CN113671475B - 一种基于时延信息的水下机动平台高精度测速方法 - Google Patents

一种基于时延信息的水下机动平台高精度测速方法 Download PDF

Info

Publication number
CN113671475B
CN113671475B CN202110724026.0A CN202110724026A CN113671475B CN 113671475 B CN113671475 B CN 113671475B CN 202110724026 A CN202110724026 A CN 202110724026A CN 113671475 B CN113671475 B CN 113671475B
Authority
CN
China
Prior art keywords
platform
speed
underwater
velocity
mobile platform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110724026.0A
Other languages
English (en)
Other versions
CN113671475A (zh
Inventor
付进
李静
梁国龙
邹男
齐滨
王燕
张光普
杨卓
邱龙皓
王晋晋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN202110724026.0A priority Critical patent/CN113671475B/zh
Publication of CN113671475A publication Critical patent/CN113671475A/zh
Application granted granted Critical
Publication of CN113671475B publication Critical patent/CN113671475B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/14Systems for determining distance or velocity not using reflection or reradiation using ultrasonic, sonic, or infrasonic waves

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种基于时延信息的水下机动平台高精度测速方法。步骤1:建立基于双基元时延的水下机动平台测速模型;步骤2:基于步骤1的测速模型与测量信息进行基元组合,将不同的基元组合依据两基元与平台这三者之间不能共线的原则进行筛选;步骤3:针对步骤2中不同的基元组合,求解出相应的平台速度;步骤4:针对步骤3中不同的平台速度解进行密度聚类,计算获得平台速度最终值。本发明用以解决现有方法受位置测量精度影响严重的问题。

Description

一种基于时延信息的水下机动平台高精度测速方法
技术领域
本发明属于水下声学测量领域,具体涉及一种基于时延信息的水下机动平台高精度测速方法。
背景技术
声学测量技术是利用声波实现测量***与水下传感器节点(基元)间的信息交互,进而确定水下机动平台的位置、姿态、速度等数据的技术或方法。因声波在水下良好的传播能力,声学测量技术逐渐在海洋环境监控、海洋调查、海底地形地貌勘测、水下侦查与警戒、海底工程施工及维修等诸多领域被广泛应用。
水下声学测速是水声测量技术的一个重要部分。传统的水下声学测速方法通常先利用多基元几何交汇定位方法确定平台位置,然后根据一段时间内测得的平台位置变化信息进而确定平台的速度,即位置差分测速法,该方法受位置测量精度影响严重,且至少需要3个基元同时测量才可实现。
发明内容
本发明提供了一种基于时延信息的水下机动平台高精度测速方法,用以解决现有方法受位置测量精度影响严重的问题。
本发明通过以下技术方案实现:
一种基于时延信息的水下机动平台高精度测速方法,所述高精度测速方法包括以下步骤:
步骤1:建立基于双基元时延的水下机动平台测速模型;
步骤2:基于步骤1的测速模型与测量信息进行基元组合,将不同的基元组合依据两基元与平台这三者之间不能共线的原则进行筛选;
步骤3:针对步骤2中不同的基元组合,求解出相应的平台速度;
步骤4:针对步骤3中不同的平台速度解进行密度聚类,计算获得平台速度最终值。
进一步的,所述步骤1具体为,双基元与水下机动平台间的几何关系构建的水下机动平台高精度速度测量模型如下:
Figure GDA0003560515660000021
a1=(ct′1)2-(ct1)2-(vT)2
a2=(ct′2)2-(ct2)2-(vT)2
b=4c2v2T2
其中,c为声速,T为脉冲信号发射周期,v代表机动平台运动速度,t1和t'1分别为基元A在前一周期和当前周期接收信号的传播时延;t2和t'2分别为基元B在前一周期和当前周期接收信号的传播时延,l代表基元A和基元B之间的距离。
进一步的,所述步骤2具体为,若水下机动平台接收到了N个基元的观测信息,N>2,将其两两组合则理论上应有
Figure GDA0003560515660000022
种组合方式,并依据两基元与平台这三者之间不能共线的原则筛选出符合条件的基元组合方式n种,即
Figure GDA0003560515660000023
进一步的,所述步骤3具体为,基于选取的基元组合方式,求解各模型方程,得到n个解,对得到的n种基元组合方式分别解算;
由水下机动平台高精度速度测量模型,根据最小化均方误差的准则设置如下的目标函数:
Figure GDA0003560515660000024
其中:
a1=(ct'1)2-(ct1)2-(vT)2
a2=(ct'2)2-(ct2)2-(vT)2
b=4c2v2T2
通过求解目标函数得到不同组合的速度解;其中,c为声速,T为脉冲信号发射周期,v代表机动平台运动速度,t1和t'1分别为基元A在前一周期和当前周期接收信号的传播时延;t2和t'2分别为基元B在前一周期和当前周期接收信号的传播时延,l代表基元A和基元B之间的距离,b为中间变量,a1为中间变量,a2为中间变量。
进一步的,所述步骤4具体为,对求得的n个速度解进行最小距离密度聚类,得到有效速度样本集,并对有效速度样本集中的所有速度值取均值,得到平台速度的最终值。
本发明的有益效果是:
本发明无需求解平台位置,计算简单,且仅需要两个基元即可解算速度;当存在多个基元时,不同基元组合可提供较多的冗余信息,经过基元组合筛选及多组速度解密度聚类处理,可进一步提高测速精度。
附图说明
图1本发明的方法流程图。
图2为本发明方法几何原理示意图。
图3为本发明方法测速误差空间分布图。
图4为位置差分测速法误差空间分布图。
图5为本发明与位置差分测速法测速精度对比图。
具体实施方式
下面将结合本发明实施例中的附图对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种基于时延信息的水下机动平台高精度测速方法,所述高精度测速方法包括以下步骤:
步骤1:建立基于双基元时延的水下机动平台测速模型;
步骤2:基于步骤1的测速模型与测量信息进行基元组合,将不同的基元组合依据两基元与平台这三者之间不能共线的原则进行筛选;
步骤3:针对步骤2中不同的基元组合,求解出相应的平台速度;
步骤4:针对步骤3中不同的平台速度解进行密度聚类,计算获得平台速度最终值。
步骤1中,具体的,按照图2所示的几何原理构建基于时延信息的高精度水声测速模型。假设水下布放四个基元,其坐标设置见表1。平台速度设为5m/s,航向角为30°。信号发射周期1s。声速为1500m/s。t1和t'1分别为基元A在前一周期和当前周期接收信号的传播时延;t2和t'2分别为基元B在前一周期和当前周期接收信号的传播时延。根据上述观测量完成测速模型的构建。
表1四基元坐标设置
Figure GDA0003560515660000041
在本部分实施例中,步骤2中,具体的,平台机动过程中,假设其在每个运动位置处都接收到了全部基元的观测信息,将四个基元两两组合则理论上应有6种基元组合方式,并依据两基元与平台这三者之间不能共线的原则,将无法构成三角形的基元组合方式排除,得到组合数量记为n(n≤6)。以平台位于K(1603,1000)m处为例,此时符合条件的基元组合方式有6种,分别是:S1S2、S1S3、S1S4、S2S3、S2S4、S3S4。
进一步的,所述步骤1具体为,双基元与水下机动平台间的几何关系构建的水下机动平台高精度速度测量模型如下:
Figure GDA0003560515660000042
a1=(ct′1)2-(ct1)2-(vT)2
a2=(ct′2)2-(ct2)2-(vT)2
b=4c2v2T2
其中,c为声速,T为脉冲信号发射周期,v代表机动平台运动速度,t1和t'1分别为基元A在前一周期和当前周期接收信号的传播时延;t2和t'2分别为基元B在前一周期和当前周期接收信号的传播时延,l代表基元A和基元B之间的距离。
进一步的,所述步骤2具体为,若水下机动平台接收到了N个基元的观测信息,N>2,将其两两组合则理论上应有
Figure GDA0003560515660000043
种组合方式,并依据两基元与平台这三者之间不能共线的原则筛选出符合条件的基元组合方式n种,即
Figure GDA0003560515660000044
进一步的,所述步骤3具体为,基于选取的基元组合方式,求解各模型方程,得到n个解,对得到的n种基元组合方式分别解算;
由水下机动平台高精度速度测量模型,根据最小化均方误差的准则设置如下的目标函数:
Figure GDA0003560515660000051
其中:
a1=(ct'1)2-(ct1)2-(vT)2
a2=(ct'2)2-(ct2)2-(vT)2
b=4c2v2T2
通过求解目标函数得到不同组合的速度解;其中,c为声速,T为脉冲信号发射周期,v代表机动平台运动速度,t1,t'1,t2,t'2分别为基元A和B测得的相邻两周期信号的传播时延,l代表基元A和基元B之间的距离,b为中间变量,a1为中间变量,a2为中间变量。那么,平台位于K时,不同的基元组合方式解出的速度分别为:5.48m/s、4.81m/s、4.93m/s、5.50m/s、7.79m/s、6.21m/s。
进一步的,所述步骤4具体为,对求得的n个速度解进行最小距离密度聚类,得到有效速度样本集,并对有效速度样本集中的所有速度值取均值,得到平台速度的最终值。得到的样本集合中包括:5.48m/s、4.81m/s、4.93m/s、5.50m/s。对集合中的所有速度值取均值,得到平台速度的最终值为5.18m/s。
实施例2
根据本发明所设计的水下机动平台高精度测速原理,测速精度受声传播时延误差、声速测量误差、声基元阵位误差影响,采用仿真对本发明进行验证和性能分析,并对结果进行说明。各参数设置同上。测量误差参数设置如表2。
表2各测量误差参数设置表
Figure GDA0003560515660000052
为对比两方法在全空间范围的测速性能,将基元覆盖的区域(5km*5km)划分成2601(51*51)个网格点,计算每一个网格点处的测速误差,图3和图4分别给出本发明方法和位置差分测速法在整个基元空间内的测速误差分布情况。对比图3与图4可知,本发明方法的测速精度较高,整个空间内的测速误差都很小,测速均方根误差最大值为0.88m/s。而位置差分测速法的测速误差则达到了1.33m/s,且整体测速误差大于本发明方法。
最后,计算图3和图4中的误差概率分布,得到图5。可见本发明方法的测速误差在0.5m/s之内的概率达到了0.83。而位置差分测速法的误差在0.5m/s之内的概率为0.52。因此,本发明方法能获得更高精度的测速结果,且在大范围布阵的空间内相比于位置差分测速法的效果更佳。

Claims (4)

1.一种基于时延信息的水下机动平台高精度测速方法,其特征在于,所述高精度测速方法包括以下步骤:
步骤1:建立基于双基元时延的水下机动平台测速模型;
步骤2:基于步骤1的测速模型与测量信息进行基元组合,将不同的基元组合依据两基元与平台这三者之间不能共线的原则进行筛选;
步骤3:针对步骤2中不同的基元组合,求解出相应的平台速度;
步骤4:针对步骤3中不同的平台速度解进行密度聚类,计算获得平台速度最终值;
所述步骤3具体为,基于水下机动平台测速模型,对选取的n种基元组合方式分别求解平台速度,得到n个解;
由水下机动平台高精度速度测量模型,根据最小化均方误差的准则设置如下的目标函数:
Figure FDA0003560515650000011
其中:
a1=(ct'1)2-(ct1)2-(vT)2
a2=(ct'2)2-(ct2)2-(vT)2
b=4c2v2T2
通过求解目标函数得到不同组合的速度解;其中,c为声速,T为脉冲信号发射周期,v代表机动平台运动速度,t1和t'1分别为基元A在前一周期和当前周期接收信号的传播时延;t2和t'2分别为基元B在前一周期和当前周期接收信号的传播时延;l代表基元A和基元B之间的距离,b为中间变量,a1为中间变量,a2为中间变量。
2.根据权利要求1所述一种基于时延信息的水下机动平台高精度测速方法,其特征在于,所述步骤1具体为,双基元与水下机动平台间的几何关系构建的水下机动平台高精度速度测量模型如下:
Figure FDA0003560515650000021
a1=(ct’1)2-(ct1)2-(vT)2
a2=(ct’2)2-(ct2)2-(vT)2
b=4c2v2T2
其中,c为声速,T为脉冲信号发射周期,v代表机动平台运动速度,t1和t'1分别为基元A在前一周期和当前周期接收信号的传播时延;t2和t'2分别为基元B在前一周期和当前周期接收信号的传播时延,l代表基元A和基元B之间的距离。
3.根据权利要求1所述一种基于时延信息的水下机动平台高精度测速方法,其特征在于,所述步骤2具体为,若水下机动平台接收到了N个基元的观测信息,N>2,将其两两组合则理论上应有
Figure FDA0003560515650000022
种组合方式,并依据两基元与平台这三者之间不能共线的原则筛选出符合条件的基元组合方式n种,即
Figure FDA0003560515650000023
4.根据权利要求2所述一种基于时延信息的水下机动平台高精度测速方法,其特征在于,所述步骤4具体为,对求得的n个速度解进行最小距离密度聚类,得到有效速度样本集并对有效速度样本集中的所有速度值取均值,得到平台速度的最终值。
CN202110724026.0A 2021-06-29 2021-06-29 一种基于时延信息的水下机动平台高精度测速方法 Active CN113671475B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110724026.0A CN113671475B (zh) 2021-06-29 2021-06-29 一种基于时延信息的水下机动平台高精度测速方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110724026.0A CN113671475B (zh) 2021-06-29 2021-06-29 一种基于时延信息的水下机动平台高精度测速方法

Publications (2)

Publication Number Publication Date
CN113671475A CN113671475A (zh) 2021-11-19
CN113671475B true CN113671475B (zh) 2022-06-14

Family

ID=78538308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110724026.0A Active CN113671475B (zh) 2021-06-29 2021-06-29 一种基于时延信息的水下机动平台高精度测速方法

Country Status (1)

Country Link
CN (1) CN113671475B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636785A (zh) * 2012-04-06 2012-08-15 哈尔滨工程大学 一种水下目标三维定位方法
KR20150068237A (ko) * 2013-12-11 2015-06-19 광주과학기술원 수중위치 추정 시스템 및 방법
CN108828602A (zh) * 2018-03-06 2018-11-16 北京大学 一种脉冲相干法测速中消除速度模糊的信号处理方法
CN109029460A (zh) * 2018-08-03 2018-12-18 国家深海基地管理中心 深海运载器对水面监控平台测距的导航方法、***及装置
CN109358329A (zh) * 2018-11-06 2019-02-19 电子科技大学 脉冲传播时间内平台机动的双基sar回波模型建立方法
CN110389318A (zh) * 2018-04-18 2019-10-29 中国科学院声学研究所 一种基于立体六元阵的水下移动平台定位***及方法
CN111025280A (zh) * 2019-12-30 2020-04-17 浙江大学 一种基于分布式最小总体误差熵的运动目标测速方法
CN111837050A (zh) * 2017-12-29 2020-10-27 所尼托技术股份公司 使用声学模型的位置确定

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636785A (zh) * 2012-04-06 2012-08-15 哈尔滨工程大学 一种水下目标三维定位方法
KR20150068237A (ko) * 2013-12-11 2015-06-19 광주과학기술원 수중위치 추정 시스템 및 방법
CN111837050A (zh) * 2017-12-29 2020-10-27 所尼托技术股份公司 使用声学模型的位置确定
CN108828602A (zh) * 2018-03-06 2018-11-16 北京大学 一种脉冲相干法测速中消除速度模糊的信号处理方法
CN110389318A (zh) * 2018-04-18 2019-10-29 中国科学院声学研究所 一种基于立体六元阵的水下移动平台定位***及方法
CN109029460A (zh) * 2018-08-03 2018-12-18 国家深海基地管理中心 深海运载器对水面监控平台测距的导航方法、***及装置
CN109358329A (zh) * 2018-11-06 2019-02-19 电子科技大学 脉冲传播时间内平台机动的双基sar回波模型建立方法
CN111025280A (zh) * 2019-12-30 2020-04-17 浙江大学 一种基于分布式最小总体误差熵的运动目标测速方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
长基线_超短基线组合***抗异常值定位技术研究;王燕;《电子与信息学报》;20181130;第40卷(第11期);第2578-2583页 *

Also Published As

Publication number Publication date
CN113671475A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
CN106054134B (zh) 一种基于tdoa的快速定位方法
CN108614268B (zh) 低空高速飞行目标的声学跟踪方法
CN108107434B (zh) 基于双多普勒雷达反演的区域三维风场拼图方法
CN112051568B (zh) 一种两坐标雷达的俯仰测角方法
CN105136054A (zh) 基于地面三维激光扫描的构筑物精细变形监测方法及***
CN109581281B (zh) 基于到达时间差和到达频率差的移动目标定位方法
CN101957191A (zh) 一种基于自适应迭代邻域搜索的圆度和球度误差的评定方法
CN110133627B (zh) 水声定位导航***阵元位置校准测量点间距优化方法
CN109579827B (zh) 一种基于弧形阵列的磁性目标探测和定位方法
CN109031314B (zh) 一种面向声速剖面的水下节点定位方法
CN112819249A (zh) 基于走航adcp观测海流数据的潮流调和分析计算方法
CN110309581B (zh) 一种水下潜标位置综合校准测量点快速优化布局方法
CN113702960B (zh) 一种基于时延和多普勒频移的水下机动平台高精度测速方法
CN113671443A (zh) 基于掠射角声线修正的水声传感器网络深海目标定位方法
CN109613503A (zh) 雷达回波信号的标校方法和装置
CN113671475B (zh) 一种基于时延信息的水下机动平台高精度测速方法
CN113960532A (zh) 一种基于假想源的二次定位计算的微地震定位方法
CN115031585B (zh) 一种双阵列声学立靶斜入射弹着点定位方法
CN115773756A (zh) 一种面向全态势感知的目标信息融合方法
CN109459723A (zh) 一种基于元启发算法的纯方位被动定位方法
CN110411480B (zh) 一种复杂海洋环境下水下机动平台声学导航误差预测方法
Liu Research on wsn node localization algorithm based on rssi iterative centroid estimation
CN110909448B (zh) 一种高频天波返回散射电离图反演方法
CN107063240B (zh) 一种基于入侵杂草算法的水下航行器定位方法
CN113063961A (zh) 一种超声波传感阵列测风装置及其方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant