入氩气,氩气流量为50sccm,氩气溅射电流为1A,向基材施加脉冲偏压-150V,沉积时间为40min,得到薄膜厚度为200nm~5um的非晶碳膜;
(2)第二层非晶碳膜制备(类金刚石非晶碳膜DLC为主):在上述步骤(1)结束后,将放置基材的中空腔室抽真空,然后通过离子源向中空腔室内通入流量为35sccm的乙炔气体,离子源电流为0.22A,同时施加-200V的脉冲偏压,沉积时间为20min,得到薄膜厚度为500nm~1um的非晶碳膜。
对比例1:
双层非晶碳膜的制备:
(1)第一层非晶碳膜制备(类石墨非晶碳膜GLC为主):将基材不锈钢锭(直径15mm,高度7mm)放置在PECVD的中空腔室,抽真空,通过离子源向放置基材的中空腔室内通入流量为35sccm的乙炔气体,离子源电流为0.13A,然后以石墨为溅射靶材,向溅射靶内通入氩气,氩气流量为20sccm,氩气溅射电流为1A,向基材施加脉冲偏压-100V,沉积时间为40min,得到薄膜厚度为200nm~5um的非晶碳膜;
(2)第二层非晶碳膜制备(类金刚石非晶碳膜DLC为主):在上述步骤(1)结束后,将放置基材的中空腔室抽真空,然后通过离子源向中空腔室内通入流量为35sccm的乙炔气体,离子源电流为0.22A,同时施加-200V的脉冲偏压,沉积时间为20min,得到薄膜厚度为500nm~1um的非晶碳膜。
对比例2:
双层非晶碳膜的制备:
(1)第一层非晶碳膜制备(类石墨非晶碳膜GLC为主):将基材不锈钢锭(直径15mm,高度7mm)放置在PECVD的中空腔室,抽真空,通过离子源向放置基材的中空腔室内通入流量为35sccm的乙炔气体,离子源电流为0.13A,然后以石墨为溅射靶材,向溅射靶内通入氩气,氩气流量为50sccm,氩气溅射电流为1A,向基材施加脉冲偏压-150V,沉积时间为40min,得到薄膜厚度为200nm~5um的非晶碳膜;
(2)第二层非晶碳膜制备(类金刚石非晶碳膜DLC为主):在上述步骤(1)结束后,将放置基材的中空腔室抽真空,然后通过离子源向中空腔室内通入流量为20sccm的乙炔气体,离子源电流为0.22A,同时施加-200V的脉冲偏压,沉积时间为20min,得到薄膜厚度为500nm~1um的非晶碳膜。
检测:
通过球盘式摩擦磨损试验机(JLTB-02,J&L Tech.,Korean)测试上述实施例1-3和对比例1-2中所制得的样品涂层的摩擦系数;通过残余应力仪过残余应力仪(StressTester,J&LTech.,Korean)测试各组样品涂层的内应力;通过维氏硬度计测试各组样品涂层的硬度;通过WS-2005型划痕仪测试样品涂层的结合力;通过拉曼光谱测试涂层中不同结构的比例,结果如下表1所示。
表1:不同实施例样品涂层性能比较
从上表1中可以看出,实施例样品摩擦系数均较低,实施例的样品硬度均较大(大于17GPa),对比例则较小,同时,实施例的结合力也较大(大于35N),而对比例1则较小,可见,通过涂层的结构设计,实施例实现了涂层高硬度和高结合力的结合。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (8)

1.一种双层非晶碳膜,其特征在于:所述双层非晶碳膜包括第一层非晶碳膜和第二层非晶碳膜,所述第一层非晶碳膜和第二层非晶碳膜具有不同比率的SP2结构类石墨非晶碳和SP3结构类金刚石非晶碳,且所述第一层非晶碳膜为采用类石墨结构为主的GLC非晶碳膜层,所述第二层非晶碳膜为采用类金刚石为主的DLC膜层;所述第一层非晶碳膜中类石墨非晶碳与类金刚石非晶碳的组分比例为4∶1-3∶1;所述第二层非晶碳膜中类石墨非晶碳与类金刚石非晶碳的组分比例为1∶5-1∶8;
所述双层非晶碳膜的制备方法包括以下步骤:
(1)第一层非晶碳膜制备:将基材于中空腔室中抽真空后,通过离子源向中空腔室内通入乙炔气体,再以石墨为溅射靶材,向溅射靶内通入氩气,同时基材施加脉冲偏压在基材表面沉积非晶碳膜层,得到第一层非晶碳膜;
(2)第二层非晶碳膜制备:将上述放置基材的中空腔室抽真空,通过离子源向中空腔室内通入乙炔气体,同时对基材施加脉冲偏压在基材上沉积第二层非晶碳膜,得到双层非晶碳膜。
2.根据权利要求1所述的一种双层非晶碳膜,其特征在于:所述双层非晶碳膜是等离子体增强化学气相沉积膜。
3.根据权利要求1所述的一种双层非晶碳膜,其特征在于:所述第一层非晶碳膜厚度为200nm-5um;所述第二层非晶碳膜厚度为500nm-1um。
4.根据权利要求1所述的一种双层非晶碳膜,其特征在于:所述步骤(1)中通入乙炔气体的通入流量为30-40sccm,离子源电流为0.10-0.15A。
5.根据权利要求1所述的一种双层非晶碳膜,其特征在于:所述步骤(1)中氩气流量为40-60sccm,氩气溅射电流为1A。
6.根据权利要求1所述的一种双层非晶碳膜,其特征在于:所述步骤(1)中对基材施加脉冲偏压为-150V,步骤(2)中对基材施加脉冲偏压为-200V。
7.根据权利要求1所述的一种双层非晶碳膜,其特征在于:所述步骤(1)中沉积时间为40min,步骤(2)中沉积时间为20min。
8.根据权利要求1所述的一种双层非晶碳膜,其特征在于:所述步骤(2)中乙炔气体的通入流量为30-40sccm,离子源电流为0.20-0.25A。
CN202111549122.2A 2021-12-17 2021-12-17 一种双层非晶碳膜及其制备方法 Active CN114196938B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111549122.2A CN114196938B (zh) 2021-12-17 2021-12-17 一种双层非晶碳膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111549122.2A CN114196938B (zh) 2021-12-17 2021-12-17 一种双层非晶碳膜及其制备方法

Publications (2)

Publication Number Publication Date
CN114196938A CN114196938A (zh) 2022-03-18
CN114196938B true CN114196938B (zh) 2024-02-20

Family

ID=80654872

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111549122.2A Active CN114196938B (zh) 2021-12-17 2021-12-17 一种双层非晶碳膜及其制备方法

Country Status (1)

Country Link
CN (1) CN114196938B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003062705A (ja) * 2001-06-13 2003-03-05 Sumitomo Electric Ind Ltd 非晶質カーボン被覆工具およびその製造方法
KR20100102011A (ko) * 2009-03-10 2010-09-20 (주) 포커스레이져 솔더 인쇄용 금속 마스크 및 이를 제조하는 방법
CN104213088A (zh) * 2014-08-06 2014-12-17 中国电子科技集团公司第三十八研究所 在钛合金材料表面制备耐磨非晶碳氮双层薄膜的方法
JP2018048391A (ja) * 2016-09-16 2018-03-29 太陽誘電ケミカルテクノロジー株式会社 カーボン成型体からなる基材を備えた構造体及びその製造方法
WO2018113053A1 (zh) * 2016-12-20 2018-06-28 深圳先进技术研究院 一种具有类金刚石阵列的结构件及其制备方法
CN109103203A (zh) * 2018-06-29 2018-12-28 武汉华星光电技术有限公司 一种cmos薄膜晶体管及其制作方法
CN110106483A (zh) * 2019-04-19 2019-08-09 广东工业大学 一种类石墨颗粒复合的类金刚石涂层及其制备方法和应用
CN111500982A (zh) * 2020-05-09 2020-08-07 艾瑞森表面技术(苏州)股份有限公司 一种四面体非晶碳复合涂层及其制备方法
CN113036154A (zh) * 2021-03-24 2021-06-25 赛屋(天津)涂层技术有限公司 一种集电器和电极

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11001922B2 (en) * 2011-11-17 2021-05-11 United Protective Technologies, Llc Carbon based coatings and methods of producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003062705A (ja) * 2001-06-13 2003-03-05 Sumitomo Electric Ind Ltd 非晶質カーボン被覆工具およびその製造方法
KR20100102011A (ko) * 2009-03-10 2010-09-20 (주) 포커스레이져 솔더 인쇄용 금속 마스크 및 이를 제조하는 방법
CN104213088A (zh) * 2014-08-06 2014-12-17 中国电子科技集团公司第三十八研究所 在钛合金材料表面制备耐磨非晶碳氮双层薄膜的方法
JP2018048391A (ja) * 2016-09-16 2018-03-29 太陽誘電ケミカルテクノロジー株式会社 カーボン成型体からなる基材を備えた構造体及びその製造方法
WO2018113053A1 (zh) * 2016-12-20 2018-06-28 深圳先进技术研究院 一种具有类金刚石阵列的结构件及其制备方法
CN109103203A (zh) * 2018-06-29 2018-12-28 武汉华星光电技术有限公司 一种cmos薄膜晶体管及其制作方法
CN110106483A (zh) * 2019-04-19 2019-08-09 广东工业大学 一种类石墨颗粒复合的类金刚石涂层及其制备方法和应用
CN111500982A (zh) * 2020-05-09 2020-08-07 艾瑞森表面技术(苏州)股份有限公司 一种四面体非晶碳复合涂层及其制备方法
CN113036154A (zh) * 2021-03-24 2021-06-25 赛屋(天津)涂层技术有限公司 一种集电器和电极

Also Published As

Publication number Publication date
CN114196938A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
US11001922B2 (en) Carbon based coatings and methods of producing the same
US7816011B2 (en) Structural material of diamond like carbon composite layers
US8574715B2 (en) Laminated film and laminated film-coated member
EP3670696A1 (en) Corrosion resistant carbon coatings
RU2553803C2 (ru) Трибология в сочетании с коррозионной стойкостью: новое семейство pvd- и pacvd-покрытий
CN111183269B (zh) 具有耐蚀滑动面的涂覆阀门部件
CN1727410A (zh) 一种纳米复合类金刚石涂层及其制备方法
Ji et al. Hydrophobic fluorinated carbon coatings on silicate glaze and aluminum
Suzuki et al. Friction and wear characteristics of hydrogenated diamond-like carbon films formed on the roughened stainless steel surface
Kang et al. Properties and tool performance of ta-C films deposited by double-bend filtered cathodic vacuum arc for micro drilling applications
EP3650583A1 (en) Ta-c based coatings with improved hardness
CN110423989A (zh) 一种低残余应力的硬质类金刚石薄膜的制备方法
KR20170133191A (ko) 고경도 TaC 코팅 탄소 재료 및 그 제조방법
Carta et al. A comparative study of Cr2O3 thin films obtained by MOCVD using three different precursors
CN114196938B (zh) 一种双层非晶碳膜及其制备方法
CN1168846C (zh) 金属离子注入改性非晶碳膜的制备方法
CN115044867A (zh) 一种TiAlWN涂层及其制备方法与应用
Meneve et al. Low friction and wear resistant aC: H/a-Si1− xCx: H multilayer coatings
CN101768722A (zh) 一种含氢纳米结构CNx梯度薄膜的制备方法
JPH01132779A (ja) 硬質炭素膜被覆を施した金属基体
Lugscheider et al. Investigations of mechanical and tribological properties of CrAlN+ C thin coatings deposited on cutting tools
CN113667976A (zh) 一种具有封孔顶层的耐蚀dlc薄膜及其制备方法
CN112030121B (zh) 宽温域减摩耐磨MoCN复合薄膜、其制备方法及应用
TW201140071A (en) Method for producing tungsten-containing diamond-like carbon film on base of contact probe pin for semiconductor inspection device
CN115216726B (zh) 高性能薄膜材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant