CN114016128A - 一种异质外延单晶金刚石复制生长方法 - Google Patents

一种异质外延单晶金刚石复制生长方法 Download PDF

Info

Publication number
CN114016128A
CN114016128A CN202111228647.6A CN202111228647A CN114016128A CN 114016128 A CN114016128 A CN 114016128A CN 202111228647 A CN202111228647 A CN 202111228647A CN 114016128 A CN114016128 A CN 114016128A
Authority
CN
China
Prior art keywords
diamond
single crystal
substrate
heteroepitaxial
epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111228647.6A
Other languages
English (en)
Inventor
魏强
林芳
张晓凡
陈根强
王宏兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202111228647.6A priority Critical patent/CN114016128A/zh
Publication of CN114016128A publication Critical patent/CN114016128A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种异质外延单晶金刚石复制生长方法,在第一异质外延衬底上制备晶向为(001)的第一Ir膜层;在第一Ir膜层的第一表面制备出(001)方向的第一外延金刚石核;使第一外延金刚石核外延生长,在第一Ir膜层的第一表面上形成(001)方向的第一单晶金刚石,得到第二外延衬底;清洗第二外延衬底,得到Ir/Dianomd衬底;在第一Ir膜层的第二表面上制备第二外延金刚石核;使第二外延金刚石核在MP‑CVD中生长,得到第二单晶金刚石;本发明中衬底以及生长层均为单晶金刚石,具有相同的热膨胀系数,利用异质外延单晶金刚石作为衬底,可以提高二次生长的单晶金刚石的晶体质量。

Description

一种异质外延单晶金刚石复制生长方法
技术领域
本发明属于异质外延单晶金刚石的制备方法,尤其涉及一种异质外延单晶金刚石复制生长方法。
背景技术
金刚石是一种宽禁带半导体,其极端热导率为2200W/m/K,电子迁移率(电子4500,空穴3800cm2/Vs)对新型量子和高功率电子器件具有重要意义。
由于金刚石在Ir薄膜上形核的特殊模式,使得Ir上外延生长的单晶金刚石具有成核密度高,结晶取向一致性好的特点,故而铱已经成为单晶金刚石晶圆制备的最重要镀层衬底材料。
在铱上的生长总是意味着在另一衬底上外延生长铱层。而外延生长的单晶金刚石在生长的过程中会与衬底产生热应力以及热应变,尤其随着异质外延单晶金刚石面积的增大,热应力造成的影响会越来越大,这会严重影响异质外延单晶金刚石的质量。
发明内容
本发明的目的是提供一种异质外延单晶金刚石复制生长方法,以降低外延生长的单晶金刚石与衬底之间的热应力和热应变,提高异质外延单晶金刚石的质量。
本发明采用以下技术方案:一种异质外延单晶金刚石复制生长方法,包括以下步骤:
在第一异质外延衬底上制备晶向为(001)的第一Ir膜层;
在第一Ir膜层的第一表面制备出(001)方向的第一外延金刚石核;
使外延金刚石核外延生长,在第一Ir膜层的第一表面上形成(001)方向的第一单晶金刚石,得到第二外延衬底;
清洗第二外延衬底,得到Ir/Dianomd衬底;
在第一Ir膜层的第二表面上制备第二外延金刚石核;
使第二外延金刚石核在MP-CVD中生长,得到第二单晶金刚石。
进一步地,得到Ir/Dianomd衬底后还包括:
在第一Ir膜层的第二表面进行Ir磁控溅射。
进一步地,清洗第二外延衬底包括:
使用H2SO4和HNO3混合溶液对第二外延衬底进行清洗,去除第一异质外延衬底,获得Ir/Dianomd衬底。
进一步地,第一Ir膜层的厚度为1nm~1μm。
进一步地,第一异质外延衬底选择a向蓝宝石、(100)晶向的Si、SrTiO3、MgO或Al2O3
进一步地,第一单晶金刚石和第二单晶金刚石的尺寸一致。
进一步地,第一Ir膜层的制备方法为磁控溅射法。
进一步地,第一外延金刚石核和第二外延金刚石核均采用增强偏压形核方法制备。
进一步地,在第一异质外延衬底上制备晶向为(001)的第一Ir膜层之前还包括:
对第一异质外延衬底进行超声清洗,并吹干。
本发明的有益效果是:本发明中衬底以及生长层均为单晶金刚石,具有相同的热膨胀系数,并且金刚石具有极高的热导率,故而可以极大减小异质外延单晶金刚石在生长中与衬底间产生的应力,同时利用异质外延单晶金刚石作为衬底,可以提高二次生长的单晶金刚石的晶体质量。
附图说明
图1为本发明实施例一种异质外延单晶金刚石复制生长方法的流程示意图;
图2为本发明实施例中不同阶段下的单晶第一Ir(001)膜层的表征图;
图3为本发明实施例中第一单晶金刚石和第二单晶金刚石的XRD摇摆曲线图;
图4为本发明实施例中制备的上下两层异质外延单晶金刚石的SEM截面特征图(中间层为第一Ir(001)膜层)。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
利用金刚石作为单晶金刚石异质外延的衬底可以实现最小的应力应变,故而用金刚石作为单晶金刚石异质外延衬底具有明显优势,然而,一般单晶金刚石(如高温高压法制备(HPHT))以及CVD生长的单晶金刚石尺寸过小,通常小于1英寸。而多晶金刚石表面很难实现高取向Ir薄膜的制备,异质外延单晶金刚石则可实现大于2英寸的面积,故而异质外延单晶金刚石作为外延生长的衬底方式制备尺寸相同的单晶金刚石是一个很好的方法。
本发明公开了一种异质外延单晶金刚石复制生长方法,如图1所示,包括以下步骤:在第一异质外延衬底上制备晶向为(001)的第一Ir膜层;在第一Ir膜层的第一表面制备出(001)方向的第一外延金刚石核;使外延金刚石核外延生长,在第一Ir膜层的第一表面上形成(001)方向的第一单晶金刚石,得到第二外延衬底;清洗第二外延衬底,得到Ir/Dianomd衬底;在第一Ir膜层的第二表面上制备第二外延金刚石核;其中,第一外延金刚石核和第二外延金刚石核均为高取向金刚石核,使第二外延金刚石核在MP-CVD中生长,得到第二单晶金刚石。
本发明中衬底以及生长层均为单晶金刚石,具有相同的热膨胀系数,并且金刚石具有极高的热导率,故而可以极大减小异质外延单晶金刚石在生长中与衬底间产生的应力,同时利用异质外延单晶金刚石作为衬底,可以提高二次生长的单晶金刚石的晶体质量。
在本发明中第一异质外延衬底选择a向蓝宝石、(100)晶向的Si、SrTiO3、MgO或Al2O3。具体的本实施例中,选择Al2O3(11-20)作为衬底,对其先后使用丙酮、无水乙醇以及去离子水超声波清洗10分钟,再用高压N2气吹干(本实施例中使用衬底尺寸为20×20mm2)。
利用磁控溅射在Al2O3(11-20)表面沉积Ir(001)薄膜(即第一Ir膜层),来提高Ir薄膜表面的质量。溅射衬底温度为800℃,持续时间为60分钟,Ir靶纯度为99.95%,Ar流量为50sccm,Ir沉积速率约为2nm/min,该第一Ir膜层的厚度为1nm~1μm。
利用DC-CVD增强偏压形核的方式在Ir(001)表面制备出第二外延向金刚石核,衬底温度为750℃时,在Ir表面施加-350V的电压,并通入5%浓度的CH4/H2混合气体,直流电源电流为1.5A,持续时间150s。
将上述得到的样片在MP-CVD中生长得到异质外延单晶金刚石,其生长功率为3500W,温度950℃,腔内压力为110torr,CH4/H2分别为40sccm和500sccm,并通入50ppm的N2作为辅助生长气体,生长约50h,获得金刚石衬底母版,将其作为第二外延衬底。
将所得的第二外延衬底放入H2SO4/HNO3混合溶液中清洗,去除氧化物残留,获得干净的Ir/Dianomd衬底。
在Ir/Diamond的Ir表面再次进行Ir磁控溅射,来提高Ir薄膜表面的质量,工艺同上。
在Ir/Diamond衬底上利用DC-CVD增强偏压形核的方式在Ir(001)表面制备出高取向金刚石核,工艺同上。
将衬底在MP-CVD中生长得到异质外延单晶金刚石,实现异质外延单晶金刚石的复制。
通过上述方法,得到的第一单晶金刚石和第二单晶金刚石的尺寸一致。
本发明首先利用Ir(001)/Al2O3衬底,在Ir表面异质外延生长出20×20×0.5mm3的单晶金刚石厚膜,其FWHM=0.124°。再利用所得到异质外延单晶金刚石作为母版在Ir面复制生长出与母版尺寸一致的异质外延单晶金刚石,最终得到20×20×1mm3尺寸的Diamond/Ir/Diamond结构厚膜。
该方法利用异质外延单晶金刚石作为衬底进行二次异质外延单晶金刚石生长,完全消除了二次外延生长的单晶金刚石与衬底间的热应力,并且母版金刚石作为衬底,其晶体质量不会影响二次生长的异质外延单晶金刚石质量,其异质外延单晶金刚石质量仅与Ir薄膜质量相关。通过二次生长后的异质外延单晶金刚石FWHM=0.058°。该方法可以有效提高异质外延单晶金刚石的质量,为单晶金刚石异质外延生长提出了一个新的方向。
综上,本发明实现了以异质外延单晶金刚石为衬底制备单晶金刚石的技术,异质外延单晶金刚石可以实现在英寸级氧化物衬底上外延生长,可以为二次生长单晶金刚石提供大尺寸的衬底,且利用异质外延单晶金刚石本身附着的Ir薄膜,可以节约Ir靶材的消耗,降低成本。

Claims (9)

1.一种异质外延单晶金刚石复制生长方法,其特征在于,包括以下步骤:
在第一异质外延衬底上制备晶向为(001)的第一Ir膜层;
在所述第一Ir膜层的第一表面制备出(001)方向的第一外延金刚石核;
使所述第一外延金刚石核外延生长,在所述第一Ir膜层的第一表面上形成(001)方向的第一单晶金刚石,得到第二外延衬底;
清洗所述第二外延衬底,得到Ir/Dianomd衬底;
在所述第一Ir膜层的第二表面上制备第二外延金刚石核;
使所述第二外延金刚石核在MP-CVD中生长,得到第二单晶金刚石。
2.如权利要求1所述的一种异质外延单晶金刚石复制生长方法,其特征在于,得到Ir/Dianomd衬底后还包括:
在所述第一Ir膜层的第二表面进行Ir磁控溅射。
3.如权利要求1所述的一种异质外延单晶金刚石复制生长方法,其特征在于,清洗所述第二外延衬底包括:
使用H2SO4和HNO3混合溶液对所述第二外延衬底进行清洗,去除第一异质外延衬底,获得Ir/Dianomd衬底。
4.如权利要求1所述的一种异质外延单晶金刚石复制生长方法,其特征在于,所述第一Ir膜层的厚度为1nm~1μm。
5.如权利要求1所述的一种异质外延单晶金刚石复制生长方法,其特征在于,所述第一异质外延衬底选择a向蓝宝石、(100)晶向的Si、SrTiO3、MgO或Al2O3
6.如权利要求1所述的一种异质外延单晶金刚石复制生长方法,其特征在于,所述第一单晶金刚石和第二单晶金刚石的尺寸一致。
7.如权利要求1所述的一种异质外延单晶金刚石复制生长方法,其特征在于,所述第一Ir膜层的制备方法为磁控溅射法。
8.如权利要求1所述的一种异质外延单晶金刚石复制生长方法,其特征在于,所述第一外延金刚石核和第二外延金刚石核均采用增强偏压形核方法制备。
9.如权利要求1所述的一种异质外延单晶金刚石复制生长方法,其特征在于,在第一异质外延衬底上制备晶向为(001)的第一Ir膜层之前还包括:
对所述第一异质外延衬底进行超声清洗,并吹干。
CN202111228647.6A 2021-10-21 2021-10-21 一种异质外延单晶金刚石复制生长方法 Pending CN114016128A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111228647.6A CN114016128A (zh) 2021-10-21 2021-10-21 一种异质外延单晶金刚石复制生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111228647.6A CN114016128A (zh) 2021-10-21 2021-10-21 一种异质外延单晶金刚石复制生长方法

Publications (1)

Publication Number Publication Date
CN114016128A true CN114016128A (zh) 2022-02-08

Family

ID=80057098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111228647.6A Pending CN114016128A (zh) 2021-10-21 2021-10-21 一种异质外延单晶金刚石复制生长方法

Country Status (1)

Country Link
CN (1) CN114016128A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060203346A1 (en) * 2005-03-14 2006-09-14 Shin-Etsu Chemical Co., Ltd. Multilayer substrate, method for producing a multilayer substrate, and device
CN107268076A (zh) * 2017-07-28 2017-10-20 西安交通大学 一种基于异质外延生长单晶金刚石的方法
US20200208298A1 (en) * 2017-09-08 2020-07-02 J2 Materials, Llc Diamonds and hetero-epitaxial methods of forming diamonds
CN113430640A (zh) * 2021-06-23 2021-09-24 西安交通大学 一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060203346A1 (en) * 2005-03-14 2006-09-14 Shin-Etsu Chemical Co., Ltd. Multilayer substrate, method for producing a multilayer substrate, and device
CN107268076A (zh) * 2017-07-28 2017-10-20 西安交通大学 一种基于异质外延生长单晶金刚石的方法
US20200208298A1 (en) * 2017-09-08 2020-07-02 J2 Materials, Llc Diamonds and hetero-epitaxial methods of forming diamonds
CN113430640A (zh) * 2021-06-23 2021-09-24 西安交通大学 一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法

Similar Documents

Publication Publication Date Title
US9200379B2 (en) Base material for growing single crystal diamond and method for producing single crystal diamond substrate
US20110081531A1 (en) Base material for growing single crystal diamond and method for producing single crystal diamond substrate
CN111321466A (zh) 大尺寸单晶金刚石生长方法及生长用复合基底
CN113235047B (zh) 一种AlN薄膜的制备方法
JP2010159185A (ja) 積層基板とその製造方法及びダイヤモンド膜とその製造方法
JP2662396B2 (ja) 結晶性堆積膜の形成方法
JP2007230823A (ja) 炭化珪素単結晶インゴットの製造方法及び炭化珪素単結晶インゴット
JP2022552024A (ja) ScAlMgO4基板に基づく窒化ガリウム単結晶及びその製造方法
CN110172732A (zh) 利用过渡金属氮化物牺牲层制备氮化物单晶衬底的方法
CN114318527A (zh) 一种大尺寸单晶金刚石膜生长和剥离方法
CN111809154A (zh) 一种制备高质量硅基氮化铝模板的方法
CN113774479A (zh) 一种同质/异质混合外延生长大尺寸单晶金刚石的制备方法
CN112813497B (zh) 一种通过异质外延保护环辅助单晶金刚石生长的方法
CN114016128A (zh) 一种异质外延单晶金刚石复制生长方法
CN113430640B (zh) 一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法
JP2010159186A (ja) 単結晶ダイヤモンド成長用の基材およびこの基材を用いた単結晶ダイヤモンドの製造方法
CN115161767A (zh) 一种(100)/(111)取向复合的高性能金刚石半导体的制备方法
CN114318523A (zh) 一种大尺寸单晶金刚石外延层剥离方法
JPH10101481A (ja) ダイアモンド薄膜のヘテロエピタクシサイクリックテクスチャー成長法
JP2003178977A (ja) 半導体結晶及びその製造方法
JP2004307253A (ja) 半導体基板の製造方法
CN112831834A (zh) 一种在Ru(0001)薄膜上异质外延生长金刚石(111)薄膜的制备方法
CN116988162B (zh) 一种降低铱衬底异质外延单晶金刚石表面缺陷的方法
CN115198358B (zh) 一种大尺寸hpht金刚石单晶片同质外延生长方法
CN115233309B (zh) 氮化镓衬底、氮化镓单晶层及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220208