CN113964188A - 横向双扩散金属氧化物半导体场效应管及其制作方法 - Google Patents

横向双扩散金属氧化物半导体场效应管及其制作方法 Download PDF

Info

Publication number
CN113964188A
CN113964188A CN202111571321.3A CN202111571321A CN113964188A CN 113964188 A CN113964188 A CN 113964188A CN 202111571321 A CN202111571321 A CN 202111571321A CN 113964188 A CN113964188 A CN 113964188A
Authority
CN
China
Prior art keywords
region
type
drift region
type drift
well region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111571321.3A
Other languages
English (en)
Inventor
余山
赵东艳
王于波
陈燕宁
付振
刘芳
王凯
吴波
邓永峰
刘倩倩
郁文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Information and Telecommunication Co Ltd
Beijing Smartchip Microelectronics Technology Co Ltd
Beijing Core Kejian Technology Co Ltd
Original Assignee
State Grid Information and Telecommunication Co Ltd
Beijing Smartchip Microelectronics Technology Co Ltd
Beijing Core Kejian Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Information and Telecommunication Co Ltd, Beijing Smartchip Microelectronics Technology Co Ltd, Beijing Core Kejian Technology Co Ltd filed Critical State Grid Information and Telecommunication Co Ltd
Priority to CN202111571321.3A priority Critical patent/CN113964188A/zh
Publication of CN113964188A publication Critical patent/CN113964188A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明涉及半导体技术领域,提供一种横向双扩散金属氧化物半导体场效应管及其制作方法。所述横向双扩散金属氧化物半导体场效应管,包括衬底、栅极区、源极区、漏极区、P型体区以及位于所述衬底上的N型阱区、P型阱区和N型漂移区,还包括:离子注入形成的P型漂移区;所述P型漂移区位于所述N型阱区内,所述P型漂移区与所述P型体区之间存在预设距离。本发明在N型阱区内增加P型漂移区,P型漂移区与N型阱区的接触面构成PN结,P型漂移区与N型漂移区形成双重RESURF结构,降低器件的表面电场,并且能够承担更高的击穿电压,维持较低的导通电阻。

Description

横向双扩散金属氧化物半导体场效应管及其制作方法
技术领域
本发明涉及半导体技术领域,具体地涉及一种横向双扩散金属氧化物半导体场效应管以及一种横向双扩散金属氧化物半导体场效应管的制作方法。
背景技术
双扩散金属氧化物半导体场效应管(Double-diffused MOS,简称DMOS)具有耐压高、功耗低、大电流驱动能力等特点,广泛采用于电源管理电路中。双扩散金属氧化物半导体场效应管主要有两种类型,垂直双扩散金属氧化物半导体场效应管(Vertical Double-diffused MOSFET,简称VDMOSFET)和横向双扩散金属氧化物半导体场效应管(LateralDouble-diffused MOSFET,简称LDMOSFET)。
对于LDMOSFET,特征导通电阻(Specific on-Resistance,Rsp)和击穿电压(Breakdown Voltage,BV)是两个重要的指标,其外延层的厚度、掺杂浓度、漂移区的长度是最重要的特性参数。通常,可以通过增加沟道长度和漂移区的长度来提高击穿电压,但是这样会增加LDMOSFET芯片的面积和导通电阻。由于高击穿电压和低特征导通电阻之间存在矛盾关系,现有的LDMOSFET无法满足应用的要求。目前,亟需研究一种高击穿电压而维持较低导通电阻的LDMOSFET。
发明内容
本发明的目的是提供一种横向双扩散金属氧化物半导体场效应管及其制作方法,其提供高击穿电压且维持较低导通电阻。
为了实现上述目的,本发明一方面提供一种横向双扩散金属氧化物半导体场效应管,包括衬底、栅极区、源极区、漏极区、P型体区以及位于所述衬底上的N型阱区、P型阱区和N型漂移区,还包括:离子注入形成的P型漂移区;所述P型漂移区位于所述N型阱区内,所述P型漂移区与所述P型体区之间存在预设距离。
进一步地,所述P型漂移区包括多个相互独立的掺杂块,所述多个相互独立的掺杂块呈阵列排布。
进一步地,所述掺杂块的形状为圆形、方形、六边形或八边形。
进一步地,所述P型漂移区中掺杂块的数量和深度根据所述横向双扩散金属氧化物半导体场效应管所需承受的击穿电压确定。
进一步地,所述P型漂移区与所述P型体区之间的预设距离根据所述P型漂移区的掺杂浓度和所述P型体区的掺杂浓度确定。
进一步地,还包括:N型埋层和P型外延层;所述N型埋层位于所述衬底与所述P型外延层之间,所述P型外延层位于所述N型阱区的下方。
进一步地,所述P型阱区包括:第一P型阱区和第二P型阱区,所述第一P型阱区和第二P型阱区分别位于所述N型阱区的两侧并与所述N型阱区相接;所述P型体区和所述N型漂移区位于所述N型阱区的上方;所述N型漂移区包括第一N型漂移区和第二N型漂移区,所述第一N型漂移区和第二N型漂移区分别位于所述P型体区的两侧并与所述P型体区相接。
进一步地,所述第一N型漂移区和第二N型漂移区与所述漏极区相接,所述P型体区与所述源极区相接。
本发明另一方面提供一种横向双扩散金属氧化物半导体场效应管的制作方法,所述方法包括:
在半导体衬底的选定区域中形成N型阱区和P型阱区;
在半导体衬底的选定区域中形成P型体区和N型漂移区;所述N型漂移区与所述P型体区横向接触,并与所述N型阱区纵向接触;
采用离子注入工艺在所述N型阱区中形成P型漂移区。
进一步地,所述采用离子注入工艺在所述N型阱区中形成P型漂移区,包括:采用光刻工艺在所述N型阱区中形成P型漂移区的掺杂块的图形;采用离子注入工艺在所述掺杂块的图形区域注入掺杂元素离子;对离子注入后形成的P型漂移区进行退火处理。
进一步地,所述方法还包括:在形成N型阱区和P型阱区之前,在半导体衬底上形成N型埋层和P型外延层。
进一步地,所述方法还包括:在形成P型体区和N型漂移区之后,在所述P型体区的上方形成源极区,在所述N型漂移区的上方形成漏极区,在所述P型体区与所述N型漂移区接触的界面上方形成栅极区。
本发明提供的横向双扩散金属氧化物半导体场效应管,在N型阱区内增加P型漂移区,P型漂移区与N型阱区的接触面构成PN结,P型漂移区与N型漂移区形成双重RESURF(Reduced SURface Field,降低表面电场)结构,降低器件的表面电场,并且能够承担更高的击穿电压,维持较低的导通电阻。
此外,本发明在P型漂移区中设置多个相互独立的掺杂块,通过改变掺杂块的形状和排布增加P型漂移区与N型阱区形成的PN结的面积,从而增加PN耗尽区面积,进一步提高器件的击穿电压。
本发明实施方式的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明实施方式的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明实施方式,但并不构成对本发明实施方式的限制。在附图中:
图1是本发明实施方式提供的横向双扩散金属氧化物半导体场效应管的结构示意图;
图2是本发明实施方式提供的横向双扩散金属氧化物半导体场效应管的掺杂块的排布示意图;
图3是本发明实施方式提供的横向双扩散金属氧化物半导体场效应管的制作方法的流程图。
附图标记说明
100-衬底,101-栅极区,102源极区,103-漏极区,104-P型体区,
105a –第一N型漂移区,105b –第二N型漂移区,106-N型阱区,
107a-第一P型阱区,107b-第二P型阱区,108- P型漂移区,
109- P型外延层,110- N型埋层,111- 浅槽隔离区。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
图1是本发明实施方式提供的横向双扩散金属氧化物半导体场效应管的结构示意图。如图1所示,本实施方式的横向双扩散金属氧化物半导体场效应管(以下简称LDMOSFET),包括衬底100、栅极区101、源极区102、漏极区103、浅槽隔离区111、P型体区104以及位于衬底100上的N型阱区106、P型阱区(107a/107b)和N型漂移区(105a/105b)。本实施方式的LDMOSFET还包括P型漂移区108。所述P型漂移区108设置于N型阱区106内,P型漂移区108与P型体区104之间存在预设距离,即P型漂移区108的界面与P型体区104的界面不接触,两者之间保持一定距离。P型漂移区108与P型体区104之间的预设距离可以根据P型漂移区108的掺杂浓度和P型体区104的掺杂浓度确定。LDMOSFET承受高压的原理在于轻掺杂漂移区的存在,在高漏压工作时,沟道区只分担很少部分的电压降,而漂移区则承担了大部分的电压降。本发明实施方式提供的LDMOSFET,在N型阱区内增加轻掺杂的P型漂移区,P型漂移区与N型阱区的接触面构成PN结,P型漂移区与N型漂移区形成双重RESURF (ReducedSURface Field,降低表面电场)结构,降低器件的表面电场,并且能够承担更高的击穿电压,维持较低的导通电阻。
所述P型漂移区108包括多个相互独立的掺杂块,多个掺杂块呈阵列排布。图2是本发明实施方式提供的横向双扩散金属氧化物半导体场效应管的掺杂块的排布示意图。如图2所示,所述掺杂块的形状为圆形、方形、六边形或八边形。图2中2a、2b、2c、2d展示出四种不同形状的掺杂块的排布方式,其中2a表示六个圆形的掺杂块呈3*2阵列排布;2b表示九个正方形的掺杂块呈3*3阵列排布;2c表示八个长方形的掺杂块呈2*4阵列排布;2d表示12个六边形的掺杂块呈3*4阵列排布。在P型漂移区整体面积相同的情况下,图2所示的多个独立掺杂块呈阵列排布的方式,各个掺杂块图形的总周长远大于P型漂移区外沿的周长,即各个掺杂块与N型阱区的总接触面积远大于P型漂移区外沿与N型阱区的接触面积。由于源极与漏极之间的电压与PN结的耗尽区面积呈正比关系,耗尽区面积越大,源极与漏极之间所能承受的电压就越大,LDMOSFET器件的击穿电压就越大。本实施方式在P型漂移区中设置多个相互独立的掺杂块,通过改变掺杂块的形状和排布增加P型漂移区与N型阱区形成的PN结的面积,从而增加PN耗尽区面积,进一步提高LDMOSFET器件的击穿电压。
可选实施方式中,所述P型漂移区108中掺杂块的数量和深度可以根据LDMOSFET器件所需承受的击穿电压来确定。例如,需要击穿电压更高的LDMOSFET器件,则加大P型漂移区中掺杂块的数量和深度,以增加PN耗尽区面积,掺杂块的数量值或深度值,可以计算得到,具体的计算方式不是本发明的重点。
如图1所示,本实施方式的LDMOSFET还包括N型埋层110和P型外延层109, N型埋层110位于衬底100与P型外延层109之间, P型外延层109位于N型阱区106的下方。增加N型埋层110和P型外延层109,可优化PN结的击穿电压,同时降低导通电阻。所述P型阱区包括:第一P型阱区107a和第二P型阱区107b,第一P型阱区107a和第二P型阱区107b分别设置于N型阱区106的两侧并与N型阱区106相接。所述P型体区104和N型漂移区设置于N型阱区106的上方。所述N型漂移区包括第一N型漂移区105a和第二N型漂移区105b,第一N型漂移区105a和第二N型漂移区105b分别位于P型体区104的两侧并与P型体区104相接。所述第一N型漂移区105a和第二N型漂移区105b与漏极区103相接,所述P型体区104与源极区102相接。栅极区101位于P型体区104与N型漂移区相接触的界面上方。本实施方式提供一种具有双重补偿结构的高压RESURF LDMOS器件,相较于普通RESURF LDMOS器件结构,降低了表面电场,缓解了器件击穿电压与导通电阻的矛盾关系,极大的改良了器件的性能。
本发明实施方式提供的LDMOSFET,在N型阱区内增加P型漂移区,P型漂移区与N型阱区的接触面构成PN结,P型漂移区与N型漂移区形成双重RESURF (Reduced SURfaceField,降低表面电场)结构,进一步降低器件的表面电场,提高器件的耐压能力,而且降低器件的导通电阻,在维持较低导通电阻的同时提高击穿电压。该结构的LDMOSFET,源极与漏极之间的电压与PN结的耗尽区面积呈正比关系,耗尽区面积越大,源极与漏极之间所能承受的电压就越大,通过改变掺杂块的形状和排布来增加PN结的面积,从而提高LDMOSFET器件的击穿电压。
图3是本发明实施方式提供的横向双扩散金属氧化物半导体场效应管的制作方法的流程图。参照图1和图3,本实施方式提供一种横向双扩散金属氧化物半导体场效应管的制作方法,所述方法包括:
S1、在半导体衬底的选定区域中形成N型阱区和P型阱区;
S2、在半导体衬底的选定区域中形成P型体区和N型漂移区;所述N型漂移区与所述P型体区横向接触,并与所述N型阱区纵向接触。
S3、采用离子注入工艺在N型阱区中形成P型漂移区。所述P型漂移区与P型体区不接触,两者之间保持预设距离,该预设距离可以根据P型漂移区的掺杂浓度和P型体区的掺杂浓度确定。
采用离子注入工艺形成P型漂移区,具体为:采用光刻工艺在所述N型阱区中形成P型漂移区的掺杂块的图形(通过掩膜版将掺杂块的图形转移到光刻胶);采用离子注入工艺在所述掺杂块的图形区域注入掺杂元素离子,例如硼或铟;去除光刻胶;对离子注入后形成的P型漂移区进行退火处理。
所述方法步骤还包括:在形成N型阱区和P型阱区之前,在半导体衬底上形成N型埋层和P型外延层;在形成P型体区和N型漂移区之后,在P型体区的上方形成源极区,在N型漂移区的上方形成漏极区,在P型体区与N型漂移区接触的界面上方形成栅极区。
本实施方式提供的横向双扩散金属氧化物半导体场效应管的制作方法,具体细节和技术效果可以参阅上述LDMOSFET实施例中对应的相关描述和效果进行理解,此处不再赘述。
以上结合附图详细描述了本发明的可选实施方式,但是,本发明实施方式并不限于上述实施方式中的具体细节,在本发明实施方式的技术构思范围内,可以对本发明实施方式的技术方案进行多种简单变型,这些简单变型均属于本发明实施方式的保护范围。

Claims (12)

1.一种横向双扩散金属氧化物半导体场效应管,包括衬底、栅极区、源极区、漏极区、P型体区以及位于所述衬底上的N型阱区、P型阱区和N型漂移区,其特征在于,还包括:离子注入形成的P型漂移区;
所述P型漂移区位于所述N型阱区内,所述P型漂移区与所述P型体区之间存在预设距离。
2.根据权利要求1所述的横向双扩散金属氧化物半导体场效应管,其特征在于,所述P型漂移区包括多个相互独立的掺杂块,所述多个相互独立的掺杂块呈阵列排布。
3.根据权利要求2所述的横向双扩散金属氧化物半导体场效应管,其特征在于,所述掺杂块的形状为圆形、方形、六边形或八边形。
4.根据权利要求2所述的横向双扩散金属氧化物半导体场效应管,其特征在于,所述P型漂移区中掺杂块的数量和深度根据所述横向双扩散金属氧化物半导体场效应管所需承受的击穿电压确定。
5.根据权利要求1所述的横向双扩散金属氧化物半导体场效应管,其特征在于,所述P型漂移区与所述P型体区之间的预设距离根据所述P型漂移区的掺杂浓度和所述P型体区的掺杂浓度确定。
6.根据权利要求1所述的横向双扩散金属氧化物半导体场效应管,其特征在于,还包括:N型埋层和P型外延层;
所述N型埋层位于所述衬底与所述P型外延层之间,所述P型外延层位于所述N型阱区的下方。
7.根据权利要求1所述的横向双扩散金属氧化物半导体场效应管,其特征在于,所述P型阱区包括:第一P型阱区和第二P型阱区,所述第一P型阱区和第二P型阱区分别位于所述N型阱区的两侧并与所述N型阱区相接;
所述P型体区和所述N型漂移区位于所述N型阱区的上方;
所述N型漂移区包括第一N型漂移区和第二N型漂移区,所述第一N型漂移区和第二N型漂移区分别位于所述P型体区的两侧并与所述P型体区相接。
8.根据权利要求7所述的横向双扩散金属氧化物半导体场效应管,其特征在于,所述第一N型漂移区和第二N型漂移区与所述漏极区相接,所述P型体区与所述源极区相接。
9.一种横向双扩散金属氧化物半导体场效应管的制作方法,其特征在于,所述方法包括:
在半导体衬底的选定区域中形成N型阱区和P型阱区;
在半导体衬底的选定区域中形成P型体区和N型漂移区;所述N型漂移区与所述P型体区横向接触,并与所述N型阱区纵向接触;
采用离子注入工艺在所述N型阱区中形成P型漂移区。
10.根据权利要求9所述的横向双扩散金属氧化物半导体场效应管的制作方法,其特征在于,所述采用离子注入工艺在所述N型阱区中形成P型漂移区,包括:
采用光刻工艺在所述N型阱区中形成P型漂移区的掺杂块的图形;
采用离子注入工艺在所述掺杂块的图形区域注入掺杂元素离子;
对离子注入后形成的P型漂移区进行退火处理。
11.根据权利要求9所述的横向双扩散金属氧化物半导体场效应管的制作方法,其特征在于,所述方法还包括:
在形成N型阱区和P型阱区之前,在半导体衬底上形成N型埋层和P型外延层。
12.根据权利要求9所述的横向双扩散金属氧化物半导体场效应管的制作方法,其特征在于,所述方法还包括:
在形成P型体区和N型漂移区之后,在所述P型体区的上方形成源极区,在所述N型漂移区的上方形成漏极区,在所述P型体区与所述N型漂移区接触的界面上方形成栅极区。
CN202111571321.3A 2021-12-21 2021-12-21 横向双扩散金属氧化物半导体场效应管及其制作方法 Pending CN113964188A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111571321.3A CN113964188A (zh) 2021-12-21 2021-12-21 横向双扩散金属氧化物半导体场效应管及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111571321.3A CN113964188A (zh) 2021-12-21 2021-12-21 横向双扩散金属氧化物半导体场效应管及其制作方法

Publications (1)

Publication Number Publication Date
CN113964188A true CN113964188A (zh) 2022-01-21

Family

ID=79473476

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111571321.3A Pending CN113964188A (zh) 2021-12-21 2021-12-21 横向双扩散金属氧化物半导体场效应管及其制作方法

Country Status (1)

Country Link
CN (1) CN113964188A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171585A (zh) * 2022-02-10 2022-03-11 北京芯可鉴科技有限公司 一种ldmosfet、制备方法及芯片和电路
CN114267724A (zh) * 2022-03-01 2022-04-01 北京芯可鉴科技有限公司 横向双扩散场效应晶体管、制作方法、芯片及电路
CN114335153A (zh) * 2022-03-08 2022-04-12 北京芯可鉴科技有限公司 Ldmosfet器件、制备方法以及芯片
CN114361243A (zh) * 2022-03-21 2022-04-15 北京芯可鉴科技有限公司 全隔离横向双扩散金属氧化物半导体场效应管及其制作方法
CN114464674A (zh) * 2022-04-11 2022-05-10 北京芯可鉴科技有限公司 Ldmosfet器件、制作方法及芯片
CN114496802A (zh) * 2022-04-14 2022-05-13 北京智芯微电子科技有限公司 Ldmosfet器件的制作方法及ldmosfet器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140061786A1 (en) * 2012-09-04 2014-03-06 Richtek Technology Corporation Double Diffused Metal Oxide Semiconductor Device and Manufacturing Method Thereof
CN105226058A (zh) * 2014-06-30 2016-01-06 万国半导体股份有限公司 利用深扩散区在单片功率集成电路中制备jfet和ldmos晶体管
CN108682690A (zh) * 2018-05-25 2018-10-19 矽力杰半导体技术(杭州)有限公司 横向扩散金属氧化物半导体器件和其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140061786A1 (en) * 2012-09-04 2014-03-06 Richtek Technology Corporation Double Diffused Metal Oxide Semiconductor Device and Manufacturing Method Thereof
CN105226058A (zh) * 2014-06-30 2016-01-06 万国半导体股份有限公司 利用深扩散区在单片功率集成电路中制备jfet和ldmos晶体管
CN108682690A (zh) * 2018-05-25 2018-10-19 矽力杰半导体技术(杭州)有限公司 横向扩散金属氧化物半导体器件和其制造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171585A (zh) * 2022-02-10 2022-03-11 北京芯可鉴科技有限公司 一种ldmosfet、制备方法及芯片和电路
CN114171585B (zh) * 2022-02-10 2022-05-17 北京芯可鉴科技有限公司 一种ldmosfet、制备方法及芯片和电路
CN114267724A (zh) * 2022-03-01 2022-04-01 北京芯可鉴科技有限公司 横向双扩散场效应晶体管、制作方法、芯片及电路
CN114267724B (zh) * 2022-03-01 2022-05-31 北京芯可鉴科技有限公司 横向双扩散场效应晶体管、制作方法、芯片及电路
CN114335153A (zh) * 2022-03-08 2022-04-12 北京芯可鉴科技有限公司 Ldmosfet器件、制备方法以及芯片
CN114361243A (zh) * 2022-03-21 2022-04-15 北京芯可鉴科技有限公司 全隔离横向双扩散金属氧化物半导体场效应管及其制作方法
CN114464674A (zh) * 2022-04-11 2022-05-10 北京芯可鉴科技有限公司 Ldmosfet器件、制作方法及芯片
CN114464674B (zh) * 2022-04-11 2022-06-07 北京芯可鉴科技有限公司 Ldmosfet器件、制作方法及芯片
CN114496802A (zh) * 2022-04-14 2022-05-13 北京智芯微电子科技有限公司 Ldmosfet器件的制作方法及ldmosfet器件

Similar Documents

Publication Publication Date Title
CN113964188A (zh) 横向双扩散金属氧化物半导体场效应管及其制作方法
EP1946378B1 (en) Method of manufacturing a semiconductor device
KR101217988B1 (ko) 적층 헤테로-도핑 림 및 점진적 드리프트 영역을 가진개선된 resurf hvpmos 장치
US10529849B2 (en) High-voltage semiconductor device including a super-junction doped structure
US9496382B2 (en) Field effect transistor, termination structure and associated method for manufacturing
KR20100064263A (ko) 반도체 소자 및 이의 제조 방법
CN102376762B (zh) 超级结ldmos器件及制造方法
KR101699585B1 (ko) 고전압 반도체 소자 및 그 제조 방법
TW201409698A (zh) 半導體裝置
KR20100064264A (ko) 반도체 소자 및 이의 제조 방법
CN102751332A (zh) 耗尽型功率半导体器件及其制造方法
CN114361244B (zh) Ldmosfet器件、制作方法及芯片
US11923837B2 (en) Load switch including back-to-back connected transistors
CN111696984B (zh) 半导体器件及其制作方法
CN107342325B (zh) 一种横向双扩散金属氧化物半导体器件
CN104576732B (zh) 一种寄生FinFET的横向双扩散半导体器件
CN102709190A (zh) Ldmos场效应晶体管及其制作方法
CN115274859B (zh) Ldmos晶体管及其制造方法
KR20110078861A (ko) 수평형 디모스 트랜지스터
CN109390409B (zh) 一种阈值可调式高压金属氧化物半导体器件及其制备方法
KR20100046354A (ko) Ldmos 트랜지스터 및 그의 제조 방법
CN114335153B (zh) Ldmosfet器件、制备方法以及芯片
CN111697058A (zh) 半导体器件
CN108574014B (zh) Ldmos器件及其制造方法
CN113990942B (zh) 圆形对称结构的ldmos器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220121

RJ01 Rejection of invention patent application after publication