CN113891868A - 整体式和分形碳泡沫及其制备方法和应用 - Google Patents

整体式和分形碳泡沫及其制备方法和应用 Download PDF

Info

Publication number
CN113891868A
CN113891868A CN202080037333.5A CN202080037333A CN113891868A CN 113891868 A CN113891868 A CN 113891868A CN 202080037333 A CN202080037333 A CN 202080037333A CN 113891868 A CN113891868 A CN 113891868A
Authority
CN
China
Prior art keywords
carbon foam
monolithic
monolithic carbon
olc
fractal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080037333.5A
Other languages
English (en)
Inventor
巴巴罗斯·欧伊尔迈兹
李宗学
黄翠玲
恰达什·切廷
林晓风
王永康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Singapore
Original Assignee
National University of Singapore
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Singapore filed Critical National University of Singapore
Publication of CN113891868A publication Critical patent/CN113891868A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/08Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • C04B35/58092Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides based on refractory metal silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/6325Organic additives based on organo-metallic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0084Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ carbon or graphite as the main non-metallic constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/446Sulfides, tellurides or selenides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

一个整体式碳泡沫由熔融洋葱状碳纳米颗粒组成,其中,该整体式碳泡沫含有互连的孔,具有200m2/cc‑600m2/cc的体积微孔表面积,具有20s/cm‑140s/cm的电导率。还公开了由该整体式碳泡沫制备的分形碳泡沫、制备方法和由其构成的超级电容器。

Description

整体式和分形碳泡沫及其制备方法和应用
对相关申请的交叉引用
本专利申请特此要求基于2019年5月23日提交的美国临时申请第62/851,793号的优先权。此外,美国临时专利申请的全部内容和公开内容通过引用整体并入本文。
背景技术
技术领域
本发明总体上涉及高度多孔的碳泡沫及其制备。
发明背景
能量存储,例如超级电容器,对于提高能源效率很重要。先前的研究表明,纳米碳泡沫是构建超级电容器电极的合适材料。然而,现有的制备纳米碳泡沫的方法不适合工业生产。
例如,基于化学溶液的方法需要大量的预处理和后处理步骤。因此,这些方法不仅费时费钱,而且还会产生化学废物。此外,由于使用化学试剂和表面活性剂,这些方法产生含有杂质的纳米碳泡沫。
又如,美国专利申请公开号US 2017/0297923 A1报道了一种由类洋葱中空碳纳米颗粒热压制备纳米碳泡沫的方法。这种热压方法不需要化学试剂和表面活性剂。然而,由此产生的纳米碳泡沫具有低机械稳定性和不一致的泡沫密度。
因此,需要适用于工业规模生产具有改进的结构和机械性能的纳米碳泡沫的新方法。
发明内容
一方面,本发明涉及一种含有一种熔融洋葱状碳的纳米颗粒(“OLC”)的整体式碳泡沫,具有互连的孔,具有200m2/cc-600m2/cc的体积微孔表面积(优选地,200m2/cc-500m2/cc),具有20s/cm-140s/cm(优选地,40s/cm-75s/cm)的电导率。在一个实施例中,该泡沫具有1Gpa-4 GPa(优选1Gpa-3 GPa)的杨氏模量。在另一个实施例中,该泡沫还包含非OLC基材料(优选包括活性炭)、半导体材料、氧化物材料或金属的材料;该材料的具体实例包括硅、氧化钼和二硫化钼。该材料可以是纤维、管、空心球、线、片或粉末形式。本发明还包括将上述整体式碳泡沫粉碎制成的泡沫粉末。
上述整体式碳颗粒可以通过以下步骤制备(i)压实OLC纳米颗粒,(ii)将压实的OLC纳米颗粒置于真空或充满惰性气体(如N2和Ar)的空间中,(iii)在30MPa-1000MPa(优选40MPa-300MPa)和300℃-800℃(优选400℃-600℃)温度下,放电等离子体烧结OLC纳米颗粒)持续2s至30min。在一个实施例中,OLC纳米颗粒用纤维、管、空心球、线、片或粉末形式的材料压实,该材料为非OLC基材料、氧化物材料、金属和半导体材料。除该方法外,由此制备的整体式碳泡沫也在本发明的范围内。
另一方面,本发明涉及一种分形碳泡沫。分形碳化泡沫是通过如下步骤制备的(i)将上述整体式碳泡沫粉碎成整体式碳泡沫粉末,(ii)压实整体式碳泡沫粉末,(iii)将压实的整体式碳泡沫粉末放置在真空中,(iv)在30MPa-1000 MPa(优选地,40MPa-200 MPa)和300℃-800℃(优选地,600℃-800℃)的温度下,放电等离子体烧结2s-30min(优选地,2s-10min)形成分碳化沫。该方法也在本发明的范围内。
本文还公开了用于包含由上述整体式或分形碳泡沫制成的活性材料的超级电容器的电极和包括这种电极的超级电容器。更具体地,本发明的超级电容器包括(i)均由上述整体式或分形碳泡沫形成的负电极和正电极,(ii)设置在负电极和正电极之间以防止直接接触而短路,以及(iii)离子连接电极的电解质,其中每个电极的内表面与电解质接触,每个电极的外表面被集流器覆盖。
在下面的附图、定义和详细描述中阐述了本发明的细节。本发明的其他特征、目的和优点将从以下实际实施例和权利要求中显而易见。
附图说明
以下描述参照附图,其中:
图1(a)是OLC颗粒的放电等离子体烧结(“SPS”)的示意图。
图1(b)是显示SPS将OLC颗粒转变为具有增强的密度和表面以及强且导电的颗粒间键合的整体式碳泡沫的示意图。
图1(c)是显示在80MPa压力和不同温度,即300-700℃下制备的整体式碳泡沫的重量和体积表面积的图。
图2(a)是显示通过SPS工艺制备的整体式碳泡沫和通过常规热压工艺制备的碳泡沫的杨氏模量的图。
图2(b)是显示经SPS处理的整体式碳泡沫和常规热压的整体式碳泡沫的电导率和材料密度的图。
图3是示例性软包电池型超级电容器的示意图,其包含整体式碳泡沫或分形碳泡沫。
图4(a)是根据本发明实施例的整体式碳泡沫的示意图。由OLC纳米颗粒形成的整体碳式泡沫具有以一系列介孔和微孔为特征的孔隙结构。
图4(b)是根据本发明实施例的分形碳泡沫的示意图。这种分碳形泡沫由整体式碳粉末组成,具有层次孔结构,其特征是整体式碳粉粉末中的大孔与一系列介孔和微孔相连。
图5是显示包含不同电极材料,即整体式石墨烯泡沫(“MGF”)、分形石墨烯泡沫(“FGF”)、活性炭、无边缘石墨烯和还原氧化石墨的超级电容器的器件性能比较的Ragone图(“rGO”);插图是MGF电极和FGF电极的奈奎斯特图的叠加,显示了这些电极内离子的扩散速度,其中,更陡峭的斜率对应于更高的扩散速率。
图6是二硫化钼/碳混合整体式碳泡沫的拉曼光谱。
具体实施方式
下文详细描述了整体式碳泡沫、分形碳泡沫、它们的制备方法以及如上文发明内容部分所述的由它们构成的超级电容器。
在本发明中,“洋葱状碳纳米颗粒”或“OLC纳米颗粒”是指由同心石墨壳包裹的类富勒烯碳层构成的类球形纳米颗粒。它们表现出独特的零维球形或同心壳结构,具有小(例如,<50nm)直径。它们通常也被称为纳米洋葱。这些纳米颗粒由于其高度对称的结构,具有不同于石墨、纳米金刚石、纳米管等其他碳纳米结构的性质。
此外,术语“放电等离子体烧结”或“SPS”是指压力辅助脉冲电流或直流工艺,其中粉末样品加载到导电模具中并在单轴压力下烧结。放电等离子体状态是一种使用压力驱动粉末固结的技术,其中,脉冲直流电流通过压缩在石墨基质中的样品。它也称为场辅助烧结或脉冲电流烧结。术语“热压”是指通过施加压力将来自外部热源的热能提供给样品的过程。
最后,“整体式碳泡沫”是指由SPS类洋葱碳纳米颗粒制备的材料,“整体式碳泡沫粉末”是指将整体式碳泡沫以任何已知方法粉碎而成的粉末,“分形碳泡沫”是指由整体式碳泡沫粉末形成的碳泡沫。
重申一下,本发明的整体式碳泡沫(i)含有具有溶孔的OLC纳米颗粒,(ii)具有200m2/cc-600m2/cc的体积微孔表面积,(iii)具有20s/cm-140s/cm的电导率。泡沫可通过先压实OLC纳米颗粒,然后将压实的OLC纳米颗粒在真空或惰性气体环境或充满惰性气体的空间中,在30MPa-1000MPa的压力,300℃-800℃的温度下,进行SPS工艺制保持2s-30min备而成。
在一个实施例中,由此制备的整体式碳泡沫含有微孔、介孔和任选的大孔,其直径分别为0.723nm-2nm、2nm-50nm和>50nm。
另一个实施例中,整体式碳泡沫的体积微孔表面积比OLC纳米颗粒高(如500%-1435%),材料密度增加(如0.1g/cc至1g/cc)相对于OLC纳米颗粒,其重量总表面积也相对于OLC纳米颗粒最小化(例如,从1200m2/g降至857m2/g)。
整体式碳泡沫可以是混合整体式碳泡沫,即掺杂整体式碳泡沫包括碳基材料(如活性炭)、氧化物材料(如氧化钼)、金属和半导体材料(例如,硅和二硫化钼)。该材料可以是纤维、管、空心球、二维材料或粉末的形式。在一个优选实施例中,该材料是二维二硫化钼(二硫化钼)。在另一个优选的实施例中,所述材料为硅纳米颗粒。
本发明进一步涵盖的是由上述的整体式碳泡沫制成的分形碳泡沫,将整体式碳泡沫粉碎形成整体式碳泡沫粉末;压实整体式碳粉粉末,将压实的整体式碳粉粉末置于真空或惰性气体环境或充满惰性气体的空间中,将整体式碳粉粉末在压力为30-1000MPa和300-800℃的温度下SPS2s-30min。
通常,本发明的分形碳泡沫具有分级孔隙结构,即包括相互连接的微孔、介孔和大孔。微孔、介孔和大孔的直径分别为0.723nm-2nm、2nm-50nm和>50nm。
混合分形碳泡沫是另一种设想的发明,可以由上述混合整体式碳泡沫形成。
也在本发明的范围内的是用于超级电容器的电极,该电极包含由上述整体式或分形碳泡沫制成的活性材料。超级电容器包括这样的负电极和这样的正电极、设置在负电极和正电极之间以防止由于其直接接触而引起的短路、以及离子连接电极的电解质,其中每个电极的内表面与电极接触,每个电极的外表面都覆盖有集流器。可以使用合适的材料,例如铝层压文件,来封装超级电容器。
不再赘述,相信本领域技术人员基于以上描述可以最大限度地利用本发明。因此,以下具体实施例应被解释为仅是说明性的,而不以任何方式限制本公开的其余部分。
在此引用的所有出版物,包括专利文件,都通过引用整体并入本文。
实施例1:非掺杂整体式碳泡沫的制备和表征
非掺杂整体式碳泡沫按照图1(a)(100)所示的工艺制备并描述如下。
简言之,将所需重量(102)的OLC纳米颗粒(科琴黑
Figure BDA0003363639100000051
EC-600JD,LION SpecialtyChemicals Co.,Ltd.)在模具(104)中压实。随后,将压实的OLC纳米颗粒装入SPS室中,然后抽真空使这些纳米颗粒处于真空状态(106)。此后,将OLC纳米颗粒在所需条件(例如110MPa的压力和600℃的温度下30min)(108和110)下放电等离子体烧结以生成整体式碳泡沫。在SPS工艺之前,可选地使用传统的糊状涂层工艺来形成薄膜(<100μm)。然后将SPS室中的压力重新建立在大气压下,之后从SPS室中取出整体式碳泡沫(112)。
如图1(b)所示,在SPS过程中,OLC纳米颗粒通过相邻纳米颗粒的融合被粉碎重组,形成整体式碳泡沫。更具体地说,在此过程中对OLC纳米颗粒施加的单轴压力引起纳米颗粒之间的颗粒滑动和摩擦力,进而导致这些纳米颗粒破碎和剥落,从而形成整体式碳泡沫的微孔表面。出乎意料的是,由SPS过程产生的局部能量在所得碳泡沫中诱导了强且导电的颗粒间键合。
一般来说,传统的烧结工艺会降低样品的表面积,同时增加其材料密度。相比之下,如下表1所示,虽然上述工艺导致整体式碳泡沫与OLC纳米颗粒相比密度增加,但这些泡沫的体积微孔表面积和体积微孔孔隙却出乎意料高于纳米颗粒。
例如,OLC纳米颗粒密度为0.1g/cc,体积微孔表面积为34.6m2/g,而整体式碳颗粒密度为1g/cc,体积微孔表面积为497.47m2/g。也就是说,本发明的工艺使OLC纳米颗粒体积微孔表面积从34.6m2/cc增加到497.47m2/cc,即提高了1435%。
表1.SPS处理的整体式碳泡沫的重量和体积表面积
Figure BDA0003363639100000061
上述工艺提供了具有各种比例的微孔和介孔的整体式碳泡沫,其适用于不同的应用。例如,更高百分比的微孔对于能量存储应用是优选的,例如超级电容器,因为它最大化能量密度。另一方面,对于需要更高功率密度的应用,更大比例的介孔是优选的,因为它允许更快的充电和放电。微孔和介孔的合适组合对于优化超级电容器的能量密度和功率密度至关重要。通过SPS工艺,可以通过调节进行工艺的温度和压力来控制微孔和介孔的比例。例如,如图1(c)所示,整体式碳泡沫的重量和体积表面积都通过提高温度(例如,从300℃到700℃,在该温度下进行SPS过程,同时将压力保持在80MPa)而增强。
进行了一项研究,以比较通过上述SPS方法制备的整体式碳泡沫与通过三种常规方法制备的碳泡沫的机械稳定性,即(1)在800℃和40MPa下热压,(2)在1GPa下冷压,然后在800℃下退火,和(3)在1GPa冷压下。更具体地说,SPS处理的整体式碳泡沫和热压/冷压的整体式碳泡沫在异丙醇(IPA)中超声5min(超声功率600W)。正如IPA的着色所证明的那样,所有三个含有通过常规方法制备的碳泡沫的样品都发生了分解和分散。相比之下,经SPS处理的整体式碳泡沫样品仍保持透明,表明该整体式碳泡沫机械稳定,超声处理后完好无损。
为了量化采用上述SPS工艺制备的整体式碳泡沫与采用常规热压工艺制备的碳泡沫在机械稳定性方面的差异,进行了第二项研究,以测量由六种方法制备的碳泡沫的杨氏模量。工艺:(1)SPS在600℃和40MPa下处理,(2)SPS在600℃和120MPa下处理,(3)SPS在800℃和40MPa下处理,(4)SPS在800℃和120MPa下处理,(5)在600℃和40MPa下热压,和(6)在800℃和40MPa下热压。这项研究的结果,如图2(a)所示,表明SPS处理的整体碳泡沫意外地具有比热压碳泡沫更大的杨氏模量。
这两项研究的结果证明了与通过现有技术方法制备的碳泡沫相比,本发明的经SPS制备的整体式碳泡沫具有出乎意料的机械稳定性。
进行了一项不同的研究,以比较在800℃和20MPa、500℃和40MPa以及600℃和40MPa三种条件下制备的SPS处理的整体式碳泡沫的电导率和密度,使用两种传统的热压碳泡沫,即在800℃和20MPa和800℃和40MPa下热压。该研究的结果显示在下表2和图2(b)可以看出,无论制备条件如何,SPS处理的整体式碳泡沫都出乎意料地具有比热压碳泡沫更高的电导率。在相同条件下,即800℃和20MPa,SPS处理的整体式碳泡沫出乎意料地比热压碳泡沫具有更高的密度。
表2.SPS处理的整体式碳泡沫和热压整体式碳泡沫的电导率和密度
Figure BDA0003363639100000081
整体式碳泡沫可用作不含导电添加剂和粘合剂的超级电容器的电极。OLC纳米颗粒在模具中被压实。随后,将压实的OLC纳米颗粒装入SPS腔室,然后将腔室抽真空,使这些纳米颗粒处于真空状态。此后,将OLC纳米颗粒在30MPa的压力和600℃的温度下放电等离子体烧结10min。从电极中消除导电添加剂和粘合剂是可取的,因为它们会降低能量密度并严重阻碍性能。图3示出包含整体式碳泡沫电极(或分形碳泡沫,其制备在以下实施例2中描述)的示例性软包电池型超级电容器。超级电容器是基于用于超级电容器分析的商业实验室测试装置构建的。
将示例性超级电容器与具有基于粘合剂涂覆的活性炭电极(3.0V、70℃、SBPBF4/PC电解质)的商业超级电容器的指示其寿命的电容保持率进行比较。结果示于下表3中。值得注意的是,电容保持率的计算公式为:
Figure BDA0003363639100000082
表3.含有经SPS处理的整体式碳泡沫或活性炭的超级电容器的电容保持率
Figure BDA0003363639100000083
如上表3所示,在3.0V和70℃下进行500小时可靠性测试后,含有整体式碳泡沫的超级电容器意外的容量保持率为100%,而活性炭装置的容量保持率仅为80%。这些结果表明,与商用超级电容器不同的是,整体式碳泡沫超级电容器适合在3.0V的额定电压下使用。
实施例2:分形碳泡沫的制备和表征
分碳形泡沫是通过改编自上述实施例1中提出的用于制备整体式碳泡沫的步骤的制备的。
更具体地说,是将一个整体式碳泡沫粉碎成颗粒大小为几百纳米到几微米的粉末。然后将整体式碳泡沫粉末进行实施例1中描述的SPS处理。
由此制备的分碳形泡沫具有相互连接的分级孔隙结构,其中大孔与整体式碳泡沫粉末中所含的介孔和微孔相连。与图4(a)所示不包含大孔网络的整体式碳泡沫的孔隙结构相比,分形碳泡沫的孔结构如图4(b)所示,包括提供更大孔隙可及性的大孔隙网络。分形碳泡沫更大的孔隙可及性促进了离子和分子的扩散。实际上,100μm整体式石墨烯泡沫(“MGF”)电极和100μm分形石墨烯泡沫(“FGF”)电极(参见图5,插图)的奈奎斯特图表明,FGF电极中离子的扩散速度更快,正如其奈奎斯特图的陡峭斜率所证明的那样。
进行了一项研究来比较包含不同电极材料的超级电容器的器件性能,即整体式石墨烯泡沫、分形石墨烯泡沫、活性炭、无边缘碳和还原碳氧化物(“rGO”)。结果示于图5,Ragone图。发现与整体式石墨烯泡沫相比,分形石墨烯泡沫虽然具有较低的能量,但由于其更大的孔隙可及性而具有更高的功率密度。重要的是,与活性炭、无边缘碳和rGO相比,分形石墨烯泡沫和整体式石墨烯泡沫都具有更高的能量和功率密度。换句话说,本发明的碳泡沫,无论是整体的还是分形的,都出人意料地优于超级电容器应用中的其他碳材料。
实施例3:混合整体式碳泡沫的制备和表征
通过以下步骤制备了两种混合整体式碳泡沫,即二硫化钼/碳混合整体式碳泡沫和Si/碳混合整体式碳泡沫。
对于二硫化钼/碳混合整体式碳泡沫,首先制备了含有科琴黑(AkzoNobel;EC600级)和二硫化钼的二硫化钼/碳前驱体材料。简而言之,将10mg科琴黑和20mg四硫代钼酸铵(Sigma-Aldrich)分别分散在10mL和2mL的N,N-二甲基甲酰胺(“DMF”)中。将两种分散体超声处理30min,混合在一起,然后超声处理2小时,使科琴黑完全浸渍四硫代钼酸铵。将所得溶液转移到25mL内衬聚四氟乙烯的不锈钢高压釜中并密封。高压釜在200℃下加热15小时,然后冷却至室温。通过离心收集所得的二硫化钼/碳前体材料,用几等分乙醇和去离子水的试样洗涤。洗涤后的前体材料在烘箱中在60℃下干燥一夜。
为了获得二硫化钼/碳混合整体式碳泡沫,将喷枪与氮气源连接并安装在距离喷嘴尖端10cm的加热板上,其中Mo圆形箔(Alfa Aesar;14mm直径,有效面积~1.4cm2)用耐热胶带固定,Mo箔用作集流器。二硫化钼/碳前体材料分散在DMF中并用作喷涂的原料。加热板在190℃下加热以干燥Mo箔。通过改变喷洒持续时间,可获得高达1mg/cm2的质量负载。为了执行SPS处理,将电极夹在石墨箔之间,然后装入碳化钨模具中。SPS在500℃和600℃下以2~30MPa的单轴压力在真空下进行30min。随后用炉内冷却水***将模具快速冷却,然后将由此形成的混合整体式碳泡沫从中取出。所得二硫化钼/碳混合整体式碳泡沫通过拉曼光谱表征,证实泡沫中同时存在二硫化钼和碳。见图6。
对于Si/碳整体式碳泡沫,在SPS工艺之前首先制备了含有Si纳米颗粒(“SiNP”)、三甲氧基甲基硅烷(“TMMS”)和科琴黑的前驱体溶液。更具体地说,将20mg Si纳米粉末(美国研究纳米材料公司;直径=30-50nm)通过分批超声处理2小时分散在40ml乙醇中,然后加入1mL TMMS(Sigma Aldrich;98%)到溶液中并超声处理1小时。随后,将6.6mg科琴黑(AkzoNobel;EC600级)分散在40ml异丙醇(“IPA”)中2小时以获得均匀溶液。然后将两种溶液混合在一起并超声处理1小时以获得分散良好的SiNP/TMMS/科琴黑前体溶液。
为了获得Si/碳混合整体式碳泡沫,将Mo圆形箔(Alfa Aesar;直径14mm,有效面积~1.4cm2)放置在加热至50℃的加热板上。然后将喷枪与氮气源连接并安装在加热板上方10cm(距喷嘴尖端)处。将SiNP/TMMS/科琴黑前驱体溶液缓慢喷涂在Mo箔上以驱除乙醇和IPA,从而在箔上获得Si/科琴黑薄膜。然后对Si/科琴黑薄膜进行SPS处理,该处理在800℃和2~30MPa的单轴压力下在真空下进行30min。
测试了两种混合整体碳化泡沫作为锂离子电池电极的循环性能。发现这两种混合泡沫在多达800次循环后出人意料地保持了高容量,表明这些材料是锂离子电池应用的优异电极材料。
其他实施例
本说明书中公开的所有特征可以以任何组合进行组合。本说明书中公开的每个特征可以被用于相同、等效或类似目的的替代特征替换。因此,除非另有明确说明,所公开的每个特征仅是等效或相似特征的通用系列的示例。
进一步地,本领域技术人员从以上描述中可以很容易地确定本发明的本质特征,并且在不脱离本发明的精神和范围的情况下,可以对本发明进行各种变化和修改以适应各种用途和条件。因此,其他实施例也在权利要求内。

Claims (26)

1.一种包括熔融洋葱状碳(OLC)纳米粒子的整体式碳泡沫,其中,所述整体式碳泡沫包含互连的孔,具有200m2/cc-600m2/cc的体积微孔表面积,具有20s/cm-140s/cm的电导率。
2.如权利要求1所述的整体式碳泡沫,其中,所述整体式碳泡沫的杨氏模量为1GPa-4GPa。
3.根据权利要求1所述的整体式碳泡沫,其中,所述整体式碳泡沫具有200m2/cc-500m2/cc的体积微孔表面积,具有40s/cm-75s/cm的电导率,具有1Gpa-3GPa的杨氏模量。
4.如权利要求1所述的整体式碳泡沫,还包括选自由非OLC基材料、氧化物材料、金属和半导体材料组成的组的材料。
5.如权利要求4所述的整体式碳泡沫,其中,所述材料为纤维状、管状、空心球状、丝状、片状或粉末形式。
6.如权利要求4所述的整体式碳泡沫,其中,所述材料为含活性炭的非OLC基材料。
7.如权利要求4所述的整体式碳泡沫,其中,所述材料为氧化钼。
8.如权利要求4所述的整体式碳泡沫,其中,所述材料为硅。
9.如权利要求6所述的整体式碳泡沫,其中,所述材料为片状的二硫化钼。
10.一种整体式碳泡沫,其制备方法包括:
压实OLC纳米颗粒,
将压实的OLC纳米颗粒置于真空或充满惰性气体的空间中,以及
在30MPa-1000MPa的压力和300℃-800℃的温度下,放电等离子体烧结所述OLC纳米颗粒2s-30min,得到所述整体式碳泡沫。
11.如权利要求10所述的整体式碳泡沫,其中,所述放电等离子烧结步骤是在40MPa-300MPa的压力和400℃-600℃的温度下进行2s-10min。
12.一种分形碳泡沫,其制备方法包括:
将如权利要求1所述的整体式碳泡沫粉碎成整体式碳泡沫粉末,
压实整体式碳泡沫粉末,
将压实的整体式碳泡沫粉末置于真空或充满惰性气体的空间中,以及
在30MPa-1000MPa的压力和300℃-800℃的温度下,放电等离子体烧结所述整体式碳泡沫粉末2s-30min,形成所述分形碳泡沫。
13.如权利要求12所述的分形碳泡沫,其中,所述放电等离子体烧结步骤在40MPa-200MPa的压力和600℃-800℃的温度下进行2s-10min。
14.如权利要求13所述的分形碳泡沫,其中,所述整体式碳泡沫进一步包括选自由非OLC基材料、氧化物材料、金属和半导体材料组成的组中的材料。
15.如权利要求14所述的分形碳泡沫,其中,所述材料为纤维状、管状、空心球状、丝状、片状或粉末形式。
16.一种整体式碳泡沫粉末,通过将如权利要求1所述的整体式碳泡沫粉碎制备。
17.一种制备如权利要求1所述的整体式碳泡沫的方法,包括:
压实OLC纳米颗粒,
将压实的OLC纳米粒子置于真空或充满惰性气体的空间中,
在30MPa-1000MPa的压力和300℃-800℃的温度下,放电等离子体烧结OLC纳米粒子2s-30min,形成整体式碳泡沫。
18.如权利要求17所述的方法,其中,所述压力为40MPa-300MPa,所述温度为400℃-600℃。
19.如权利要求18所述的方法,其中,用选自由非OLC基材料、氧化物材料、金属和半导体材料组成的组中的材料压实所述OLC纳米颗粒。
20.如权利要求19所述的方法,其中,所述材料为纤维状、管状、空心球状、丝状、片状或粉末形式。
21.一种制备分形碳泡沫的方法,包括:
将如权利要求1所述的整体式碳泡沫粉碎形成整体式碳泡沫粉末,
压实整体式碳泡沫粉末,
将压实的整体式碳泡沫粉末置于真空或充满惰性气体的空间中,以及
在30MPa-1000MPa的压力和300℃-800℃的温度下,放电等离子烧结整体式碳泡沫粉末2s-30min,形成所述分形碳泡沫。
22.如权利要求21所述的方法,其中,所述放电等离子体烧结步骤在40MPa-200MPa的压力和600℃-800℃的温度下进行2s-10min。
23.一种超级电容器的电极,所述电极包括由如权利要求1所述的整体式碳泡沫制成的活性材料。
24.一种超级电容器的电极,所述电极包括由如权利要求12所述的分形碳泡沫制成的活性材料。
25.一种超级电容器,包括:
负极,所述负极含有由如权利要求1所述的整体式碳泡沫制成的活性材料,
正极,所述正极含有同样由如权利要求1所述的整体式碳泡沫制成的活性材料,
隔膜,所述隔膜设置在负极和正极之间以防止因直接接触而短路,以及
电解质,所述电解质以离子方式连接所述电极,
其中,每个电极的内表面与电解质接触,每个电极的外表面被集流器覆盖。
26.一种超级电容器,包括:
负极,所述负极含有由如权利要求12所述的分形碳泡沫制成的活性材料,
正极,所述正极含有同样由如权利要求12所述的分形碳泡沫制成的活性材料,
隔膜,所述隔膜设置在负极和正极之间以防止因直接接触而短路,以及
电解质,所述电解质以离子方式连接所述电极,
其中,每个电极的内表面与电解质接触,每个电极的外表面被集流器覆盖。
CN202080037333.5A 2019-05-23 2020-05-13 整体式和分形碳泡沫及其制备方法和应用 Pending CN113891868A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962851793P 2019-05-23 2019-05-23
US62/851,793 2019-05-23
PCT/SG2020/050273 WO2020236079A1 (en) 2019-05-23 2020-05-13 Monolithic and fractal carbon foams and methods of preparing and using same

Publications (1)

Publication Number Publication Date
CN113891868A true CN113891868A (zh) 2022-01-04

Family

ID=73458250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080037333.5A Pending CN113891868A (zh) 2019-05-23 2020-05-13 整体式和分形碳泡沫及其制备方法和应用

Country Status (6)

Country Link
US (1) US20220219987A1 (zh)
JP (1) JP2022534682A (zh)
KR (1) KR20220012252A (zh)
CN (1) CN113891868A (zh)
DE (1) DE112020002480T5 (zh)
WO (1) WO2020236079A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170297923A1 (en) * 2014-07-03 2017-10-19 National University Of Singapore Highly dense nano-carbon foam with controlled porosity synthesized from hollow carbon nanoparticles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108530098B (zh) * 2017-03-06 2022-04-08 海南大学 一种块体碳增强体/碳复合材料及其制备方法
CN110357074A (zh) * 2019-07-04 2019-10-22 东南大学 一种纳米洋葱碳多孔块体材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170297923A1 (en) * 2014-07-03 2017-10-19 National University Of Singapore Highly dense nano-carbon foam with controlled porosity synthesized from hollow carbon nanoparticles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ARINA V. UKHINA等: "Porous electrically conductive materials produced by Spark Plasma Sintering and hot pressing of nanodiamonds", 《CERAMICS INTERNATIONAL》, vol. 41, no. 9, 19 June 2015 (2015-06-19), pages 12459 - 12463, XP055762841, DOI: 10.1016/j.ceramint.2015.06.055 *
毕见强 等编著, 哈尔滨工业大学出版社: "《纳米材料化学的理论与工程应用研究》", vol. 1, pages: 295 - 296 *

Also Published As

Publication number Publication date
DE112020002480T5 (de) 2022-02-17
US20220219987A1 (en) 2022-07-14
JP2022534682A (ja) 2022-08-03
WO2020236079A1 (en) 2020-11-26
KR20220012252A (ko) 2022-02-03

Similar Documents

Publication Publication Date Title
Zhang et al. Poly (vinyl alcohol)-assisted fabrication of hollow carbon spheres/reduced graphene oxide nanocomposites for high-performance lithium-ion battery anodes
Li et al. Hierarchical Zn–Co–S nanowires as advanced electrodes for all solid state asymmetric supercapacitors
Gu et al. Rationally assembled porous carbon superstructures for advanced supercapacitors
Wang et al. Asymmetric supercapacitors based on nano-architectured nickel oxide/graphene foam and hierarchical porous nitrogen-doped carbon nanotubes with ultrahigh-rate performance
Peng et al. Nanoarchitectured graphene/CNT@ porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium‐sulfur batteries
Dang et al. Long-life electrochemical supercapacitor based on a novel hierarchically carbon foam templated carbon nanotube electrode
Zeiger et al. Quinone‐Decorated Onion‐Like Carbon/Carbon Fiber Hybrid Electrodes for High‐Rate Supercapacitor Applications
JP6599106B2 (ja) リチウム二次電池用負極材料及びその製造方法、並びに該負極材料を用いたリチウム二次電池用の負極活物質層用組成物、リチウム二次電池用負極及びリチウム二次電池
Yu et al. 3D printing of hierarchical graphene lattice for advanced Na metal anodes
Xu et al. In situ synthesis of porous Si dispersed in carbon nanotube intertwined expanded graphite for high-energy lithium-ion batteries
Wang et al. Highly electroconductive mesoporous activated carbon fibers and their performance in the ionic liquid-based electrical double-layer capacitors
Yuksel et al. All‐carbon hybrids for high performance supercapacitors
Zhang et al. MnO quantum dots embedded in carbon nanotubes as excellent anode for lithium-ion batteries
Ba et al. Biosourced foam‐like activated carbon materials as high‐performance supercapacitors
Song et al. Protein-derived nitrogen-doped hierarchically porous carbon as electrode material for supercapacitors
Yin et al. A novel silicon graphite composite material with core‐shell structure as an anode for lithium‐ion batteries
Vicentini et al. Direct growth of mesoporous Carbon on aluminum foil for supercapacitors devices
Chen et al. The pitch-based silicon-carbon composites fabricated by electrospraying technique as the anode material of lithium ion battery
Wu et al. N-Doped gel-structures for construction of long cycling Si anodes at high current densities for high performance lithium-ion batteries
Cai et al. Binary metal sulfides and polypyrrole on vertically aligned carbon nanotube arrays/carbon fiber paper as high-performance electrodes
Wang et al. Ultrafast high energy supercapacitors based on pillared graphene nanostructures
Gopalakrishnan et al. Facile sonochemical assisted synthesis of a hybrid red–black phosphorus/sulfonated porous carbon composite for high-performance supercapacitors
Liu et al. Nitrogen‐doped carbon networks with consecutive conductive pathways from a facile competitive carbonization‐etching strategy for high‐performance energy storage
Ma et al. Dehalogenation produces graphene wrapped carbon cages as fast-kinetics and large-capacity anode for lithium-ion capacitors
Mahmood et al. Unprecedented Dual Role of Polyaniline for Enhanced Pseudocapacitance of Cobalt–Iron Layered Double Hydroxide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination