CN113842904B - 一种具有石墨烯基底的钨单原子催化剂、其制备方法和用途 - Google Patents

一种具有石墨烯基底的钨单原子催化剂、其制备方法和用途 Download PDF

Info

Publication number
CN113842904B
CN113842904B CN202111215969.7A CN202111215969A CN113842904B CN 113842904 B CN113842904 B CN 113842904B CN 202111215969 A CN202111215969 A CN 202111215969A CN 113842904 B CN113842904 B CN 113842904B
Authority
CN
China
Prior art keywords
graphene
catalyst
tungsten
substrate
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111215969.7A
Other languages
English (en)
Other versions
CN113842904A (zh
Inventor
李阳
蔡安
范晓彬
张凤宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202111215969.7A priority Critical patent/CN113842904B/zh
Publication of CN113842904A publication Critical patent/CN113842904A/zh
Application granted granted Critical
Publication of CN113842904B publication Critical patent/CN113842904B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • C07C209/365Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst by reduction with preservation of halogen-atoms in compounds containing nitro groups and halogen atoms bound to the same carbon skeleton
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种具有石墨烯基底的钨单原子催化剂,所述催化剂以寡层石墨烯为基底,金属钨以单原子形式均匀分散且锚定在基底石墨烯的表面。本发明还公开了所述具有石墨烯基底的钨单原子催化剂的制备方法及用途。本发明的催化剂效率更高、稳定性更强。

Description

一种具有石墨烯基底的钨单原子催化剂、其制备方法和用途
技术领域
本发明属于催化剂技术领域,具体涉及一种以石墨烯为基底的钨单原子多孔催化剂、其制备方法和用途。
背景技术
卤代苯胺可以应用于颜料和染料等的合成。按目前国际上对氯苯胺的市场需求情况分析,对氯苯胺的需求以每年平均6.5%的增长率增长,其中生产对氯苯胺的企业从2015至2019年的5年间增加了43.9%,行业利润增加了37.6%。国内对氯苯胺的需求量也以每年平均7.9%的增长率增长,出口量相较于进口量也是逐渐增加中。因此如何有效增加卤代苯胺的产能和降低生产成本是当前的发展方向。虽然卤代苯胺合成工艺目前已有工业化成熟工艺,但是一直存在着收率不高、产品质量不稳定的问题。因此卤代苯胺合成工艺以及催化剂的研究开发仍然是研究的热点。
卤代硝基苯广泛应用于染料、农药等化工行业及医药合成领域,其产能近年来迅速增加。由于生产、运输、使用以及废水处理中的不当操作,导致卤代硝基苯容易泄露到环境中,造成污染。卤代硝基苯难以被自然降解,并且具有一定的遗传毒性,对环境和人类生活产生负面影响。目前卤代硝基苯的处理方式一般有物理吸附法、生物降解法、化学氧化法和还原法等;其中采用选择性加氢的还原法能够将卤代硝基苯变为卤代苯胺。还原法反应不仅反应条件温和,产物为高附加值的苯胺类化合物,一方面解决了卤代硝基苯的污染问题,另一方面提高了卤代苯胺的产能,具有良好的工业应用价值。卤代硝基苯加氢还原工艺的核心是催化剂;传统的催化剂包括雷尼镍、贵金属催化剂以及铁系催化剂等;但是雷尼镍及贵金属催化剂生产及使用成本高,而铁系催化剂的原子利用率低,选择性差。因此,开发一种具有低成本高活性的卤代硝基苯选择性加氢的还原催化剂,将卤代硝基苯高效地转化成卤代苯胺,具有深远的意义。
单原子催化剂的原子利用率高,受到广泛关注。相较于金属基底,以碳基底构筑的金属单原子催化剂更易得、且成本更低,并且碳基底一般具有良好的导热性和耐高温性,可以保证催化剂在高温下仍保持活性;同时,碳基底的化学稳定性好,可以保证催化剂不易中毒失活。目前关于碳基底的钨单原子催化剂制备的研究还比较缺乏,将其应用于卤代硝基苯的加氢还原反应中更是处于空白阶段。
为解决上述问题提出本发明。
发明内容
本发明提供了一种石墨烯为基底的钨单原子多孔催化剂的制备方法。得到催化剂以寡层石墨烯为基底,金属钨以单原子形式均匀分散且锚定在基底石墨烯的表面,并且基底石墨烯为石墨烯的层层之间相互交联形成的多孔的网络状结构,比表面积较大。将得到的催化剂用于卤代硝基苯选择性加氢还原为卤代苯胺的反应,催化效率高,催化剂不易失活。
本发明的技术方案如下:
本发明第一方面公开了一种具有石墨烯基底的钨单原子催化剂,所述催化剂以寡层石墨烯为基底,金属钨以单原子形式均匀分散且锚定在基底石墨烯的表面。
优选地,基底石墨烯为石墨烯的层层之间相互交联形成多孔的网络状结构,其比表面积为500-700m2 g-1
优选地,所述钨单原子锚定在基底石墨烯的表面。
本发明第二方面公开了所述具有石墨烯基底的钨单原子催化剂的制备方法,包括如下步骤:
①将钨金属前驱体加入到氧化石墨烯的水相分散液中分散均匀;
②向步骤①的分散液中加入乙二胺混合均匀后,升温反应一段时间,得到石墨烯水凝胶,将石墨烯水凝胶经由冷冻干燥后,得到石墨烯气凝胶;
③将步骤②得到的石墨烯气凝胶进行热解,即得到所述的具有石墨烯基底的钨单原子催化剂。
优选地,步骤①加入氮源,所加入的氮源为可溶性硝酸盐,如硝酸锂、硝酸钠、硝酸钾或硝酸铵等,如果加入硝酸钠,其加入量为:氧化石墨烯与硝酸钠的质量比为(2-10)∶1。
优选地,步骤①所述钨金属前驱体为钨酸铵,氧化石墨烯与钨酸铵的质量比为1∶(2-15)。
优选地,步骤②乙二胺的加入量为氧化石墨烯与乙二胺的体积比为(2-10)∶1;反应温度为160-180℃,反应时间为8-15h。
优选地,步骤③的热解温度为800-1000℃,时间为1-5h。
本发明第三方面公开了所述具有石墨烯基底的钨单原子催化剂用于卤代硝基苯选择性加氢还原为卤代苯胺的用途。
本发明的有益效果:
1、本发明的具有石墨烯基底的钨单原子催化剂,基底石墨烯为单层或少层(寡层),石墨烯的层层之间相互交联形成多孔的网络状结构,其比表面积较大,在500m2 g-1以上;钨金属单原子在石墨烯表面均匀分散,且钨金属单原子锚定在石墨烯表面,可以暴露出更多的活性位点,并增加活性位点与反应底物的接触;石墨烯具有较好的导热性、稳定性等物理化学性质,可以保证催化剂在使用过程不易失活。将本发明的催化剂用于催化卤代硝基苯选择性加氢还原为卤代苯胺的反应,转化率可以达到100%,选择性不低于97%;并且催化剂可以重复使用至少8次。而现有技术的催化剂仅催化硝基苯的转化率最高只能达到55%,催化剂重复使用不超过2次。因此本发明的催化剂效率更高、稳定性更强,优于现有技术的催化剂。
2、本发明的具有石墨烯基底的钨单原子催化剂的制备方法相对简单,不需要酸洗等后处理便可以制备单原子催化剂,并且可以大量制备。将金属前驱体与氮源同时加入并反应,可以促进氮原子对金属原子的锚定,使得金属原子更加稳定,分散更均匀;同时制备方法本身就可形成多孔结构,没有额外造孔步骤就得到比表面积较大的多孔的网络状结构。现有技术一般通过加入过氧化氢造孔缺陷限域的方式,将金属盐限制在石墨烯片层及缺陷之间,再进一步通过氨气气氛下煅烧来制备金属与氮配位的单原子催化剂。本发明是直接通过一步加入氮源和金属盐,金属盐与氮原子先形成活性位基元再与载体复合,提高了锚定金属的作用,提高金属原子的稳定性,并且减少了在氨气气氛下煅烧的危险。
3、本发明加入的乙二胺具有还原和作为氮源的二重作用;但在金属前驱体的氧化石墨烯的水相分散液中加入氮源如可溶性硝酸盐效果更好。
附图说明
图1为实施例3得到的具有石墨烯基底的钨单原子催化剂的XRD图。
图2的a和b分别为实施例3得到的热解之前的石墨烯气凝胶(a)和热解之后具有石墨烯基底的钨单原子催化剂(b)的XPS图。
图3为实施例3得到的具有石墨烯基底的钨单原子催化剂的SEM图。
图4为实施例3得到的具有石墨烯基底的钨单原子催化剂的TEM图和Mapping图。
图5为实施例3得到的具有石墨烯基底的钨单原子催化剂的STEM图。
具体实施方式
为了使本发明的目的、技术方案和有益效果更加清楚,下面将结合实施例进行详细的说明,以方便技术人员理解。
实施例1:制备具有石墨烯基底的钨单原子催化剂,包括如下步骤:
步骤1:将钨金属前驱体钨酸铵0.5000g加入到含0.0800g氧化石墨烯的水相分散液中分散均匀;
步骤2:向步骤1的分散液中加入4.0mL的乙二胺混合均匀后,升温到180℃,反应时间为12h,得到石墨烯水凝胶;将石墨烯水凝胶经过冷冻干燥机干燥去除水凝胶中的溶液,得到石墨烯气凝胶;
步骤3:将步骤2得到的石墨烯水凝胶在900℃和氮气气氛下热解3h,即得到所述的具有石墨烯基底的钨单原子催化剂。
实施例2
步骤和条件同实施例1,不同之处为在步骤1中加入了0.0100g的硝酸钠,得到所述的具有石墨烯基底的钨单原子催化剂。
实施例3
步骤和条件同实施例2,不同之处为改变了步骤2中乙二胺的加入量,将加入乙二胺的量调整为8.0mL,得到所述的具有石墨烯基底的钨单原子催化剂。
实施例4
步骤和条件同实施例3,不同之处为在步骤1中改变了前驱体钨酸铵的量,将加入钨酸铵的量调整为1.0000g,得到所述的具有石墨烯基底的钨单原子催化剂。
图1为实施例3得到的具有石墨烯基底的钨单原子催化剂的XRD图;图2的a和b分别为热解之前的石墨烯气凝胶(a)和热解之后具有石墨烯基底的钨单原子催化剂(b)的XPS图;图3为实施例3得到的具有石墨烯基底的钨单原子催化剂的SEM图;图4为实施例3得到的具有石墨烯基底的钨单原子催化剂的TEM图和Mapping图;图5为实施例3得到的具有石墨烯基底的钨单原子催化剂的STEM图。由图1可以看出所得到的催化剂只表现出石墨碳的峰,没有钨金属元素纳米颗粒的峰。由图2可以看出钨金属元素在材料中呈现非0价的金属态,并且在石墨烯气凝胶在热解之后(图b)相较于热解之前(图a),钨金属元素的峰有明显偏移,说明钨金属原子与氮原子之间有成键作用,说明氮原子对钨金属原子的锚定作用。由图3可以看出石墨烯是寡层(即单层或少层),石墨烯片层之间相互交联,形成网络状结构;通过BET计算比表面积为630m2 g-1。由图4a可以看出材料中的石墨烯片层具有褶皱,并且没有纳米颗粒,并且通过进一步的Mapping图(图4b)可以看出,碳、氮、氧、钨元素分布在材料表面,其中钨金属元素在石墨烯表面是均匀分布的。由图5可以进一步证实钨金属元素在石墨烯表面以钨单原子形式存在。由图1至图5可以看出钨金属元素在石墨烯表面以钨单原子存在。
实施例5:使用实施例3得到的具有石墨烯基底的钨单原子催化剂用于卤代硝基苯选择性加氢还原为卤代苯胺的反应。
选择甲醇或乙醇等作为溶剂,将反应底物对氯硝基苯100mg与实施例3得到的催化剂20mg加入到溶剂中,并置于反应釜中。采用氢气置换釜内空气,并冲压至2Mpa左右,反应温度设置为180℃,搅拌速率设置为300r/min,反应4h后停止反应。在反应前后取样,采用气相色谱仪和气相色谱-质谱仪对反应物和产物进行定量和定性分析。结果为:转化率可以达到100%,选择性为98%;将催化剂重复使用8次后,转化率和选择性基本没有下降。
实施例6:步骤和条件同实施例5,不同之处为使用实施例1得到的具有石墨烯基底的钨单原子催化剂用于卤代硝基苯选择性加氢还原为卤代苯胺的反应。
结果为:转化率可以达到44%,选择性为88%。
实施例7:步骤和条件同实施例5,不同之处为使用实施例2得到的具有石墨烯基底的钨单原子催化剂用于卤代硝基苯选择性加氢还原为卤代苯胺的反应。
结果为:转化率可以达到60%,选择性为93%。
实施例8:步骤和条件同实施例5,不同之处为使用实施例4得到的具有石墨烯基底的钨单原子催化剂用于卤代硝基苯选择性加氢还原为卤代苯胺的反应。
结果为:转化率可以达到97%,选择性为96%。
由以上结果可知,在一定范围内,加入硝酸钠和乙二胺的比例较高时,得到的催化剂用于卤代硝基苯选择性加氢还原为卤代苯胺的转化率和选择性较高。
对比例
文献(Sun,X.;Olivos-Suarez,A.I.;Osadchii,D.;Romero,M.J.V.;Kapteijn,F.;Gascon,J.,Single cobalt sites in mesoporous N-doped carbon matrix forselective catalytic hydrogenation of nitroarenes.JournalofCatalysis2018,357,20-28.)中的Co单原子催化剂与反应物硝基苯(注:本文献也进行了卤代硝基苯的实验,但是没有给出转化率的数据。本文献是以硝基苯作为代表进行性能说明的,如果硝基苯性能不好,带有其它基团性能也应该一般。)质量比1∶14.3,反应温度为110℃(注:本文献压力更高,所以温度和时间可以有相应减少,并且本文献是想突出材料具有较高的选择性,所以避免温度过高导致转化率高而降低催化剂选择性),反应压力3Mpa;反应时间2h(注:本文献想突出它催化剂选择性高,因此就转化率而言没有突出说明,时间较短)时,转化率最高达到55%,选择性≧99%,催化剂重复使用2次后,钴金属元素逐渐析出,催化剂的转化率和选择性已有明显下降(注:对比例文献中的条件虽然与本发明的实施例不完全一致,但也能说明问题了)。
由实施例5和对比例的结果可知,本专利中的催化剂转化率更高,稳定性更强,可以多次重复使用。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本领域的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (3)

1.一种具有石墨烯基底的钨单原子催化剂,其特征在于,所述催化剂以寡层石墨烯为基底,金属钨以单原子形式均匀分散在基底石墨烯的表面;所述具有石墨烯基底的钨单原子催化剂的制备方法包括如下步骤:
①将钨金属前驱体加入到氧化石墨烯的水相分散液中分散均匀;所述钨金属前驱体为钨酸铵,氧化石墨烯与钨酸铵的质量比为1∶(2-15);
②向步骤①的分散液中加入乙二胺混合均匀后,升温反应一段时间,得到石墨烯水凝胶,将石墨烯水凝胶经由冷冻干燥后,得到石墨烯气凝胶;反应温度为160-180℃,反应时间为8-15h;
③将步骤②得到的石墨烯气凝胶进行热解,即得到所述的具有石墨烯基底的钨单原子催化剂;热解温度为800-1000℃,时间为1-5 h。
2. 根据权利要求1所述催化剂,其特征在于,基底石墨烯为石墨烯层之间相互交联形成多孔的网络状结构,其比表面积为500-700 m2 g-1
3.根据权利要求1-2任一所述具有石墨烯基底的钨单原子催化剂用于卤代硝基苯选择性加氢还原为卤代苯胺的用途。
CN202111215969.7A 2021-10-19 2021-10-19 一种具有石墨烯基底的钨单原子催化剂、其制备方法和用途 Active CN113842904B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111215969.7A CN113842904B (zh) 2021-10-19 2021-10-19 一种具有石墨烯基底的钨单原子催化剂、其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111215969.7A CN113842904B (zh) 2021-10-19 2021-10-19 一种具有石墨烯基底的钨单原子催化剂、其制备方法和用途

Publications (2)

Publication Number Publication Date
CN113842904A CN113842904A (zh) 2021-12-28
CN113842904B true CN113842904B (zh) 2023-07-25

Family

ID=78978908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111215969.7A Active CN113842904B (zh) 2021-10-19 2021-10-19 一种具有石墨烯基底的钨单原子催化剂、其制备方法和用途

Country Status (1)

Country Link
CN (1) CN113842904B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103263921A (zh) * 2013-06-04 2013-08-28 中国科学院山西煤炭化学研究所 一种金属/石墨烯催化剂及制备方法
CN110102300A (zh) * 2019-06-05 2019-08-09 中北大学 一种柔性碳基载体负载金属单原子催化剂及其制备方法和应用
CN111072018A (zh) * 2020-01-13 2020-04-28 江苏理工学院 一种负载金属的氮掺杂褶皱石墨烯的制备方法及应用
CN111420691A (zh) * 2020-03-20 2020-07-17 南方科技大学 金属单原子催化剂及其制备方法
CN113499764A (zh) * 2021-06-15 2021-10-15 中石化南京化工研究院有限公司 一种氨基化石墨烯上负载铂催化剂及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108636437B (zh) * 2018-05-09 2021-03-26 天津理工大学 一种氮掺杂碳负载金属单原子催化剂的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103263921A (zh) * 2013-06-04 2013-08-28 中国科学院山西煤炭化学研究所 一种金属/石墨烯催化剂及制备方法
CN110102300A (zh) * 2019-06-05 2019-08-09 中北大学 一种柔性碳基载体负载金属单原子催化剂及其制备方法和应用
CN111072018A (zh) * 2020-01-13 2020-04-28 江苏理工学院 一种负载金属的氮掺杂褶皱石墨烯的制备方法及应用
CN111420691A (zh) * 2020-03-20 2020-07-17 南方科技大学 金属单原子催化剂及其制备方法
CN113499764A (zh) * 2021-06-15 2021-10-15 中石化南京化工研究院有限公司 一种氨基化石墨烯上负载铂催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Atomic Tungsten on Graphene with Unique Coordination Enabling Kinetically Boosted Lithium-Sulfur Batteries";Peng Wang等;《Angew. Chem.》;第133卷;15691-15699 *
"Synergistic Effect of N‑Doped sp2 Carbon and Porous Structure in Graphene Gels toward Selective Oxidation of C-H Bond";An Cai等;《ACS Appl. Mater. Interfaces》;第13卷;13087-13096 *

Also Published As

Publication number Publication date
CN113842904A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
Song et al. Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions
Saldan et al. Chemical synthesis and application of palladium nanoparticles
CN105032424B (zh) 一种用于芳香硝基化合物选择性加氢反应的催化剂及其制备方法
CN109433242B (zh) 一种氮掺杂多孔炭负载碳化钼催化剂及其制备方法与应用
CN112916033A (zh) 一种碳氮掺杂二氧化硅负载Co催化剂及其制备方法和应用
Yamauchi et al. Highly selective ammonia synthesis from nitrate with photocatalytically generated hydrogen on CuPd/TiO2
Huang et al. Non-noble metal Ni nanoparticles supported on highly dispersed TiO2-modified activated carbon as an efficient and recyclable catalyst for the hydrogenation of halogenated aromatic nitro compounds under mild conditions
Mohire et al. Selective synthesis of hydrocinnamaldehyde over bimetallic Ni–Cu nanocatalyst supported on graphene oxide
CN113797947B (zh) C改性铂基催化剂在催化卤代硝基苯加氢反应的应用
Huang et al. Defect anchoring of atomically dispersed Pd on nitrogen-doped holey carbon nanotube for catalytic hydrogenation of nitroarenes
Sadjadi et al. Preparation of palladated porous nitrogen-doped carbon using halloysite as porogen: disclosing its utility as a hydrogenation catalyst
CN111282590A (zh) 一种负载金属单原子的氮掺杂多孔石墨烯复合催化剂及其制备方法
CN111468116B (zh) 一种褐煤焦负载纳米钴复合催化剂及其制备方法
US9666877B2 (en) Metal-oxide catalysts for fuel cells
Yang et al. Highly dispersed Ru anchored on nanosheet N-doped carbon for efficient and chemoselective hydrogenation of nitroaromatics to aromatic amines under mild conditions
Nisha et al. Cu doped graphitic C3N4 for p-nitrophenol reduction and sensing applications
Xu et al. Interfacing anatase with carbon layers for photocatalytic nitroarene hydrogenation
CN113842904B (zh) 一种具有石墨烯基底的钨单原子催化剂、其制备方法和用途
CN112108182B (zh) 氰胺类化合物-Pt基纳米晶催化剂及其制备方法和应用
Xie et al. Selective hydrogenation of stearonitrile over Ni–B/SiO2 amorphous catalysts in comparison with other Ni-based catalysts
CN114849694B (zh) 一种基于金属负载氧化钨氢化硝基芳烃的催化剂及其制备方法和应用
CN111389398B (zh) 分级中空二氧化硅限域氧化亚铜可见光催化剂的制备方法
Yuan et al. Highly efficient selective hydrogenation of nitrocyclohexane to cyclohexanone oxime in ethylenediamine over MOF-derived catalysts: Effects of Ni-Co alloy and solvent
CN114618495B (zh) 一种多级孔碳负载的氮硫共配位的钴单原子催化剂及其制备方法和应用
Wang et al. Green and facile synthesis of carbon nanotube supported Pd nanoparticle catalysts and their application in the hydrogenation of nitrobenzene

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant