CN113512558B - 一种改良番茄对青枯病抗性的方法 - Google Patents

一种改良番茄对青枯病抗性的方法 Download PDF

Info

Publication number
CN113512558B
CN113512558B CN202110430566.8A CN202110430566A CN113512558B CN 113512558 B CN113512558 B CN 113512558B CN 202110430566 A CN202110430566 A CN 202110430566A CN 113512558 B CN113512558 B CN 113512558B
Authority
CN
China
Prior art keywords
tomato
gene
cdpk18l
bacterial wilt
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110430566.8A
Other languages
English (en)
Other versions
CN113512558A (zh
Inventor
师恺
丁淑婷
吕建荣
王娇
胡璋健
喻景权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202110430566.8A priority Critical patent/CN113512558B/zh
Publication of CN113512558A publication Critical patent/CN113512558A/zh
Application granted granted Critical
Publication of CN113512558B publication Critical patent/CN113512558B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8281Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for bacterial resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/11Protein-serine/threonine kinases (2.7.11)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Peptides Or Proteins (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了一种改良番茄对青枯病抗性的方法,属于生物技术领域。本发明利用CRISPR/Cas9基因编辑技术对核苷酸序列如SEQ ID NO.1所示的番茄CDPK18L基因进行编辑,沉默番茄CDPK18L基因编码蛋白的表达,进而获得抗青枯病性能增强的番茄突变体。该突变体能够显著增强对番茄青枯病的抗性,可用于抗青枯病番茄品种的选育。

Description

一种改良番茄对青枯病抗性的方法
技术领域
本发明涉及生物技术领域,具体涉及一种改良番茄对青枯病抗性的方法。
背景技术
番茄,茄科茄属,是一种重要的蔬菜和经济作物,在全世界范围内广泛种植。番茄果实营养丰富,口感鲜美,广受喜爱。然而,近年来,随着农业种植方式的改变,单一且高密度的种植模式,使得番茄病害爆发日益严重,严重影响产量和品质。
青枯病是其中一种高发病害,由茄科劳尔氏菌(Ralstonia solanacearum)引发。青枯菌是一种土壤习居菌,可以在土壤中生活很长一段时间,在田间主要通过雨水和灌溉水传播,也可以通过人畜、农具、带菌土壤、昆虫和线虫等方式传播,从而引起重复侵染,导致青枯病的流行蔓延。青枯菌主要从植株根部或茎部的伤口侵入,在植株体内的维管束组织中繁殖并进行新陈代谢活动,造成导管堵塞,从而阻止植物体内的养分运输并最终导致植株萎蔫死亡。番茄一旦感染青枯病,可导致减产甚至绝收,危害极大。
钙依赖性蛋白激酶(calcium-dependent protein kinase,CDPK)是一种钙离子依赖型蛋白激酶,属于丝氨酸/苏氨酸蛋白激酶,由一个蛋白激酶域、一个自我抑制结构域和一个类CaM结构域组成(Ludwig A A等,“CDPK-mediated signaling pathways:specificityand cross-talk.”Journal of Experimental Botany,2004,55(395):181-188)。
前人研究表明,CDPKs参与到多种生物及非生物胁迫相关的信号通路中,且作用机制各不相同。例如,拟南芥CPK3和CPK13通过调控热激转录因子HsfB2a激活PDF1.2的转录,从而增强植物对食草昆虫的抗性(Kanchiswamy C.N.等,“Regulation of Arabidopsisdefense responses against Spodopteralittoralis by CPK-mediated calciumsignaling.”BMC Plant Biology,2010,10:97)。在冷害和盐害/干旱的胁迫下,水稻CDPK7基因的表达量上升。增加CDPK7的含量能够提高水稻对冷害和盐害/干旱的抗性。在盐害/干旱的胁迫下,过表达植株抗性相关的基因表达量显著高于对照,而在冷害的胁迫下则没有这一现象出现,说明CDPK7对冷害和盐害/干旱的抗性机制通过两条独立的途径展开(SaijoY等,“Overexpression of a single Ca2+-dependent protein kinase confers bothcold and salt/drought tolerance on rice plants.”The Plant Journal,2000,23:319-327)。拟南芥CPK23则负调控抗逆性,拟南芥CPK23基因突变后拟南芥对干旱的抗性显著提高。过表达CPK23后拟南芥的气孔导度变大,从而影响其对干旱的抗性(Ma SY,Wu WH.“AtCPK23 functions in Arabidopsis responses to drought and salt stresses.”Plant Molecular Biology,2007,65:511-518)。
番茄CDPK18L作为CDPKs家族中的一员,鲜有其在生物抗性中的研究。因此,研究番茄CDPK18L基因应对青枯病的抗性机制具有理论和实际应用价值。
发明内容
本发明的目的在于提供一种可调控番茄对抗青枯病害的基因,通过基因改造达到改良番茄对青枯病抗性的目的。
为实现上述目的,本发明采用如下技术方案:
本发明首先对番茄钙离子依赖型蛋白激酶CDPK18L(基因编号:XM_004232444)进行序列分析,查找PAM序列,将NGG前的20个bp的序列定义为sgRNA,选择定位于基因蛋白编码区上且具有高度特异性的sgRNA序列,进而利用基因编辑技术,对番茄CDPK18L基因进行编辑,获得功能缺陷型突变的纯合株系,该植株表现出对青枯病的抗性显著增强,表明CDPK18L基因的沉默在改良番茄对青枯病抗性方面具有一定应用价值。
本发明提供了核苷酸序列如SEQ ID NO.1所示的CDPK18L基因在提高番茄抗青枯病中的应用。
CDPK18L基因的蛋白编码区的核苷酸序列如SEQ ID NO.1所示,长度为1713bp,全基因DNA序列如SEQ ID NO.6所示。
CDPK18L基因编码的蛋白为钙离子依赖型蛋白激酶,由570个氨基酸组成,其序列如SEQ ID NO.2所示,属于丝氨酸/苏氨酸蛋白激酶,由一个蛋白激酶域、一个自我抑制结构域和一个类CaM结构域组成,当与钙离子结合时,该蛋白被激活。
所述应用包括:利用基因编辑技术沉默番茄CDPK18L基因编码蛋白的表达,进而获得抗青枯病性能增强的番茄突变体。
进一步的,利用CRISPR/CAS9技术对番茄CDPK18L基因进行沉默。CRISPR/Cas9基因编辑技术能够精准敲除基因组中的任何基因,从而精确的改变农作物性状,快速获得理想种质,大大缩短育种时间。同时,相比于转基因育种,利用CRISPR/Cas9基因编辑技术进行育种可以不引入外源基因。在利用CRISPR/Cas9技术进行基因组编辑之后,植株可以通过自交筛选出目标基因发生编辑且不含Cas9的株系,可在很多情况下避免使用颇具争议性引入外源基因的转基因技术。
本发明还提供了两个抗青枯病性能增强的番茄突变体,所述番茄突变体的编码基因的序列为如SEQ ID NO.1所示核苷酸序列中第70和71位碱基缺失;另一个突变体的编码基因序列为如SEQ ID NO.1所示核苷酸序列中第70位的碱基缺失。
本发明通过测定番茄体内游离态氨基酸含量发现,CDPK18L基因突变体植株内的游离态氨基酸含量明显上升。推测CDPK18L基因通过影响植物体内游离态氨基酸的含量,调控番茄青枯病的抗性。所述调控是指CDPK18L通过影响植物体内游离态氨基酸含量,改变植物体内的氮代谢过程,削弱植物对青枯病的抗性。
本发明还提供了一种改良番茄对青枯病抗性的育种方法,包括:
(1)在核苷酸序列如SEQ ID NO.1所示的CDPK18L蛋白编码区选取含有PAM结构的靶标片段,以靶标片段PAM结构前20个碱基为依据,进行引物设计,构建CRIPR/Cas9载体;
(2)将CRIPR/Cas9载体转化受体番茄材料中,培育,获得不含外源Cas9蛋白且稳定遗传的纯合突变体株系。
所述PAM结构为NGG,N代表任意碱基。
进一步的,所述靶标片段PAM结构前20个碱基序列为如SEQ ID NO.3所示,定义为sgRNA。
步骤(1)中,构建所述CRIPR/Cas9载体的引物的核苷酸序列如SEQ ID NO.4和SEQID NO.5所示。将上述引物退火成双链,构建CRIPR/Cas9载体。
步骤(2)中,利用农杆菌介导技术将CRIPR/Cas9载体转化至番茄子叶中。
具体的,所述受体番茄为番茄Condine Red。
本发明具有以下有益效果:
本发明利用CRISPR/Cas9基因编辑技术获得番茄CDPK18L基因编辑突变体,该突变体能够显著增强对番茄青枯病的抗性,可用于抗青枯病番茄品种的选育。
附图说明
图1为实施例2中获得的T1代突变体植株的基因编辑位点;
与未经过基因编辑的普通番茄相比,基因编辑突变体在sgRNA的位置发生碱基缺失,以下将未经过基因编辑的普通番茄称为对照,CDPK18L#1相较对照缺失两个碱基,CDPK18L#2相较对照缺失一个碱基。
图2为实施例3中对照和CDPK18L基因突变型番茄接种青枯菌后的病情指数柱形图;
其中,发病越严重,病情指数越高;对照植株病情指数显著高于突变体植株;小写字母a、b代表不同植株之间在5%水平上的差异显著。
图3为实施例3中对照和CDPK18L基因突变型番茄接种青枯菌后的发病植株图;
其中,叶片萎蔫程度越高,表示发病越严重。
图4为实施例4中CDPK18L基因突变型和对照番茄体内的游离态氨基酸含量变化。
具体实施方式
下面结合具体实施例对本发明作进一步描述,以下列举的仅是本发明的具体实施例,但本发明的保护范围不仅限于此。若未特别指明,实施例中所用的技术手段均为本领域技术人所熟知,所用原料、试剂盒均为市售商品。
下述实施例中采用的番茄品种为番茄常规品种CR(Condine Red),将未经基因编辑的普通番茄作为对照。
实施例1含特异sgRNA的CRISPR/Cas9载体的构建
在NCBI网站https://www.ncbi.nlm.nih.gov/上找到CDPK18L(XM_004232444)的DNA序列,其序列如SEQ ID NO.6所示,输入http://crispr.hzau.edu.cn/cgi-bin/ CRISPR2/CRISPR网站,找出onscore得分高,且GC含量>40%,位于蛋白编码区的一段PAM结构前的20bp碱基序列CACGGCGGCGGTATTTGTGG(SEQ ID NO.3)。
设计CRISPR引物,如下所示:
CRISPR前引物(SEQ ID NO.4):GATTGCACGGCGGCGGTATTTGTGG;
CRISPR后引物(SEQ ID NO.5):AAACCCACAAATACCGCCGCCGTGC;
取上述CRISPR前引物和后引物各5μl,混匀后用PCR仪退火成双链。中间载体pMD18-T经BbsI单酶切,普通DNA纯化试剂盒纯化后,将双链与载体用T4连接酶连接,16℃连接过夜。42℃热击转化涂板,抗性为氨苄青霉素。
挑单克隆菌落,用CRISPR前引物(SEQ ID NO.4):GATTGCACGGCGGCGGTATTTGTGG和载体后引物(SEQ ID NO.7):CTACTTATCGTCATCGTCTTTG,进行PCR验证。
将条带大小正确的菌液送至测序公司测序,测序结果显示载体包含sgRNA序列,提质粒,经Hind III与Kpn I双酶切后,连接至终载体pCAMBIA1301上。再次测序结果显示终载体包含sgRNA,将所得最终质粒电击入GV3101农杆菌感受态,28℃培养两天后挑斑进行PCR验证,获得可用于构建其CRISPR/Cas9基因编辑材料的农杆菌菌株。
实施例2 CDPK18L基因突变体材料制备与鉴定
在播种培养基播种已消毒的番茄种子,7天后切子叶。农杆菌侵染法将实施例1制备的最终质粒转化入子叶中,利用植物细胞全能性,获得T0代基因编辑番茄。
T0代基因编辑番茄苗检测。利用CTAB法提取T0代植株的基因组DNA并以其为模板,在包含sgRNA的DNA序列前后约200bp处设计如下引物,进行PCR扩增测序验证:
验证前引物(SEQ ID No.8):GAGGGCTTATGGTTTTCTTC
验证后引物(SEQ ID No.9):CAATTCTCTTGACAGCCACA
所得PCR产物送测序公司测序。测序结果与该段基因原序列利用DNAMAN软件进行比对,选取sgRNA序列发生碱基缺失、且测序显示单峰的植株,进行自交繁种,获得T0代的种子。
上述T0代种子种植于生长室中,获得T1代植株。利用上述同样方法检测T1代植株的sgRNA序列碱基编辑情况。同时,利用CRISPR前引物(SEQ ID NO.4)和载体后引物(SEQ IDNO.7)对T1代植株的DNA进行PCR扩增,检测是否含有Cas9序列。选取sgRNA发生变异,且不含Cas9蛋白的T1代植株,确定为基因编辑植株的两个株系,分别命名为CDPK18L#1和CDPK18L#2,其基因编辑位点如图1所示。CDPK18L#1相较对照植株缺失两个碱基,CDPK18L#2相较对照植株缺失一个碱基。上述两个株系T1代种子播种后,获得不含外源基因Cas9,且sgRNA发生变异的稳定遗传的T2代植株。
以下实施例均以上述两个纯合株系T2代植株作为材料进行实验。
实施例3 CDPK18L基因编辑突变体的抗病性研究
青枯菌菌种接种在固体扩繁培养基上,放于28℃恒温培养箱中培养2天后得以活化,作为原板。用移植环从原板中蘸取带粘性且具有流动性的乳白色菌液于新的固体扩繁培养基上,28℃恒温培养箱中培养1天。用无菌水将菌液重悬,并将OD600调至1.0。将50ml菌液灌入每株番茄根部,并置于25℃,95%空气相对湿度、12小时光照12小时黑暗,光强200μmol m-2s-1的环境下培养10天后,观察植株发病情况。植株的发病症状分为0、1、2、3、4五个等级,分级标准为:0级,叶片正常没有萎蔫;1级,1%-25%的叶片发生萎蔫;2级,26%-50%的叶片发生萎蔫;3级,51%-75%的叶片发生萎蔫;4级,76%-100%的叶片发生萎蔫。
由图2和图3可知,CDPK18L突变体能够显著提高其对青枯病的抗性。
实施例4 CDPK18L突变体和对照番茄体内游离态氨基酸含量测定
取一个月苗龄的番茄叶片60mg加入200μl H2O匀浆,加入800μl甲醇乙腈溶液(1:1,v/v),-20℃放置1h沉淀蛋白,过滤后14000g离心20min,取上清冷冻干燥,-80℃保存样品。样品采用Agilent 1290Infinity LC超高效液相色谱***进行分离。利用5500QTRAP质谱仪(AB SCIEX)在正离子模式下进行质谱分析,采用MRM模式检测待测离子对。采用Multiquant软件提取色谱峰面积及保留时间。利用氨基酸及衍生物的标准品校正保留时间,进行代谢物鉴定。
由图4可知,CDPK18L突变体内的游离态氨基酸含量相较对照植株明显升高,体内的氮代谢发生改变。
序列表
<110> 浙江大学
<120> 一种改良番茄对青枯病抗性的方法
<160> 9
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1713
<212> DNA
<213> 番茄(Solanum lycopersicum)
<400> 1
atgggcaaca tatgtttttc tagctcaaaa gttagtggtt ctaacagcaa caccccttcc 60
accaccacca caaataccgc cgccgtgaat ggccaccgta atcggcggag ctcagcgaac 120
ccggtttctg caacaacaaa tacatcaaga aaacaagagg ggtctcatta caatcgacag 180
aaaggtaagg ataacggtgg ggttaagcaa caaacgagaa attctcagaa aaatgttaag 240
cataatacga ggaagcaaag tgggattatt ccttgtggga aaagaacgga ttttgggtat 300
gataaagatt ttgataacaa gtttacaatc ggaaagttgt tgggtcatgg acaatttgga 360
tacacatatg ttgcaacaga caagtctaat ggaaatcgtg tggctgtcaa gagaattgaa 420
aagaaaaaga tggttgttcc aattgcagtt gaggatgtaa aacgagaagt caagatattg 480
aaggccttag ccggtcacga gaatgtagtt gatttctata atgcatttga ggatgataac 540
tatgtttaca tagtaatgga gttatgtgag ggtggagaac tgttggaccg cattttggcc 600
aaaaaggaca gccgttatac cgagaaagat gcagcaatag ttgtcggtca gatgttaaaa 660
gttgccgctc agtgtcactt acatggattg gtgcatcgtg atatgaaacc tgagaatttt 720
ctctttaaat cttcaaagga ggactcatca ttaaaggcca cagattttgg tctttcagac 780
ttcataagac cagggaagaa attccaagat atagttggaa gtgcatatta cgtagcccca 840
gaggtattaa agcgtaaatc tggacctgaa tcagatgtgt ggagcattgg cgtaattaca 900
ttcattttac tttgtggtcg tcggcccttc tgggataaaa cagaggatgg catattcaag 960
gaggtcttac gaaacaaacc tgattttcgt cgcaagccat ggccaactat aagcaacagt 1020
gctaaagatt ttgttaagaa attattggtg aaagatcctc gtgctagact tactgctgcc 1080
caggccctgt cacatccatg ggtccgtgaa ggaggtgatg catctgagat tccactagac 1140
atatctgtct tgtccaacat gcggcaattt gtcaaataca gtcgattaaa gcaatttgca 1200
ttacgggcat tggctagcac acttgatgag gaggagctgg cagatgtccg ggaccagttt 1260
tctgcaattg atgtggataa aaatggtgtt attagccttg aagaaatgag acaggccctt 1320
gccaaggatc tcccctggaa gatgaaagaa tcgcgggttc ttgagattct tcaagcgatt 1380
gatagtaaca cagacgggct tgttgatttc ccggagtttg ttgcagcgac tctacatgtg 1440
catcagttag aggagcataa tttgttaaaa tggcagcaaa gatcgcaaac tgcttttgag 1500
aaatttgacg ttgatagaga tggattcata actccagaag aacttagaat gcataccggc 1560
ttaaaaggct ctatagaccc attgctcgaa gaagcagata tcgacaaaga tggaaagata 1620
agcttatcag aattccggag gcttctaaga actgcaagta taagttcgcg aatggtgaat 1680
agtccaacgg tcagaggctc tcgcaaaatt tag 1713
<210> 2
<211> 570
<212> PRT
<213> 番茄(Solanum lycopersicum)
<400> 2
Met Gly Asn Ile Cys Phe Ser Ser Ser Lys Val Ser Gly Ser Asn Ser
1 5 10 15
Asn Thr Pro Ser Thr Thr Thr Thr Asn Thr Ala Ala Val Asn Gly His
20 25 30
Arg Asn Arg Arg Ser Ser Ala Asn Pro Val Ser Ala Thr Thr Asn Thr
35 40 45
Ser Arg Lys Gln Glu Gly Ser His Tyr Asn Arg Gln Lys Gly Lys Asp
50 55 60
Asn Gly Gly Val Lys Gln Gln Thr Arg Asn Ser Gln Lys Asn Val Lys
65 70 75 80
His Asn Thr Arg Lys Gln Ser Gly Ile Ile Pro Cys Gly Lys Arg Thr
85 90 95
Asp Phe Gly Tyr Asp Lys Asp Phe Asp Asn Lys Phe Thr Ile Gly Lys
100 105 110
Leu Leu Gly His Gly Gln Phe Gly Tyr Thr Tyr Val Ala Thr Asp Lys
115 120 125
Ser Asn Gly Asn Arg Val Ala Val Lys Arg Ile Glu Lys Lys Lys Met
130 135 140
Val Val Pro Ile Ala Val Glu Asp Val Lys Arg Glu Val Lys Ile Leu
145 150 155 160
Lys Ala Leu Ala Gly His Glu Asn Val Val Asp Phe Tyr Asn Ala Phe
165 170 175
Glu Asp Asp Asn Tyr Val Tyr Ile Val Met Glu Leu Cys Glu Gly Gly
180 185 190
Glu Leu Leu Asp Arg Ile Leu Ala Lys Lys Asp Ser Arg Tyr Thr Glu
195 200 205
Lys Asp Ala Ala Ile Val Val Gly Gln Met Leu Lys Val Ala Ala Gln
210 215 220
Cys His Leu His Gly Leu Val His Arg Asp Met Lys Pro Glu Asn Phe
225 230 235 240
Leu Phe Lys Ser Ser Lys Glu Asp Ser Ser Leu Lys Ala Thr Asp Phe
245 250 255
Gly Leu Ser Asp Phe Ile Arg Pro Gly Lys Lys Phe Gln Asp Ile Val
260 265 270
Gly Ser Ala Tyr Tyr Val Ala Pro Glu Val Leu Lys Arg Lys Ser Gly
275 280 285
Pro Glu Ser Asp Val Trp Ser Ile Gly Val Ile Thr Phe Ile Leu Leu
290 295 300
Cys Gly Arg Arg Pro Phe Trp Asp Lys Thr Glu Asp Gly Ile Phe Lys
305 310 315 320
Glu Val Leu Arg Asn Lys Pro Asp Phe Arg Arg Lys Pro Trp Pro Thr
325 330 335
Ile Ser Asn Ser Ala Lys Asp Phe Val Lys Lys Leu Leu Val Lys Asp
340 345 350
Pro Arg Ala Arg Leu Thr Ala Ala Gln Ala Leu Ser His Pro Trp Val
355 360 365
Arg Glu Gly Gly Asp Ala Ser Glu Ile Pro Leu Asp Ile Ser Val Leu
370 375 380
Ser Asn Met Arg Gln Phe Val Lys Tyr Ser Arg Leu Lys Gln Phe Ala
385 390 395 400
Leu Arg Ala Leu Ala Ser Thr Leu Asp Glu Glu Glu Leu Ala Asp Val
405 410 415
Arg Asp Gln Phe Ser Ala Ile Asp Val Asp Lys Asn Gly Val Ile Ser
420 425 430
Leu Glu Glu Met Arg Gln Ala Leu Ala Lys Asp Leu Pro Trp Lys Met
435 440 445
Lys Glu Ser Arg Val Leu Glu Ile Leu Gln Ala Ile Asp Ser Asn Thr
450 455 460
Asp Gly Leu Val Asp Phe Pro Glu Phe Val Ala Ala Thr Leu His Val
465 470 475 480
His Gln Leu Glu Glu His Asn Leu Leu Lys Trp Gln Gln Arg Ser Gln
485 490 495
Thr Ala Phe Glu Lys Phe Asp Val Asp Arg Asp Gly Phe Ile Thr Pro
500 505 510
Glu Glu Leu Arg Met His Thr Gly Leu Lys Gly Ser Ile Asp Pro Leu
515 520 525
Leu Glu Glu Ala Asp Ile Asp Lys Asp Gly Lys Ile Ser Leu Ser Glu
530 535 540
Phe Arg Arg Leu Leu Arg Thr Ala Ser Ile Ser Ser Arg Met Val Asn
545 550 555 560
Ser Pro Thr Val Arg Gly Ser Arg Lys Ile
565 570
<210> 3
<211> 20
<212> DNA
<213> 番茄(Solanum lycopersicum)
<400> 3
cacggcggcg gtatttgtgg 20
<210> 4
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
gattgcacgg cggcggtatt tgtgg 25
<210> 5
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
aaacccacaa ataccgccgc cgtgc 25
<210> 6
<211> 5386
<212> DNA
<213> 番茄(Solanum lycopersicum)
<400> 6
agagaaaatg ttaaatatag aaaatcaaaa gtaagaaatt gcaaatattc tccctccatt 60
cttccatgct gaaaataaaa aataagaggg cttatggttt tcttcaaaat aaaaaaagta 120
tgtttttgac cattagcatg gtccatcacc tcctgtctct tcttcctttc ttcctcttcc 180
tatttcctat aatctttcat cttttaatta attttccctc ttttctattc tccctatatt 240
atccataatc ttgattcttg attttttgtt tcaaacatct gaaaattttc aactttgagg 300
attttaatca tatatcataa tgggcaacat atgtttttct agctcaaaag ttagtggttc 360
taacagcaac accccttcca ccaccaccac aaataccgcc gccgtgaatg gccaccgtaa 420
tcggcggagc tcagcgaacc cggtttctgc aacaacaaat acatcaagaa aacaagaggg 480
gtctcattac aatcgacaga aaggtaagga taacggtggg gttaagcaac aaacgagaaa 540
ttctcagaaa aatgttaagc ataatacgag gaagcaaagt gggattattc cttgtgggaa 600
aagaacggat tttgggtatg ataaagattt tgataacaag tttacaatcg gaaagttgtt 660
gggtcatgga caatttggat acacatatgt tgcaacagac aagtctaatg gaaatcgtgt 720
ggctgtcaag agaattgaaa agaaaaaggt tttttttttc tttccccatc ctctgctata 780
tctaattctt atggagttgt gtagtgcacc aaatttggaa tctgtgaaaa tttctgttca 840
atcctaatta taggttcaac tatttcttct ttaattattt ttaaatgtct tttgactttg 900
gttgactcag aagaatatac attaactact gaattgcgaa ttcacatgct ttatcctttc 960
tgtttttagt tcatgtctct gtttatttgg ttcaatcagt gtatttgttt agcttttgcg 1020
gttacaaaat actatcttct gctaatcttg aaataccaat ttaagttgtt gttaattttt 1080
aatggattgc taactggtga agctgtgctt tttaagagac ataaatatat cgaaaactat 1140
aggtttatgg aagctgtttg gttaattatg atggttgtgg ttctaagcat tgacatatag 1200
gaacacctaa cactggacct tagttttctg tgattagtgc tgcttgttgt tattatgtac 1260
agttaaatgg aaaatggctt ccttgcctgg tttagagaga gtcagttttt aatcaatagg 1320
tagtggtagc ttctttggtt ttctgatgaa tggacttatc tgaaagtgac tgcacaagtc 1380
ttggttattg atgcatgacg caactattta gttcgtcatc ggcttctatg gagaataact 1440
cttctttaag gtttgtccaa ctttgtctcc tattatctct gcacaccagt tatgatgtgt 1500
tcatccttct ggaatgatgg ggttattcat gcaaataaga atatttgcgg aagtttcttt 1560
tttagaagct tgttaagttt tatactattt ttgcataatc aattgcctta tcttgaactt 1620
cttgatgttc cagtttatta caactatagc ataactctag tgaatcattg cagatggttg 1680
ttccaattgc agttgaggat gtaaaacgag aagtcaagat attgaaggcc ttagccggtc 1740
acgagaatgt agttgatttc tataatgcat ttgaggatga taactatgtt tacatagtaa 1800
tggagtaagt ttcgttatta agagctctgt atggattcgt caggtcatag ttctttcctt 1860
acaatcgatt atgctaatct aaaggaaagt tgattgatta caaatttgtt ttcctgtagg 1920
ttatgtgagg gtggagaact gttggaccgc attttggcca agtaagtagt ataaaccagg 1980
tttacttaat atcgtgattt gtggtgcttg ctctataatt tatttcttgt taagaagaat 2040
acttatgtaa gttatcaatg atttcctttg attagaaagg acagccgtta taccgagaaa 2100
gatgcagcaa tagttgtcgg tcagatgtta aaagttgccg ctcagtgtca cttacatgga 2160
ttggtgcatc gtgatatgaa acctgaggtt tgcaagaagt tatgtacttc ctttggttta 2220
ctaatgctgc tttatgtttc ttctcttaca cacatttctt ttcttgtaga attttctctt 2280
taaatcttca aaggaggact catcattaaa ggccacagat tttggtcttt cagacttcat 2340
aagaccaggt gattggatgt ccacaaatct actcaatgac atattttagt ttaaactcat 2400
ttttcgtatt tgagtaaaga tctttttgct atggtgtatg aacttcaatt cttcataaat 2460
ctgttaaagc cgtcaaagat gtttttggtt cttccttaga tagcaaaaac ttataacttt 2520
aaatcaataa atgcagggaa gaaattccaa gatatagttg gaagtgcata ttacgtagcc 2580
ccagaggtat taaagcgtaa atctggacct gaatcagatg tgtggagcat tggcgtaatt 2640
acattcattt tactttgtgg tcgtcggccc ttctgggata aaacagagga tggcatattc 2700
aaggaggtga gctgctaata tttattctta tagctctgca gctgggcaac attttaaatt 2760
gtgattcttt cttggaaatt tgtggaattg tgttatgatc tttaagctct tctaggaaat 2820
aaactttgta ttctgtcaaa gtggcatatt taccaatatt aactttaata cattttaaaa 2880
aattgcataa ttctctgtct gattagccaa ttttacattt gagatttcaa aattttactc 2940
caaatatggt actgatgatg aatctcctgt atagttttgc tttattattc ttagttcttg 3000
attagcttag tctgcattcc atagttggta ttgaaatttc ttaaacctga aattttcttg 3060
ttctcttttg agttcattga agctacggct gtatctttga atttgggttg ttggttattt 3120
aaataaaatc ttattcgaat gtgttattta attcctttga gaagtgtaac ttgttcattg 3180
tcatgtttga tgaagtattt gtgcttttag ctgatttagt attgtttata actccgcttc 3240
tactatgcta aggtcttacg aaacaaacct gattttcgtc gcaagccatg gccaactata 3300
agcaacagtg ctaaagattt tgttaagaaa ttattggtga aagatcctcg tgctagactt 3360
actgctgccc aggccctgtg taagtaatta tattctgatt tagtacaatc tttttaagtg 3420
atgattacgt tttacaatta cgaagcatga ttatcggaga agtaactcaa ggtccaaaag 3480
attcatatac tgaatttgtc aattttgatt cggcaacttc attagcaatg tgttggatgt 3540
ccatttatca attcttgcta tatagtccat gcttctgcta aatttcaaat aattatattg 3600
aataattttc attgttttca cttaattaga tgttactggt attctcgtga cctttgaatt 3660
gatgatgcaa taaatggtag ttttttcata ctgatatata tgaacatttc agcacatcca 3720
tgggtccgtg aaggaggtga tgcatctgag attccactag acatatctgt cttgtccaac 3780
atgcggcaat ttgtcaaata cagtcgatta aagcaatttg cattacgggt aacttcatag 3840
ctttcttact ttcataaaaa gtagagaaca ttaacttcat gcaatttcat tatctggcag 3900
gcattggcta gcacacttga tgaggaggag ctggcagatg tccgggacca gttttctgca 3960
attgatgtgg ataaaaatgg tgttattagc cttgaagaaa tgagacaggt atttccctta 4020
tttcatggtc tagttagttt cttcctgtac agtttctcta agtttctggc taacatcgta 4080
agcacttata ttcctgtctt tgcaacaaag cattgtgtaa tataatgtca tttatgttat 4140
cacttatgac acccaattct aatgcaggcc cttgccaagg atctcccctg gaagatgaaa 4200
gaatcgcggg ttcttgagat tcttcaagcg gtaagctaat atatttagga atgaaagtat 4260
atcactataa taatatggca tgtaagatca agttattact atgaaatacc ttctataacg 4320
tcaagctggg acgtgtgttt gcaaccaatt tagtccctac tcctatgaaa gggaataagg 4380
aaagaaaagg actaacgcac ctaagagcca tccacaaaaa ggaaaaagcg aagatgaaaa 4440
ggaatgtgat gtctgtcaca tagtagttct gtaaatttcc ggcttatgag tccatgcgat 4500
aatctgaggg tttactcaat gattgcaaac gctttttatc tgcctgtgta tactgcattt 4560
cctacagttg aagcattttg ttcattgatt tttcagattg atagtaacac agacgggctt 4620
gttgatttcc cggagtttgt tgcagcgact ctacatgtgc atcagttaga ggagcataat 4680
ttgttaaaat ggcagcaaag atcgcaaact gcttttgaga aatttgacgt tgatagagat 4740
ggattcataa ctccagaaga acttagaatg gttagtatgt cgtattttct tgttcaagtg 4800
atcaacactg ttgtatatat aaattctagc tttcaaatcc tacagagcgt gattttttta 4860
ttcttagatt gaattaaaga taaaacaaaa tattcatatg tggcttttac ttgtatgcag 4920
cataccggct taaaaggctc tatagaccca ttgctcgaag aagcagatat cgacaaagat 4980
ggaaagataa gcttatcaga attccggagg cttctaagaa ctgcaagtat aagttcgcga 5040
atggtgaata gtccaacggt cagaggctct cgcaaaattt agtcagagat gtgaaagtta 5100
tccatgagaa aaaaccaact tcatttacat gttctcatgt gatgtgctgc tgcaattctg 5160
tatgtagagt tttgccagaa aaggaagttg ctttctccta aacaaccagc agcaattaag 5220
gtttgtagca tacattcttt gtcacttttt ctggggttct ctttgagtat gtatgtatgt 5280
atgtaatagc acctcattaa tgataaatca taaaagtata catgtatcac cttttttgaa 5340
cttgtcatta tgtaacaaac aaacaaaaaa acttttggcc catgca 5386
<210> 7
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
ctacttatcg tcatcgtctt tg 22
<210> 8
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
gagggcttat ggttttcttc 20
<210> 9
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
caattctctt gacagccaca 20

Claims (8)

1.核苷酸序列如SEQ ID NO.1所示的CDPK18L基因在提高番茄抗青枯病中的应用,其特征在于,所述应用包括:利用基因编辑技术沉默番茄CDPK18L基因编码蛋白的表达,进而获得抗青枯病性能增强的番茄突变体。
2.如权利要求1所述的应用,其特征在于,利用CRISPR/CAS9技术对番茄CDPK18L基因进行沉默。
3.如权利要求1所述的应用,其特征在于,所述番茄突变体中CDPK18L编码基因的核苷酸序列为与如SEQ ID NO.1所示核苷酸序列相比,第70位和71位碱基缺失,或者第70位碱基缺失。
4.一种改良番茄对青枯病抗性的育种方法,其特征在于,包括:
(1)在核苷酸序列如SEQ ID NO.1所示的CDPK18L蛋白编码区选取含有PAM结构的靶标片段,以靶标片段PAM结构前20个碱基为依据,进行引物设计,构建CRIPR/Cas9载体;
(2)将CRIPR/Cas9载体转化受体番茄材料中,培育,获得不含外源Cas9蛋白且稳定遗传的纯合突变体株系。
5.如权利要求4所述的改良番茄对青枯病抗性的育种方法,其特征在于,所述靶标片段PAM结构前20个碱基序列为如SEQ ID NO.3所示。
6.如权利要求5所述的改良番茄对青枯病抗性的育种方法,其特征在于,构建所述CRIPR/Cas9载体的引物的核苷酸序列如SEQ ID NO.4和SEQ ID NO.5所示。
7.如权利要求4所述的改良番茄对青枯病抗性的育种方法,其特征在于,步骤(2)中,利用农杆菌介导技术将CRIPR/Cas9载体转化至番茄子叶中。
8.如权利要求4所述的改良番茄对青枯病抗性的育种方法,其特征在于,受体番茄为番茄Condine Red。
CN202110430566.8A 2021-04-21 2021-04-21 一种改良番茄对青枯病抗性的方法 Active CN113512558B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110430566.8A CN113512558B (zh) 2021-04-21 2021-04-21 一种改良番茄对青枯病抗性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110430566.8A CN113512558B (zh) 2021-04-21 2021-04-21 一种改良番茄对青枯病抗性的方法

Publications (2)

Publication Number Publication Date
CN113512558A CN113512558A (zh) 2021-10-19
CN113512558B true CN113512558B (zh) 2022-08-05

Family

ID=78062587

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110430566.8A Active CN113512558B (zh) 2021-04-21 2021-04-21 一种改良番茄对青枯病抗性的方法

Country Status (1)

Country Link
CN (1) CN113512558B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113999863B (zh) * 2021-11-01 2024-01-05 浙江大学 一种提高番茄作物水分利用效率的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104480118A (zh) * 2014-12-09 2015-04-01 福建农林大学 花生lrr-rlk基因及在烟草抗青枯病中的应用
CN106867979A (zh) * 2017-01-16 2017-06-20 福建农林大学 NtRLK2基因在烟草抗青枯病中的应用
CN109609527A (zh) * 2019-01-28 2019-04-12 浙江大学 Cdpk18l基因作为负调控因子在提高番茄细菌性叶斑病抗性和高温抗性中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104480118A (zh) * 2014-12-09 2015-04-01 福建农林大学 花生lrr-rlk基因及在烟草抗青枯病中的应用
CN106867979A (zh) * 2017-01-16 2017-06-20 福建农林大学 NtRLK2基因在烟草抗青枯病中的应用
CN109609527A (zh) * 2019-01-28 2019-04-12 浙江大学 Cdpk18l基因作为负调控因子在提高番茄细菌性叶斑病抗性和高温抗性中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PREDICTED:Solanum lycopersicum calcium-dependent protein kinase 18-like (LOC101260391),mRNA;Eukaryota,等;《Genbank登录号:XM_004232444.4》;20180908;参见全文 *

Also Published As

Publication number Publication date
CN113512558A (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
CN109609527B (zh) Cdpk18l基因作为负调控因子在提高番茄细菌性叶斑病抗性和高温抗性中的应用
US11692200B2 (en) Method for improving rice yield and/or rice blast resistance and protein used thereof
CN116179589B (zh) SlPRMT5基因及其蛋白在调控番茄果实产量中的应用
CN112322630B (zh) 一种MsSPL13基因及其应用
CN110468150B (zh) Rgs1基因作为负调控因子在提高寡照环境下番茄细菌性叶斑病抗性中的应用
CN114591966A (zh) 拟南芥转录因子srg1基因在调控植物生长发育中的应用
US20240043858A1 (en) A Protein Vapbp2-L For Enhancing Drought Resistance Of Plants And Application Thereof
CN113073111B (zh) 一种提高番茄对土传性病害青枯病抗性的方法
CN113512558B (zh) 一种改良番茄对青枯病抗性的方法
CN117384927A (zh) 番茄LecRK26基因在调控植物灰霉病抗性中的应用
CN112341532A (zh) OsDSK2a蛋白或其编码基因在调控水稻稻瘟病抗性方面的应用
CN112322645A (zh) OsHDA710表观调控因子基因在水稻发育和抗逆中的应用
CN114736280B (zh) ZmROA1蛋白在调控植物耐密性中的应用
CN114107373B (zh) 一种制备拟南芥自噬基因突变体的方法及应用
CN113481176B (zh) GA3ox1蛋白在调控苜蓿株型中的应用
CN115851824A (zh) 一种降低大白果糯株高、提高产量并缩短生育期的方法以及sd1基因核心启动子和应用
CN114106121A (zh) FvGR3蛋白及其编码基因和用途
CN108795949B (zh) 一种水稻叶色调控相关基因OsWSL6及其编码蛋白质和应用
CN117431256B (zh) 一个小麦黄花叶病抗病基因TaRx-2D及其编码的蛋白和应用
CN114591984B (zh) OsAP79基因诱导水稻抗褐飞虱的应用
CN109182350A (zh) 玉米Zm675基因在植物品质改良中的应用
CN114015666B (zh) OsPARP3基因在调控植物耐旱性中的应用
CN116121298B (zh) 抑制hsrp1基因的表达在提高植物耐热性中的应用
CN114231556B (zh) GmECT2在调控植物高度方面的应用
CN117305266B (zh) 一种与水稻抗逆相关的基因OsBDG1及其编码蛋白的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant