CN113994582A - 用于dc-dc转换器的电力转变电路 - Google Patents

用于dc-dc转换器的电力转变电路 Download PDF

Info

Publication number
CN113994582A
CN113994582A CN202080044442.XA CN202080044442A CN113994582A CN 113994582 A CN113994582 A CN 113994582A CN 202080044442 A CN202080044442 A CN 202080044442A CN 113994582 A CN113994582 A CN 113994582A
Authority
CN
China
Prior art keywords
transistor
power supply
circuit
bidirectional switch
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080044442.XA
Other languages
English (en)
Inventor
鲁宾尼奇·姚克绍
阿尼尔·亚拉马斯
龚冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN113994582A publication Critical patent/CN113994582A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/068Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1213Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for DC-DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/084Three-wire systems; Systems having more than three wires for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J1/086Three-wire systems; Systems having more than three wires for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load or loads and source or sources when the main path fails
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种电源电路,包括:第一直流到直流(DC‑DC)转换器电路,经由第一双向开关连接到第一负载;第二DC‑DC转换器电路,连接到第二负载并且经由第二双向开关连接到第一负载;以及控制电路,所述控制电路以互补方式导通和关断第一双向开关和第二双向开关。

Description

用于DC-DC转换器的电力转变电路
相关申请的交叉引用
本申请要求2019年6月20日提交的美国专利申请No.62/863,884的权益。该申请的全部内容通过引用并入本文。
技术领域
本发明涉及DC-DC转换器电源。更具体地,本发明涉及可以在DC-DC转换器的辅助转换器与主转换器之间转变电力同时提供快速响应故障保护的电力转变电路。
背景技术
已知电源除了提供主电力之外,还具有在辅助待机(内务管理)输出模式下提供相对低的电力的能力。这通常需要电源配备有两个DC-DC转换器:低电力DC-DC转换器和由外部信号加电的主DC-DC转换器。
已知电源的低电力DC-DC转换器电路可以具有多种拓扑,其中反激式是大多数设计者的普通选择,这是由于其简单、成本低和可靠性。然而,考虑到主DC-DC转换器被设计为比低电力DC-DC转换器更高效,低电力反激式转换器的效率通常低于完全使用谐振式拓扑的效率。
在美国专利申请公开No.2010/0109433中描述的另一个示例中,使用一个有源电力开关和无源二极管在辅助电源模块与主电源模块之间分配电力。当辅助电源模块提供电力时,无源二极管具有通常是约0.7V的电压降,这降低了转换器的效率。辅助电源模块的电压需要低于主电源模块的电压。在美国专利申请公开No.2010/0109433中,晶体管Q2和晶体管Q4级联,即晶体管Q2和晶体管Q4竖直地堆叠,使晶体管Q2的集电极连接到晶体管Q4的发射极。美国专利申请公开No.2010/0109433中的配置足以驱动单个电力MOSFET Q1,但是如果将二极管D1替换为另一个MOSFET则将是不够的。控制诸如MOSFET之类的两个双向开关更复杂并且需要考虑不同的操作条件。
发明内容
为了克服上述问题,本发明的优选实施例提供了DC-DC转换器,每个DC-DC转换器包括附加电路以将输送到辅助负载的电力从辅助低电力转换器转变到主电力转换器。将关闭信号的精确的导通/关断定时用于操作两个双向开关,以减少或最小化转变时间并且防止错误方向上的电力流。使用两个双向开关提供了比相关技术的开关和二极管更好的效率。此外,避免了在辅助电源向负载提供电力时0.7V的电压降。
与相关技术不同,在本发明的优选实施例中,不需要主转换器的输出电压高于辅助转换器的输出电压。此外,可以降低成本,这是因为辅同步整流器及其控制电路可以从辅助转换器中去除。
根据本发明的优选实施例,一种电源电路,包括:第一直流到直流(DC-DC)转换器电路,经由第一双向开关连接到第一负载;第二DC-DC转换器电路,连接到第二负载并且经由第二双向开关连接到第一负载;以及控制电路,用于以互补方式导通和关断第双向开关和第二双向开关。
第一双向开关和第二双向开关优选地是金属氧化物半导体场效应晶体管。第一双向开关的漏极优选地连接到第二双向开关的漏极。所述控制电路优选地包括四个晶体管。
所述电源电路还优选地包括:保护电路,用于向所述控制电路输出关闭信号。优选地,所述关闭信号导通所述第一双向开关并且关断所述第二双向开关。
所述电源电路还优选地包括:微控制器,用于向所述控制电路输出控制信号。优选地,所述控制信号关断所述第一双向开关并且导通所述第二双向开关。
优选地,所述控制电路包括:电源电压;第一晶体管,连接在所述电源电压与地之间;以及第二晶体管,连接在所述电源电压与地之间;所述第一晶体管的漏极、所述第二晶体管的栅极、以及所述第一双向开关的栅极彼此连接并且连接到所述电源电压;所述第二晶体管的漏极和所述第二双向开关的栅极彼此连接并且连接到所述电源电压;并且所述第一晶体管导通和关断,使得所述第一双向开关和所述第二双向开关以互补方式导通和关断。所述电源电路还优选地包括:微控制器,所述微控制器输出控制信号以导通和关断所述第一晶体管。优选地,所述控制电路还包括第三晶体管和第四晶体管;所述第三晶体管的栅极和所述第四晶体管的栅极连接在一起;所述第三晶体管的漏极连接到所述第一晶体管的栅极;所述第四晶体管的漏极连接到所述第二晶体管的漏极;并且所述第三晶体管和所述第四晶体管一起导通和关断,使得所述第一双向开关和所述第二双向开关以互补方式导通和关断。所述电源电路还优选地包括:保护电路,所述保护电路输出关闭信号以一起导通和关断所述第三晶体管和所述第四晶体管。
根据以下参考附图对本发明的优选实施例的详细描述,本发明的上述和其他特征、元件、步骤、配置、特性和优点将变得更显而易见。
附图说明
图1是电力转变电路的电路图。
图2和图3是用于操作图1所示的电路的信号波形的图。
具体实施方式
现在将参考图1至图3详细描述本发明的优选实施例。注意,以下描述在所有方面是说明性的而不是限制性的,并且不应该被解释为以任意方式限制本申请或本发明的优选实施例的使用。
图1是用于DC-DC转换器的电力转变电路的电路图。与相关技术的电力转变电路相比,图1所示的电路包括由精确的导通/关断定时控制的两个双向开关,以减少或最小化转变时间并且防止错误方向上的电力流。
图1的电力转变电路包括用于控制控制电路101的微控制器106和保护电路107。控制电路101控制两个电力开关Q1和Q2,其针对辅助负载104控制辅助转换器102和主转换器103之间的电力流。针对控制电路101的电源电压VCC可以从与由辅助转换器102和主转换器103使用的源相同的源生成,并且可以具有适合于应用的任意值。接地GND可以在图1的组件之中共享。微控制器106可以是任意数字设备(例如DSP、FPGA等)或者可以是模拟电路/开关。保护电路107可以是适合于应用的任意类型。
如图1所示,控制电路101可以包括四个晶体管QA、QB、QC和QD。如图所示,四个晶体管QA、QB、QC和QD被示出为金属氧化物半导体场效应晶体管(MOSFET),但是其他类型的晶体管也可以用作开关,例如双极型晶体管。晶体管QA和QB生成针对电力开关Q1和Q2的栅极信号G1和G2。此外,在当保护电路107生成高电平关闭信号SD时的紧急关闭的情况下,晶体管QC和QD可以立即使栅极信号G1和G2反向,如下面更详细讨论的。两个电力开关Q1和Q2可以被包括在电力转变电路中,以向辅助负载104输送电力。控制电路101用于控制两个电力开关Q1和Q2,以选择连接辅助负载104的电源。如图1所示,晶体管QA和QB级联,即晶体管QA和QB水平连接,使得晶体管QA驱动晶体管QB。图1所示的布置允许控制两个双向开关,例如电力开关Q1和Q2
图1所示的电力开关Q1和Q2以互补方式操作。电力开关Q1的漏极连接到电力开关Q2的漏极的电力开关Q1和Q2的背靠背配置,防止了辅助转换器102和主转换器103之中的双向电力流。电力开关Q1和Q2在DC-DC转换器加电之后的默认状态是电力开关Q1启用和电力开关Q2禁用。这允许当辅助转换器102运行时到辅助负载104的电力可用,而不管主转换器103是否运行。
图2和图3是用于操作图1的电路的信号波形的图。控制信号CTRL和关闭信号SD可以具有任意合适的电压电平。图2示出了在改变电力流方向期间的操作信号的信号波形。在加电时,控制信号CTRL为低,同时初始化微控制器106。因此,晶体管QA关断,并且电压G1等于电源电压VCC,因此电压G1为高。因为电压G1为高,所以晶体管QB和电力开关Q1二者导通。因为晶体管QB导通,电压G2连接到GND,因此电力开关Q2关断。因此,辅助负载104连接到辅助转换器102。转变电路保持在该状态下,直到主转换器103完全运行。
一旦主转换器103完全运行,微控制器106就在时间T0输出高控制信号CTRL,其开始从辅助转换器102到主转换器103的电力转变。由于晶体管的非零开关时间以及寄生电容的存在,电压G1和G2在转变期间将分别指数地增大或减小,如图2所示。因为晶体管QA由于高控制信号CTRL而导通,所以电压G1在时间T0开始下降。
在时间T1,电压G1具有值VL2,其小于电力开关Q1的导通栅源阈值电压VGS,迫使电力开关Q1关断。在时间T1之后,电压G1继续下降,并且在时间T2具有值VL1,其表示晶体管QB的栅源电压VGS阈值。随着电压G1继续下降,晶体管QB同时开始关断,导致电压G2上升。在时间T3,电压G2达到值VL2,其是电力开关Q2的导通阈值电压,迫使电力开关Q2导通。此时,电力流转变完成,并且到辅助负载104的电力从辅助转换器104重定向到主转换器103。
为了转变到辅助转换器102,在时间T4,主转换器103关断。因此,微控制器106输出低控制信号CTRL,以将电力流从来自主转换器103重配置为来自辅助转换器104。在时间T4,晶体管QA开始关断,其导致电压G1上升。当在时间T5电压G1达到值VL1时,晶体管QB开始导通,导致电压G2下降。电力开关Q2在电压G2等于值VL2时的时间T6关断,VL2是电力开关Q2的栅源阈值电压VGS。电压G1继续上升,并且在时间T7等于值VL2,VL2是电力开关Q1的导通栅源阈值电压VGS。此时,电力转变完成,并且到辅助负载104的电力从辅助转换器102输送。
图3是用于操作图1的电路的信号波形的图。图3示出了在主转换器103的快速关闭期间的操作信号的波形。到辅助负载104的电力由主转换器103供应,直到由保护电路107输出高关闭信号SD。高关闭信号SD可以由于故障条件(例如过载、过压、过温等)而生成。非常快的响应可以提供更好的保护。因此,保护电路107可以与在微控制器106内部的固件中实现的保护并行使用。因为由于在有限的采样时间能力下并行执行的多个循环的调度优先级而在微控制器内部可能存在显著延迟,所以可以使用该并行操作。该并行操作允许关闭比微控制器106使用关闭信号SD来改变控制信号CTRL以导致关闭更快地发生,这是因为由关闭信号SD在硬件中生成并且被发送到微控制器106以改变控制信号CTRL导致的附加延迟。附加延迟发生是因为关闭信号SD的改变需要由微控制器106检测并且然后通过考虑梯形结构的中断优先级的中断程序处理,之后微控制器106可以改变控制信号CTRL。并行操作可以提供更快的关闭,因为一旦检测到故障条件并且高关闭信号SD被生成,相同的关闭信号SD就立即停止向其供应关闭信号SD的所有其他硬件模块。微控制器106也可以接收关闭信号SD,但将根据微控制器106的可用处理时间来处理关闭信号SD并且然后改变控制信号CTRL。但是改变控制信号CTRL的延迟并不重要,因为关闭信号SD首先到达并且已经使硬件模块关闭。
如图3所示,最初控制信号CTRL为高,输出电力通过电力开关Q2输送,并且主转换器103运行。在时间T0,关闭信号SD由于触发来自保护电路107的硬件保护而变为高,并且晶体管QC和QD二者同时导通。因为栅极电压GQA比电源电压VCC低很多,所以栅极电压GQA几乎立即下降到零,导致电压G1上升,同时电压G2开始下降。在时间T1,电压G2下降到值VL2,VL2是电力开关Q2的导通栅源阈值电压VGS,导致电力开关Q2关断。电压G1继续上升直到当其等于值VL2(即电力开关Q1的导通栅源阈值电压VGS)时的时间T2,导致电力开关Q1导通。电力转变现在完成。
由于由采样和信号处理导致的延迟,微控制器106在时间T3输出低控制信号CTRL。然而,晶体管QA的栅极电压GQA已经被晶体管Qc通过使晶体管QA关断的高关闭信号SD而下拉。因此,微控制器106的反应延迟没有不利地影响DC-DC转换器电路的操作。
本发明的优选实施例的上述特征和优点能够应用于许多不同的应用,包括但不限于电池充电器、电动汽车充电器、高压数据中心应用、电信应用、航空航天应用等。
虽然上面已经描述了本发明的优选实施例,但是应该理解,在不脱离本发明的范围和精神的情况下,变化和修改对于本领域技术人员是显而易见的。因此,本发明的范围仅由所附的权利要求确定。

Claims (12)

1.一种电源电路,包括:
第一直流到直流DC-DC转换器电路,经由第一双向开关连接到第一负载;
第二DC-DC转换器电路,连接到第二负载并且经由第二双向开关连接到所述第一负载;以及
控制电路,用于以互补方式导通和关断所述第一双向开关和所述第二双向开关。
2.根据权利要求1所述的电源电路,其中,所述第一双向开关和所述第二双向开关是金属氧化物半导体场效应晶体管。
3.根据权利要求2所述的电源电路,其中,所述第一双向开关的漏极连接到所述第二双向开关的漏极。
4.根据权利要求1所述的电源电路,其中,所述控制电路包括四个晶体管。
5.根据权利要求1所述的电源电路,还包括:保护电路,用于向所述控制电路输出关闭信号。
6.根据权利要求5所述的电源电路,其中,所述关闭信号导通所述第一双向开关并且关断所述第二双向开关。
7.根据权利要求1所述的电源电路,还包括:微控制器,用于向所述控制电路输出控制信号。
8.根据权利要求7所述的电源电路,其中,所述控制信号关断所述第一双向开关并且导通所述第二双向开关。
9.根据权利要求1所述的电源电路,其中:
所述控制电路包括:
电源电压;
第一晶体管,连接在所述电源电压与地之间;以及
第二晶体管,连接在所述电源电压与地之间;
所述第一晶体管的漏极、所述第二晶体管的栅极、以及所述第一双向开关的栅极彼此连接并且连接到所述电源电压;
所述第二晶体管的漏极和所述第二双向开关的栅极彼此连接并且连接到所述电源电压;并且
所述第一晶体管导通和关断,使得所述第一双向开关和所述第二双向开关以所述互补方式导通和关断。
10.根据权利要求9所述的电源电路,还包括:微控制器,用于输出控制信号以导通和关断所述第一晶体管。
11.根据权利要求9所述的电源电路,其中:
所述控制电路还包括第三晶体管和第四晶体管;
所述第三晶体管的栅极和所述第四晶体管的栅极连接在一起;
所述第三晶体管的漏极连接到所述第一晶体管的栅极;
所述第四晶体管的漏极连接到所述第二晶体管的漏极;并且
所述第三晶体管和所述第四晶体管一起导通和关断,使得所述第一双向开关和所述第二双向开关以所述互补方式导通和关断。
12.根据权利要求11所述的电源电路,还包括:保护电路,用于输出关闭信号以一起导通和关断所述第三晶体管和所述第四晶体管。
CN202080044442.XA 2019-06-20 2020-05-13 用于dc-dc转换器的电力转变电路 Pending CN113994582A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962863884P 2019-06-20 2019-06-20
US62/863,884 2019-06-20
PCT/US2020/032551 WO2020256858A1 (en) 2019-06-20 2020-05-13 Power transitioning circuit for dc-dc converter

Publications (1)

Publication Number Publication Date
CN113994582A true CN113994582A (zh) 2022-01-28

Family

ID=74037006

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080044442.XA Pending CN113994582A (zh) 2019-06-20 2020-05-13 用于dc-dc转换器的电力转变电路

Country Status (3)

Country Link
US (1) US20220231598A1 (zh)
CN (1) CN113994582A (zh)
WO (1) WO2020256858A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101676822A (zh) * 2008-10-31 2010-03-24 旭丽电子(广州)有限公司 电源配置装置
CN104184308A (zh) * 2013-05-21 2014-12-03 瑞萨电子株式会社 半导体集成电路及其动作方法
CN108199362A (zh) * 2018-01-10 2018-06-22 龙迅半导体(合肥)股份有限公司 一种io接口esd漏电保护电路
CN108512403A (zh) * 2018-04-10 2018-09-07 峰岹科技(深圳)有限公司 Mos管驱动电路、驱动芯片及电机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6600239B2 (en) * 2001-03-22 2003-07-29 Hewlett-Packard Development Company, L.P. Active circuit protection for switched power supply system
US6946820B2 (en) * 2001-09-12 2005-09-20 Matsushita Electric Industrial Co., Ltd. Multiple output DC-DC converter for providing controlled voltages
US7893560B2 (en) * 2008-09-12 2011-02-22 Nellcor Puritan Bennett Llc Low power isolation design for a multiple sourced power bus
US8018088B2 (en) * 2008-12-30 2011-09-13 International Business Machines Corporation Apparatus, system, and method for a synchronous multiple output power supply
CN202978408U (zh) * 2012-09-03 2013-06-05 深圳市领步科技有限公司 一种双电源自动切换电路
US11088549B2 (en) * 2016-03-22 2021-08-10 Intersil Americas LLC Multiple chargers configuration in one system
CN109075571B (zh) * 2016-04-14 2022-11-01 瑞士优北罗股份有限公司 电源切换电路
US10141740B2 (en) * 2016-06-22 2018-11-27 Cree, Inc. Auxiliary supply generation for power converters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101676822A (zh) * 2008-10-31 2010-03-24 旭丽电子(广州)有限公司 电源配置装置
CN104184308A (zh) * 2013-05-21 2014-12-03 瑞萨电子株式会社 半导体集成电路及其动作方法
CN108199362A (zh) * 2018-01-10 2018-06-22 龙迅半导体(合肥)股份有限公司 一种io接口esd漏电保护电路
CN108512403A (zh) * 2018-04-10 2018-09-07 峰岹科技(深圳)有限公司 Mos管驱动电路、驱动芯片及电机

Also Published As

Publication number Publication date
WO2020256858A1 (en) 2020-12-24
US20220231598A1 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
US8630102B2 (en) Ultra low standby consumption in a high power power converter
US8058855B2 (en) Direct current converter
US11949328B2 (en) Bootstrap pre-charge circuit in totem-pole power factor correction converter
US11303218B2 (en) Low delay time power converter circuit and driver circuit thereof
JP2016092907A (ja) 半導体装置
US20110043176A1 (en) Step-down switching regulator
US9397636B2 (en) System and method for driving transistors
JP6198828B2 (ja) 半導体スイッチ回路
TW201125250A (en) Power supply and the control method for controlling the same and power supply system incorporating such power supplies
US10056837B2 (en) DC-DC converter and power source device
CN114499478B (zh) 开关电容功率转换器的栅极驱动设备和控制方法
JP2010034746A (ja) 電力変換回路の駆動回路
US20200099285A1 (en) Driver circuit
JP6065808B2 (ja) 半導体装置及び半導体モジュール
CN109842306B (zh) 单输入多输出直流电源供应***及相关降压调节控制电路
US8519689B2 (en) Switching regulator
US10536088B2 (en) Switched mode power supply controller
CN109194126B (zh) 一种电源切换电路
US20130200868A1 (en) Protection of an N-Channel Transistor
CN112421955B (zh) 转换电路
US11196243B2 (en) Pin-short detection circuits
CN108696101B (zh) 驱动电路及其控制方法
CN113994582A (zh) 用于dc-dc转换器的电力转变电路
JP2020096444A (ja) スイッチング回路
JP5313796B2 (ja) 電力用半導体の駆動回路および駆動方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination