CN113481210B - 棉花GhDof1.7基因在促进植物耐盐中的应用 - Google Patents

棉花GhDof1.7基因在促进植物耐盐中的应用 Download PDF

Info

Publication number
CN113481210B
CN113481210B CN202110853199.2A CN202110853199A CN113481210B CN 113481210 B CN113481210 B CN 113481210B CN 202110853199 A CN202110853199 A CN 202110853199A CN 113481210 B CN113481210 B CN 113481210B
Authority
CN
China
Prior art keywords
gene
plants
plant
cotton
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202110853199.2A
Other languages
English (en)
Other versions
CN113481210A (zh
Inventor
王寒涛
李弈
喻树迅
魏恒玲
马亮
康萌
付小康
芦建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Cotton Research of Chinese Academy of Agricultural Sciences
Original Assignee
Institute of Cotton Research of Chinese Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Cotton Research of Chinese Academy of Agricultural Sciences filed Critical Institute of Cotton Research of Chinese Academy of Agricultural Sciences
Priority to CN202110853199.2A priority Critical patent/CN113481210B/zh
Publication of CN113481210A publication Critical patent/CN113481210A/zh
Application granted granted Critical
Publication of CN113481210B publication Critical patent/CN113481210B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明公开了棉花GhDof1.7基因在促进植物耐盐中的应用,属于植物基因工程技术领域。GhDof1.7基因具有SEQ ID NO:1所示的核苷酸序列并可编码SEQ ID NO:2所示氨基酸序列。利用本发明,可为植物尤其是棉花的抗逆分子改良进行技术支持。

Description

棉花GhDof1.7基因在促进植物耐盐中的应用
技术领域
本发明属于植物基因工程技术领域,具体地,涉及棉花GhDof1.7基因在促进植物耐盐中的应用。
背景技术
土壤盐渍化是全球首要的环境问题,高盐会影响植物的生长和代谢过程,从而导致作物产量和品质显著性降低。研究表明,大量的盐离子会进入植物细胞后,不仅使胞内水势高于胞外,进一步引起细胞失水,还会造成细胞内的Na+/K+比例失衡,渗透调节失衡,最终导致植株因缺水生长缓慢甚至死亡。
利用分子克隆技术克隆耐盐相关基因,是研究植物耐盐途径的重要步骤。与传统育种方法相比,利用生物技术和基因技术研究基因的功能,可以更快、更高效地改变目标物种的性状,从而增强植物的抗逆性,提高繁殖效率。事实上,已有许多响应盐胁迫的基因被鉴定出来用作基因工程的候选基因。例如拟南芥AtMYB44基因受胁迫诱导表达后,进一步抑制PP2Cs的表达,从而提高植株耐受性;在盐胁迫下,大豆GmbZIP1的异源表达可促进气孔关闭,增强转基因拟南芥的抗逆性;蓖麻过表达RcSOS1基因后,提高了植株抗盐性的功能。
在棉花中,也有很多研究利用基因工程技术来提高植株抗盐胁迫的能力。例如,在棉花中转入与大肠杆菌甜菜碱合成相关基因可以提高棉花的抗盐性;棉花GhERF38基因在拟南芥中过表达,使得拟南芥植株对外界胁迫的适应性变差,同时敏感性升高。
植物在遭受盐胁迫时,首先会采取一定的防御措施,如通过基因转录调节等方式合成一些物质,进而抵御伤害。植物应答盐胁迫的机制主要包括渗透调节、盐分外排和离子区域化、活性氧清除和基因转录调控等。
棉花是一种重要的纤维作物,在全球纺织行业中应用广泛。在世界上受到非生物胁迫影响的地区,维持棉花产量正增长的主要方法之一是挖掘关键基因以提高抗逆性。然而,目前关于棉花抗逆性尤其是耐盐基因的研究仍然不足。
发明内容
发明人通过对棉花中一个MAPK的A组成员GhDof1.7基因进行鉴定和特性分析,结合荧光定量、转化拟南芥和VIGS试验等结果表明,GhDof1.7基因在棉花耐盐中具有重要作用,可用于棉花抗逆分子改良。从而完成本发明。
本发明提供了GhDof1.7基因在促进植物耐盐中的应用,所述GhDof1.7基因具有SEQ ID NO:1所示的核苷酸序列。
GhDof1.7基因的开放阅读框为759bp。
在本发明的一些实施方案中,SEQ ID NO:1所示的核苷酸序列能够编码SEQ IDNO:2所示氨基酸序列。包括该氨基酸序列的蛋白的相对分子量为27.62kDa,等电点为8.64。
Dof(DNA-binding with one finger)转录因子由200~400个氨基酸组成,属单锌指蛋白超家族(zinc finger super-family)。Dof家族蛋白的N端结构域由50~52个保守氨基酸残基组成。单一锌指结构由4个半胱氨酸残基与Zn2+共价结合产生,这种结合方式也是Dof蛋白结构独有的。
在本发明的一些实施方案中,在植物中提高GhDof1.7基因的表达量,以促进植物耐盐。
在本发明的一些具体实施方案中,所述的在植物中提高GhDof1.7基因的表达量是通过如下方法实现:提高植物内源GhDof1.7基因的表达,或在植物中过表达外源GhDof1.7基因。
在本发明的一个具体要求实施方案中所述过表达外源GhDof1.7基因是指将所述GhDof1.7基因利用植物表达载体,经农杆菌介导转化到植物中进行表达。
进一步地,所述GhDof1.7基因通过植物表达载体导入植物细胞、组织或器官。
更进一步地,所述植物表达载体通过一种组成型或诱导型启动子驱动所述GhDof1.7基因的表达。
再进一步地,所述组成型启动子是35S启动子。
在本发明中,所述促进开花是指促使植物开花期提前。
在本发明中,所述植物是棉花、玉米、水稻、小麦或拟南芥。
本发明的有益效果
本发明通过沉默棉花中GhDof1.7基因,结果表明GhDof1.7基因在促进棉花耐盐方面可能具有关键作用。利用本发明,可为植物尤其是棉花的抗逆分子改良进行技术支持。
附图说明
图1示出了GhDof1.7的基因结构、蛋白序列和***发育分析。A:基因结构;B:拟南芥Dof蛋白与GhDof1.7蛋白的亲缘关系;C:蛋白序列比对。
图2示出了GhDof1.7组织特异性表达模式分析。A:TM-1转录组数据库中GhDof1.7基因在不同组织中的log(FPKM)值;B:GhDof1.7基因在不同组织中的相对表达量。
图3示出了转GhDof1.7基因拟南芥的耐盐性。A:WT拟南芥和过表达GhDof1.7拟南芥盐处理后表型;B:GhDof1.7基因的表达量检测结果;C:GhDof1.7基因的表达量变化;D:盐处理前后WT拟南芥和转基因拟南芥中脯氨酸含量检测;E:盐处理前后WT拟南芥和转基因拟南芥中SOD和CAT活性检测。
图4示出了VIGS棉花表型鉴定与分析。A:盐处理前;B:盐处理后;C:表达量检测;D:叶绿素和可溶性糖含量检测;E:脯氨酸含量检测;F:SOD活性检测。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。
实施例
以下例子在此用于示范本发明的优选实施方案。本领域内的技术人员会明白,下述例子中披露的技术代表发明人发现的可以用于实施本发明的技术,因此可以视为实施本发明的优选方案。但是本领域内的技术人员根据本说明书应该明白,这里所公开的特定实施例可以做很多修改,仍然能得到相同的或者类似的结果,而非背离本发明的精神或范围。
除非另有定义,所有在此使用的技术和科学的术语,和本发明所属领域内的技术人员所通常理解的意思相同,在此公开引用及他们引用的材料都将以引用的方式被并入。
那些本领域内的技术人员将意识到或者通过常规试验就能了解许多这里所描述的发明的特定实施方案的许多等同技术。
本发明实施例选取的棉花材料为棉花材料为陆地棉标准系TM-1,该材料在25℃的培养室中以16h光照/8h黑暗的周期进行培养。为得到营养组织的植株种植在16h光照8h黑暗的25℃生长室中。为得到生殖组织的植株种植在中国农业科学院棉花研究所试验田(中国河南省安阳市)。在室内,像幼嫩的叶片这样的组织在种植的初期取样,茎秆、真叶和根在播种后两周时取样。开花后10天,从田间采集花。
本发明实施例用于转化的拟南芥为哥伦比亚野生型拟南芥(Col-0生态型)。
本发明实施例使用的烟草材料为本氏烟草。
本发明实施例使用的试剂与耗材如下:
1酶及试剂盒:限制性内切酶,修饰酶、PCR反应体系相关酶、同源重组酶、胶回收试剂盒、克隆试剂盒、质粒小提试剂盒购自诺唯赞生物科技有限公司。RNA提取、反转录反应、质粒DNA提取和PCR片段纯化购自北京天根生化科技公司。荧光定量试剂盒购自康为世纪生物科技有限公司公司。GUS染色试剂盒购自北京华越洋。脯氨酸含量、可溶性糖含量检测、CAT和SOD活性检测试剂盒以及霍格兰营养液购自于北京索莱宝。蔗糖、酵母粉、氯化钠、抗生素等实验过程中所需的药品购自Sigma公司。
2培养基:LB液体培养基:胰蛋白胨(Tryptone)10g/L、酵母提取物(Yeastextract)5g/L、氯化钠(NaCl)10g/L;LB固体培养基:胰蛋白胨(Tryptone)10g/L、酵母提取物(Yeast extract)5g/L、氯化钠(NaCl)10g/L、琼脂粉(Agar)15g/L,定容至1L;LB选择培养基:在LB铺平板前,待培养基高压灭菌冷却至55℃时加入相应浓度抗生素,摇匀后铺平板。本文中提到的但未列出的各种试剂溶液均按《分子克隆实验指南》第三版上的方法配制,生化试剂为分析纯或以上级。按上述配方配置培养基,高压灭菌。如果需要配置抗性培养基,按需要在灭完菌后的培养基中加入已过滤灭菌的抗生素。
3主要仪器:PCR扩增仪(BIO-RAD),高速离心机(Hettich MIKRO 200R)、电泳设备(BIO-RAD)、凝胶成像***(BIO-RAD)、荧光定量PCR仪(ABI7500)、电热恒温培养箱(上海森信)、恒温培养振荡器(上海智城)、人工气候试验箱(赛福)、人工气候室。
实施例1棉花GhDof1.7基因的生物信息学分析与克隆
以陆地棉TM-1为材料,克隆得到了GhDof1.7(Gh_A10G0541)基因。该基因位于A10染色体上,基因组DNA长度为4917bp,CDS长度为759bp,编码252个氨基酸,包含1个外显子,不含有内含子(图1,A)。GhDof1.7基因是拟南芥AtDof1(AT1G51700)的同源基因,其蛋白序列同源性为52.17%。***发育树显示拟南芥Dof转录因子家族分为4组(A、B、C和D)或9个亚族,GhDof1.7蛋白与A组成员亲缘关系最密切(图1,B)。此外,蛋白质序列分析表明,不同物种的同源基因共享C2C2结构域(图1,C)。
在线网站预测GhDof1.7蛋白的二级结构,发现该蛋白含有6.35%的α螺旋、3.97%的β转角、11.90%的延伸主链和77.78%的无规则卷曲。对GhDof1.7蛋白质的理化性质的分析发现该蛋白的分子量(Mw)为27.62kDa,等电点(pI)为8.64。另外,该蛋白含有23个负电荷和27个正电荷氨基酸残基,富含丝氨酸(13.5%)、甘氨酸(10.7%)和脯氨酸(8.7%),且含有少量色氨酸(1.2%)。在线预测的蛋白质半衰期约为30h,不稳定性指数为53.46,脂肪指数为40.63,蛋白疏水性平均数(GRAVY)为-0.997。亚细胞定位预测显示该蛋白定位于细胞核内,且不存在跨膜结构,也无信号肽。因此,该蛋白为不稳定的亲水性脂溶性的非分泌核蛋白。
GhDof1.7开放阅读框序列为(SEQ ID NO:1):
ATGCAAGACCCAACGGGCTTTCACCAAATGAAAGCGCCGGCTTTTCAAGAGCAAGAGCAGCAGCAGCTGAAATGCCCCCGCTGTGACTCAACCAACACCAAATTCTGTTACTACAACAACTATAACTTGTCTCAGCCCCGCCATTTCTGCAAGAACTGCCGCCGTTACTGGACTAAAGGCGGCGCCCTCCGTAACATACCCGTCGGTGGCGGCACCCGTAAGGGCACCAAACGCTCCTCCTCCTCCACCAACAAACCTAAGCGCCAACCCAACCCCTCTCCAGACCCCACCCCAAACCAAAAAATCCCTGATCCCTCTCCGCCGCCGCCGAAATCATCATCATCATCGATGTTTCCCCAGCAGATTGTTTTGAACTCGGGGGCTCAGAATTCGGACTCGGATATCGACTCGACCCGGATGTATCTGTTGCCGGTTGATCATCAAGATGGGAAGATGATGGATATCGGCGGGAGCTTCAGCTCGCTGTTGGCTTCGACTGGGCAGTTTGGAAACCTCCTAGAAGGGTTTAATTCAAATGGGTCGGGTTTAAAAACGCTGAATCATTTTGGAGGGAATTTCGATTCGGGTTGTGAAATGGATCAGAATTCGGGTCGGGACCCGCTATTCGGAGAGAGCAGTAAAAACGGAGAGAGTTATTTGGATGTACAGGGCGGTAGGGATACAAGTTGTTGGAGTGGCGATAGCAATGGCTGGCCAGATCTTTCTATTTACACTCCAGGTTCAAGTTTACGGAGATAG
GhDof1.7编码的氨基酸序列为(SEQ ID NO:2):
MQDPTGFHQMKAPAFQEQEQQQLKCPRCDSTNTKFCYYNNYNLSQPRHFCKNCRRYWTKGGALRNIPVGGGTRKGTKRSSSSTNKPKRQPNPSPDPTPNQKIPDPSPPPPKSSSSSMFPQQIVLNSGAQNSDSDIDSTRMYLLPVDHQDGKMMDIGGSFSSLLASTGQFGNLLEGFNSNGSGLKTLNHFGGNFDSGCEMDQNSGRDPLFGESSKNGESYLDVQGGRDTSCWSGDSNGWPDLSIYTPGSSLRR
实施例2 GhDof1.7的表达模式分析
为了确定GhDof1.7基因在陆地棉各组织中的特异性表达,发明人利用TM-1转录组数据库,对该基因在不同组织(雄蕊、雌蕊、花瓣、根、茎和叶)中的表达变化进行分析。如图2(A)所示,GhDof1.7在不同组织中的表达量差异比较大。该基因在生殖器官的花瓣中高表达;在营养器官的叶中高表达。随后进行了荧光定量实验进一步验证上述结果。发现与上述结果相一致,GhDof1.7基因确实是在棉花的花瓣中的高表达。因此,发明人推测GhDof1.7基因也可能参与陆地棉的开花过程。但在营养器官中,该基因则在根中高量表达,叶片次之(图3,B)。
1磨样
把TM-1材料的不同组织置于液氮中,用研钵和研磨棒将其研磨至粉末状,大约取100mg样品放于1.5mL离心管中。
2RNA的提取
以下所有离心步骤均在室温下进行
(1)匀浆处理:将研磨好的样品中加入700μL SL(使用前加入β-巯基乙醇),立即剧烈震荡使样品混匀。
注意1:对于预期RNA得率小于10μg的植物样本,请使用100mg的起始样本量;对于富含淀粉的样本或成熟叶片,请将裂解液SL用量增加至700μL。
注意2:由于植物多样性非常丰富,而且同种植物的不同生长发育阶段和不同组织的RNA含量都不相同,请根据具体实验情况选择合适的植物材料的用量。
(2)12,000rpm离心2min。
(3)将上清液转移至过滤柱CS上,12,000rpm离心2min,小心吸取收集管中的上清至新的RNase-Free的离心管中,吸头避免接触收集管中的细胞碎片。
(4)加入0.4倍上清体积的无水乙醇,混匀,将混合物转入吸附柱CR3中,12,000rpm离心15sec,倒掉收集管中的废液,将吸附柱CR3放回收集管中。
(5)向吸附柱CR3中加入350μL去蛋白液RW1,12,000rpm离心15sec,倒掉收集管中的废液,将吸附柱CR3放回收集管中。
(6)DNaseI工作液:取10μL DNaseI储存液和70μL RDD溶液轻柔混匀。
(7)向CR3中加入80μL的DNaseI工作液,室温静止15min。
(8)静置完后,向CR3中加入350μL去蛋白液RW1,12,000rpm离心15sec,倒掉收集管中的废液,将吸附柱CR3放回收集管中。
(9)向吸附柱CR3中加入500μL漂洗液RW(使用前加入乙醇),12,000rpm离心15sec,倒掉收集管中的废液,将吸附柱CR3放回收集管中。
(10)重复步骤9。
(11)12,000rpm(~13,400×g)离心2min,将吸附柱CR3放入一个新的RNase-Free离心管中,向吸附膜的中间部位悬空滴加30-50μL RNase-Free ddH2O,室温放置2min,12,000rpm(~13,400×g)离心1min,得到RNA溶液。注意:洗脱缓冲液体积不应少于30μL,体积过小影响回收效率。RNA样品请在-70℃中保存。如果预期RNA得率大于30μg,可将步骤11中离心得到的RNA溶液再加入吸附柱CR3中,室温放置2min,12,000rpm(~13,400×g)离心1min,得到RNA溶液。
为预防RNase污染,注意事项:
(1)经常更换新手套。因为皮肤经常带有细菌,可能导致RNase污染;
(2)使用无RNase的塑料制品和枪头避免交叉污染;
(3)RNA在裂解液SL中时不会被RNase降解。但提取后继续处理过程中应使用不含RNase的塑料和玻璃器皿。
(4)配制溶液应使用RNase-Free ddH2O。
3反转录cDNA的合成
样品cDNA的合成是利用TaKaRa的PrimeScriptTMRT reagent Kit with gDNAEraser试剂盒进行(宝生物,大连)。该试验过程主要包括两步:
(1)RNA样品中可能残留的基因组DNA(gDNA)的去除;
(2)将步骤(1)中得到的RNA反转录成单链cDNA,所有的体系配置过程都需在冰上进行。
具体操作如下:
(1)RNA样品中的gDNA的去除:
1)反应体系的配置
Figure GDA0003688905450000081
2)将配好的体系室温放置5-10min后,再将体系转置冰上,备用。
(2)cDNA单链合成
反应体系的配置:
Figure GDA0003688905450000082
Figure GDA0003688905450000093
将上述配好且混匀的体系共20μL放置在37℃下,30min;85℃下,5sec;4℃保存。将反转录后的cDNA放置到-20℃,可长期保存。
4荧光定量PCR
(1)利用Primer5.0软件设计GhDof1.7基因的特异性引物,用GhActin7基因为内参基因。
Figure GDA0003688905450000091
(2)荧光定量PCR
利用Cwbio(China)的UltraSYBR Mixture(Low ROX)试剂盒和AppliedBiosystems 7500仪器完成。具体过程如下:
1)将上述的cDNA原液稀释5倍;
2)反应体系的配置(冰上操作):
Figure GDA0003688905450000092
将配置好的体系混匀,离心至无气泡,然后利用Applied Biosystems 7500进行荧光定量PCR:按照两步法设置PCR程序:预变性:95℃2min;95℃,5sec;60℃,34sec(这一步收集荧光信号),这两步设置40个循环;最后溶解曲线分析:95℃,15sec;60℃,20sec;95℃,15sec。完成上述反应后,将数据导出,计算基因的表达量。
实施例3 GhDof1.7基因的克隆和过表达载体的构建
1基因引物的设计
为了扩增基因编码区全长,并加上特定酶切位点,根据GhDof1.7的CDS序列,分别在起始密码子ATG和终止密码子处设计含有适合酶切位点引物。所用酶切位点为XbaI和SacI。
GhDof1.7酶切位点引物序列如下:
GhDof1.7-F(SEQ ID NO:7)
5’-CACGGGGGACTCTAGAATGCAAGACCCAACGGGCTTT-3’
GhDof1.7-R(SEQ ID NO:8)
5’-GATCGGGGAAATTCGAGCTCCTATCTCCGTAAACTTGAACCT-3’
2基因克隆的PCR反应体系、程序和产物检测
(1)PCR反应体系
Figure GDA0003688905450000101
(2)PCR反应程序
Figure GDA0003688905450000102
(3)PCR产物的检测
取2μL PCR产物,加入3μL 6×Loading Buffer,混匀,点样于1%琼脂糖凝胶,电泳检测条带大小是否1416bp左右。
(4)PCR产物的胶回收
采用Vazyme产物纯化试剂盒,步骤如下:
1)DNA电泳结束后,在紫外灯快速切下含有目的DNA片段的凝胶,建议用纸巾吸尽凝胶表面液体并切碎,并尽量去除多余的凝胶。秤取凝胶中粮(去除空管的重量),100mg凝胶等同于100μL体积,作为一个凝胶体积;
2)加入等体积的Buffer GDP。50~55℃水浴7-10min,根据凝胶大小适当调整时间,确保凝胶块完全溶解。水浴期间颠倒混匀2次加速溶胶;
3)短暂离心收集管壁上的液滴。将FastPure DNA Mini Columns-G吸附柱置于Collection Tubes 2mL收集管中,把≤700μL溶胶液转移至吸附柱中,12,000Xg离心30-60sec。若溶胶体积大于700μL,把吸附柱置于收集管中,剩余的溶胶液转移至吸附柱中,12,000×g离心30-60sec。
4)弃滤液,把吸附柱置于收集管中。加入300μL Buffer GDP至吸附柱中。静置1min。12,000×g离心30-60sec。
5)弃滤液,把吸附柱置于收集管中。加入700μL Buffer GW(已加入无水乙醇)至吸附柱中。12,000×g离心30-60sec。
6)重复步骤5。
7)弃滤液,把吸附柱置于收集管中。12,000×g离心2min。
8)将吸附柱置于1.5mL灭菌的离心管中,加入20-30μL的灭菌水至吸附柱中央,放置2min。12,000×g离心1min。弃去吸附柱,把DNA保存于-20℃。
实施例4 PBI121-GhDof1.7植物表达载体的构建
(1)PBI121质粒的双酶切及胶回收
将PBI121质粒用XbaI和SacI双酶切,电泳回收PBI121载体的大片段产物。酶切反应体系如下:
Figure GDA0003688905450000111
Figure GDA0003688905450000121
(2)PCR胶回收产物和酶切PBI121质粒的连接
把带有接头的PCR产物和双酶切的PBI121质粒用诺唯赞同源重组酶试剂盒
Figure GDA0003688905450000122
One Step Cloning Kit进行连接,连接反应如下:
体系配置于冰上进行。
Figure GDA0003688905450000123
体系完成后,吹打混匀各组分,37℃反应30min,立即冰水浴5min,转化或者-20℃保存。
(3)连接产物转化大肠杆菌
1)向连接反应体系中加入100μL大肠杆菌DH5a感受态,冰浴30min;
2)42℃水浴热激45~90sec;
3)冰浴2min;加入900μL无抗性的LB液体培养基,37℃,190rpm,孵育1h;
4)离心收菌,4000rpm,3min,弃上层上清,留约100μL混匀后涂布含卡那抗性的LB平板;
5)37℃,恒温培养过夜。
(4)阳性克隆的检测及测序
1)从转化平板上挑取白色菌落,放入含有Kan的液体LB培养基中,37℃恒温摇床培养8h;
2)菌落PCR验证阳性克隆,将验证正确的单克隆送到尚亚生物科技有限公司测序,每个序列测3个重复。
(5)阳性菌液的保存
菌液PCR验证且测序正确的菌液中加入一定量的甘油,使甘油终浓度在20%左右,-80℃保存。返还测序正确的质粒用于转农杆菌。
(6)转化农杆菌
利用冻融法转化根癌农杆菌LBA4404感受态细胞,具体转化过程如下:
1)-80℃农杆菌融化,冰水混合状态***冰中。
2)100μL感受态中加入0.01~1μg质粒DNA,用手拨打管底混匀,依次于冰上静置5min,液氮5min,37℃5min,冰浴5min。
3)加入700μL无抗性的LB液体培养基,于28℃振荡培养2-3h。
4)取100-150μL菌液于含有卡那、利福平、链霉素的LB平板上,倒置放于28℃培养箱2-3天。
5)挑选阳性克隆,在加有抗性的LB液体培养基上28度培养48h,菌液PCR验证条带正确的菌液甘油保存终浓度在20%左右,-80℃保存备用。
实施例5农杆菌介导的拟南芥的转化
(1)拟南芥培养
从1/2MS平板中移栽的哥伦比亚野生型拟南芥,种植在人工气候室,长至盛花期,将已经结的果荚剪去,并保证拟南芥根部营养土的湿度。
(2)拟南芥花序侵染转化
对于35S::GhDof1.7的过表达载体的拟南芥转化采用的是花序侵染法,具体操作如下:
1)菌液活化:取-80℃保存的对应重组载体的农杆菌菌液20μL,接种到1mL LB液体培养基(加入对应的抗生素:卡纳霉素、利福平和链霉素)中,28℃,180rpm,培养14-18h;
2)扩摇:取活化后的对应菌液200μL加入到50mL LB液体培养基(加入对应的抗生素);28℃,180rpm,培养至菌液OD600值约在1.2-1.6之间(约18-20h),5000g,离心8min,弃上清,收集菌体;
3)侵染转化的介质配制:1/2MS减半、6%蔗糖、0.02%的SilwetL-77,用NaOH将pH调至5.6-5.7;
4)用转化介质悬浮上述菌体,将OD600调至0.6-0.8;
5)浸染:将拟南芥花序(主要是未开放的花苞)置于转化介质中30-50sec,浸染后,将拟南芥在弱光或者避光条件下平放24h;
6)将处理后的拟南芥放置正常条件下培养,并在侵染后的一周内每天给拟南芥叶片喷水;为了提高转化效率,可在约一周后进行重复侵染;
7)待成熟后,收获拟南芥种子,即为转基因的T0代种子。
实施例6转基因拟南芥植株的表型鉴定
(1)将收获的种子消毒后种植在含卡那霉素的1/2MS上,后进行4℃春化2天,转移到人工气候试验箱中,10天左右会阳性植株生长正常,而阴性植株叶片变黄,不再生长。
(2)将阳性拟南芥植株移栽至小花盆中种植,待生长一个月后提取DNA用PCR进行检测。每一代的植株都要进行阳性株系的检测,直至繁殖至T3代,获得纯合转基因拟南芥株系。T3代株系做qRT-PCR检测。
拟南芥内参基因UBQ10荧光定量的引物:
上游引物:5’-AGATCCAGGACAAGGAAGGTATTC-3’(SEQ ID NO:9)
下游引物:5’-CGCAGGACCAAGTGAAGAGTAG-3’(SEQ ID NO:10)
冰上配制qRT-PCR反应体系,进行荧光定量PCR反应。
荧光定量结果显示GhDof1.7基因在转基因拟南芥中的表达水平极显著升高(图3,B)。发明人在拟南芥即将要抽薹时,WT拟南芥和转基因拟南芥用400mM的NaCl溶液同时浇灌。处理5天后发现,WT叶片黄化程度明显比OE-GhDof1.7的拟南芥叶片黄化程度高(图3,A)。此外,发明人在转基因拟南芥盐处理的不同时间段分别取样,检测GhDof1.7基因的表达量。结果如图3中C图所示,随着盐处理时间的进行GhDof1.7的表达量先降低,随后持续升高。
为了观察盐处理对植物体内生理的变化影响,发明人对盐处理前后的拟南芥进行了脯氨酸含量检测、SOD和CAT活性检测。结果发现,盐处理后转GhDof1.7基因拟南芥中的脯氨酸含量、SOD和CAT酶活性均高于盐处理后的WT;就转基因拟南芥来看,盐处理后脯氨酸含量、SOD和CAT酶活性也显著高于盐处理前的转基因植株(图3,D、E)。这表明,过表达GhDof1.7基因提高了拟南芥对盐胁迫的耐受性。
实施例7病毒诱导GhDof1.7基因沉默的棉花侵染
1棉花材料种植
挑选饱满的TM-1种子种植在人工气候室中,光周期和温度条件为:光照16h,28℃;黑暗8h,22℃。待幼苗子叶展平,第一片真叶露出(约10天)后,进行VIGS菌液注射试验。
2沉默载体的构建
构建VIGS的沉默载体pYL156载体使用XbaI和BamHI双酶切,首先对质粒进行双酶切,并胶回收酶切产物。用到的引物为:
上游引物F
5’-TACCGAATTCTCTAGAATGCAAGACCCAACGGGCTTT-3’(SEQ ID NO:11)
下游引物R
5’-GCTCGGTACCGGATCCTTGGTTTGGGGTGGGGTCTGGA-3’(SEQ ID NO:12)
VIGS沉默片段胶回收以后,按照ClonExpress II One Step Cloning Kit(诺唯赞,南京)操作说明进行基因片段和载体的重组连接。将反应体系转入大肠杆菌感受态Trans 5α中,具体步骤同前所述。将菌液涂布到加有卡那霉素(Kan,50μg/mL)的LB平板,放置在37℃温度下,倒置过夜培养12-16h,挑选阳性的单克隆进行测序。将测序正确的质粒转入农杆菌,并进行菌落PCR,条带正确的菌液甘油保存至-80℃。
3菌液注射
棉花VIGS的具体过程如下:
(1)活化菌液:将20μL的-80℃冻存的含有pYL156质粒、pYL192质粒、pYL156-GhDof1.7质粒和pYL156-CAL1(阳性对照)质粒的菌株加入含三抗(卡那霉素、利福平和链霉素)的液体LB培养基中,在28℃,180rpm条件下培养14-16h;
(2)扩摇:将50-100μL的活化菌液加入50mL含上述三种抗生素的液体LB培养基,在28℃,180rpm条件下培养16-20h,使菌液的OD600值在1.5-2.0之间(这时的菌液一般变为橙黄色)。5000g,离心10min,回收菌体;
(3)转化介质的调配:
转化介质的配方:MgCl2,10mM;MES(2-(4-Morpholino)ethanesulfonic acid),10mM,用NaOH调pH为5.6;AS(acetosyringone),200μM。
用转化介质对上述收集的菌体进行悬浮,调OD600值在1.5左右,室温静置3h以上(避光)。
(4)将pCLCrVB与pCLCrVA(空载)、阳性对照的pCLCrVA、目的基因的pCLCrVA的介质分别按照1:1混匀;
(5)用1mL的无菌注射器针头划破棉花子叶背面的表皮,去除针头,将混匀后的菌液注入子叶,直至子叶完全侵润;
(6)将注射后的棉花幼苗避光过夜培养,后置于光温条件为:23℃;16h(光照)/8h(黑暗)条件下的人工气候室正常管理。
4沉默株系的鉴定
待阳性对照出现白化后,提取样品的RNA,进行PCR和荧光定量PCR检测,将检测出含有目的片段的幼苗种植到大花盆中正常管理,直至棉花开花。通过荧光定量PCR,检测到沉默植株中GhDof1.7的表达量。结果显示,在VIGS植株中GhDof1.7的表达水平相比对照植株中降低了3倍左右(图4,C)。接着选取沉默效率较高植株与对照植株进行盐处理,处理1天后进行观察。图4中A图为盐处理前的空载植株和VIGS植株,图4中B图为盐处理后的对照植株和VIGS植株。可以明显看到盐处理后,VIGS植株比空载植株萎蔫程度要严重,说明该基因可能与植物的耐盐性相关。
为了进一步观察盐处理对棉花植株体内生理的变化影响,发明人对盐处理后的VIGS植株和空载植株分别测定了叶绿素含量、可溶性糖含量、脯氨酸含量以及SOD活性。结果显示,VIGS植株中的三个指标的含量都显著降低(图4、D和E)。此外,空载对照植株中的SOD活性也显着高于基因沉默的植株中的SOD活性(图4,F)。这些结果证明沉默GhDof1.7基因后,棉花植株的耐盐性下降。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改。
序列表
<110> 中国农业科学院棉花研究所
<120> 棉花GhDof1.7基因在促进植物耐盐中的应用
<160> 12
<170> SIPOSequenceListing 1.0
<210> 1
<211> 759
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
atgcaagacc caacgggctt tcaccaaatg aaagcgccgg cttttcaaga gcaagagcag 60
cagcagctga aatgcccccg ctgtgactca accaacacca aattctgtta ctacaacaac 120
tataacttgt ctcagccccg ccatttctgc aagaactgcc gccgttactg gactaaaggc 180
ggcgccctcc gtaacatacc cgtcggtggc ggcacccgta agggcaccaa acgctcctcc 240
tcctccacca acaaacctaa gcgccaaccc aacccctctc cagaccccac cccaaaccaa 300
aaaatccctg atccctctcc gccgccgccg aaatcatcat catcatcgat gtttccccag 360
cagattgttt tgaactcggg ggctcagaat tcggactcgg atatcgactc gacccggatg 420
tatctgttgc cggttgatca tcaagatggg aagatgatgg atatcggcgg gagcttcagc 480
tcgctgttgg cttcgactgg gcagtttgga aacctcctag aagggtttaa ttcaaatggg 540
tcgggtttaa aaacgctgaa tcattttgga gggaatttcg attcgggttg tgaaatggat 600
cagaattcgg gtcgggaccc gctattcgga gagagcagta aaaacggaga gagttatttg 660
gatgtacagg gcggtaggga tacaagttgt tggagtggcg atagcaatgg ctggccagat 720
ctttctattt acactccagg ttcaagttta cggagatag 759
<210> 2
<211> 252
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 2
Met Gln Asp Pro Thr Gly Phe His Gln Met Lys Ala Pro Ala Phe Gln
1 5 10 15
Glu Gln Glu Gln Gln Gln Leu Lys Cys Pro Arg Cys Asp Ser Thr Asn
20 25 30
Thr Lys Phe Cys Tyr Tyr Asn Asn Tyr Asn Leu Ser Gln Pro Arg His
35 40 45
Phe Cys Lys Asn Cys Arg Arg Tyr Trp Thr Lys Gly Gly Ala Leu Arg
50 55 60
Asn Ile Pro Val Gly Gly Gly Thr Arg Lys Gly Thr Lys Arg Ser Ser
65 70 75 80
Ser Ser Thr Asn Lys Pro Lys Arg Gln Pro Asn Pro Ser Pro Asp Pro
85 90 95
Thr Pro Asn Gln Lys Ile Pro Asp Pro Ser Pro Pro Pro Pro Lys Ser
100 105 110
Ser Ser Ser Ser Met Phe Pro Gln Gln Ile Val Leu Asn Ser Gly Ala
115 120 125
Gln Asn Ser Asp Ser Asp Ile Asp Ser Thr Arg Met Tyr Leu Leu Pro
130 135 140
Val Asp His Gln Asp Gly Lys Met Met Asp Ile Gly Gly Ser Phe Ser
145 150 155 160
Ser Leu Leu Ala Ser Thr Gly Gln Phe Gly Asn Leu Leu Glu Gly Phe
165 170 175
Asn Ser Asn Gly Ser Gly Leu Lys Thr Leu Asn His Phe Gly Gly Asn
180 185 190
Phe Asp Ser Gly Cys Glu Met Asp Gln Asn Ser Gly Arg Asp Pro Leu
195 200 205
Phe Gly Glu Ser Ser Lys Asn Gly Glu Ser Tyr Leu Asp Val Gln Gly
210 215 220
Gly Arg Asp Thr Ser Cys Trp Ser Gly Asp Ser Asn Gly Trp Pro Asp
225 230 235 240
Leu Ser Ile Tyr Thr Pro Gly Ser Ser Leu Arg Arg
245 250
<210> 3
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
atcctccgtc ttgaccttg 19
<210> 4
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
tgtccgtcag gcaactcat 19
<210> 5
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
tggatcagaa ttcgggtcgg ga 22
<210> 6
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
acttgtatcc ctaccgccct gt 22
<210> 7
<211> 37
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
cacgggggac tctagaatgc aagacccaac gggcttt 37
<210> 8
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
gatcggggaa attcgagctc ctatctccgt aaacttgaac ct 42
<210> 9
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
agatccagga caaggaaggt attc 24
<210> 10
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
cgcaggacca agtgaagagt ag 22
<210> 11
<211> 37
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
taccgaattc tctagaatgc aagacccaac gggcttt 37
<210> 12
<211> 38
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
gctcggtacc ggatccttgg tttggggtgg ggtctgga 38

Claims (7)

1.GhDof1.7基因在促进植物耐盐中的应用,其特征在于,在植物中提高GhDof1.7基因的表达量,以促进植物耐盐,所述GhDof1.7基因的核苷酸序列如SEQ ID NO: 1所示,所述植物是棉花和拟南芥。
2.根据权利要求1所述的应用,其特征在于,所述基因编码的多肽的氨基酸序列如SEQID NO: 2所示。
3.根据权利要求1所述的应用,其特征在于,所述的在植物中提高GhDof1.7基因的表达量是通过如下方法实现:提高植物内源GhDof1.7基因的表达,或在植物中过表达外源GhDof1.7基因。
4.根据权利要求3所述的应用,其特征在于,所述过表达外源GhDof1.7基因是指将所述GhDof1.7基因利用植物表达载体,经农杆菌介导转化到植物中进行过表达。
5.根据权利要求4所述的应用,其特征在于,所述GhDof1.7基因通过植物表达载体导入植物细胞、组织或器官。
6.根据权利要求5所述的应用,其特征在于,所述植物表达载体通过一种组成型或诱导型启动子驱动所述GhDof1.7基因的表达。
7.根据权利要求6所述的应用,其特征在于,所述组成型启动子是35S启动子。
CN202110853199.2A 2021-07-27 2021-07-27 棉花GhDof1.7基因在促进植物耐盐中的应用 Expired - Fee Related CN113481210B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110853199.2A CN113481210B (zh) 2021-07-27 2021-07-27 棉花GhDof1.7基因在促进植物耐盐中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110853199.2A CN113481210B (zh) 2021-07-27 2021-07-27 棉花GhDof1.7基因在促进植物耐盐中的应用

Publications (2)

Publication Number Publication Date
CN113481210A CN113481210A (zh) 2021-10-08
CN113481210B true CN113481210B (zh) 2022-07-19

Family

ID=77943136

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110853199.2A Expired - Fee Related CN113481210B (zh) 2021-07-27 2021-07-27 棉花GhDof1.7基因在促进植物耐盐中的应用

Country Status (1)

Country Link
CN (1) CN113481210B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116240219B (zh) * 2023-02-15 2024-03-29 青岛农业大学 一种小麦rth-1基因及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102174085A (zh) * 2005-11-10 2011-09-07 先锋高级育种国际公司 Dof(具有一指的dna结合)序列和使用方法
CN108752442A (zh) * 2018-05-25 2018-11-06 云南农业大学 彩色马铃薯耐盐性相关StDof2蛋白及其编码基因与应用
CN112409467A (zh) * 2019-08-22 2021-02-26 中国农业科学院作物科学研究所 植物耐逆性相关蛋白GmDof41在调控植物耐逆性中的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110114461A (zh) * 2016-08-17 2019-08-09 博德研究所 新型crispr酶和***

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102174085A (zh) * 2005-11-10 2011-09-07 先锋高级育种国际公司 Dof(具有一指的dna结合)序列和使用方法
CN108752442A (zh) * 2018-05-25 2018-11-06 云南农业大学 彩色马铃薯耐盐性相关StDof2蛋白及其编码基因与应用
CN112409467A (zh) * 2019-08-22 2021-02-26 中国农业科学院作物科学研究所 植物耐逆性相关蛋白GmDof41在调控植物耐逆性中的应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Genome-wide identification and evolution of Dof transcription factor family in cultivated and ancestral cotton species;Waqas S. Chattha et al.;《Genomics》;20200707;第112卷;第4155-4170页 *
Overexpression of GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum;Ying Su et al.;《Journal of Plant Physiology》;20170728;第218卷;第222-234页 *
PREDICTED: Gossypium hirsutum dof zinc finger protein DOF3.1-like (LOC121208602), mRNA, XM_041079712.1;GenBank;《GenBank》;20210425;第1-2页 *
陆地棉Dof基因家族的全基因组鉴定及分析;琚龙贞等;《棉花学报》;20201231;第32卷(第4期);第279-291页 *

Also Published As

Publication number Publication date
CN113481210A (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
CN110791523B (zh) 一种棉花抗旱相关基因GhRCHY1及其应用
CN107541520B (zh) 与水稻根发育和抗逆性相关OsSAUR11基因及编码蛋白与应用
CN110628808B (zh) 拟南芥AtTCP5基因及其在调控株高上的应用
CN112725360B (zh) 棉花GhHDA6基因在调控植物开花期中的应用
CN109797157B (zh) 一种抗非生物逆境转录因子PbrbHLH92及其引物、编码的蛋白和应用
CN110872598B (zh) 一种棉花抗旱相关基因GhDT1及其应用
CN109536516B (zh) 玉米抗旱基因ZmDSR的克隆及其应用
CN112898391B (zh) 枳抗寒基因PtrERF9在植物抗寒遗传改良中的应用
CN112430584B (zh) 一种杜梨泛素连接酶基因、编码蛋白及其在植物抗旱遗传改良中的应用
CN113481210B (zh) 棉花GhDof1.7基因在促进植物耐盐中的应用
CN107365777B (zh) 一种烟草尼古丁含量调控基因NtCLC-b及其克隆方法与应用
CN113444736A (zh) GhbHLH122基因在调控植物开花中的应用
CN109748960B (zh) 调控抗铝毒转录因子stop1蛋白的基因及其应用
CN110684088B (zh) 蛋白ZmbZIPa3及其编码基因在调控植物生长发育与耐逆性中的应用
CN113337522B (zh) 棉花GhNFYC4基因在促进植物开花中的应用
CN107267525B (zh) 三七多聚半乳糖醛酸酶抑制蛋白基因PnPGIP的应用
CN114231535B (zh) 木薯MeRSZ21b基因在提高植物抗干旱胁迫中的应用
CN114853860A (zh) 与缩短落叶松育种周期相关的蛋白及其应用
CN113584051A (zh) GhGAI基因在调控植物开花中的应用
CN114277041A (zh) 大豆赤霉素3β-羟化酶编码基因GmGA3ox1的应用
CN107488223B (zh) 一种烟草尼古丁含量调控基因Ribosomal L4/L1及其克隆方法与应用
CN111285926A (zh) 植物耐逆性相关蛋白GmTGA17及其编码基因与应用
CN113373161B (zh) GhERF017基因在调控植物耐盐性中的应用
CN116769797B (zh) 一种茉莉酸甲酯及PpyMYC2基因在萌芽中的应用
CN111218460B (zh) 棉花GhACO基因在促进植物开花中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220719