CN113479258B - 一种智能车双电机线控转向***跟踪及同步控制方法 - Google Patents

一种智能车双电机线控转向***跟踪及同步控制方法 Download PDF

Info

Publication number
CN113479258B
CN113479258B CN202110783048.4A CN202110783048A CN113479258B CN 113479258 B CN113479258 B CN 113479258B CN 202110783048 A CN202110783048 A CN 202110783048A CN 113479258 B CN113479258 B CN 113479258B
Authority
CN
China
Prior art keywords
steering
motor
steering motor
equation
steer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110783048.4A
Other languages
English (en)
Other versions
CN113479258A (zh
Inventor
邹松春
赵万忠
梁为何
王春燕
张寒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202110783048.4A priority Critical patent/CN113479258B/zh
Publication of CN113479258A publication Critical patent/CN113479258A/zh
Application granted granted Critical
Publication of CN113479258B publication Critical patent/CN113479258B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D3/00Steering gears
    • B62D3/02Steering gears mechanical
    • B62D3/12Steering gears mechanical of rack-and-pinion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/001Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits the torque NOT being among the input parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

本发明公开了一种智能车双电机线控转向***跟踪及同步控制方法,智能车双电机线控转向***包括转向盘转角传感器、车速传感器、变传动比模块和转向执行模块;转向执行模块中的转向电机A、转向电机B采用转角环、电流环双闭环控制,其中转角环采用二阶自抗扰控制器控制,电流环采用滑模控制器控制,从而加强双电机线控转向***的跟踪性能;此外,转向电机A和转向电机B之间采用交叉耦合同步控制结构,采集转向电机A和转向电机B的实际转角做差经过同步控制器得到的补偿电流信号给转向电机A和转向电机B的电流环,消除转向电机A和转向电机B之间转角不一致性,从而加强双电机线控转向***的同步性能。

Description

一种智能车双电机线控转向***跟踪及同步控制方法
技术领域
本发明涉及汽车辅助驾驶领域,尤其涉及一种智能车双电机线控转向***跟踪及同步控制方法。
背景技术
线控转向取消了转向盘和车轮之间的部分机械连接,取而代之的是电子连接,实现了转向***力传递特性与角传动特性的解耦。然而,传统线控转向***只有一个转向电机,电子连接***存在着可靠性和安全性问题,如何增强线控转向***的可靠性和安全性是线控转向***研究领域中迫切需要解决的问题。
采用两个转向电机的双电机线控转向***可以从硬件上提高转向***的可靠性和安全性,一旦其中一个电机发生故障,另外一个电机也可以正常完成转向指令。此外,双电机线控转向***可以减轻单个电机的负载,从而提高转向电机的使用寿命。
然而,双电机线控转向***存在强耦合、非线性、多变量等特点,由于负载扰动、参数摄动以及模型失配等因素会使得电机出现严重的跟踪以及同步较差的问题,从而影响转向效率、转向电机和转向器的使用寿命。因此需要加强双电机线控转向***跟踪控制和同步控制。
发明内容
本发明所要解决的技术问题是针对背景技术中所涉及到的缺陷,提供一种智能车双电机线控转向***跟踪及同步控制方法。
本发明为解决上述技术问题采用以下技术方案:
一种智能车双电机线控转向***跟踪及同步控制方法,所述智能车双电机线控转向***包括转向盘转角传感器、车速传感器、变传动比模块和转向执行模块;
所述转向盘转角传感器用于获得转向盘转角信号,并将其传递给所述变传动比模块;
所述车速传感器用于获取智能车的车速信号,并将其传递给所述变传动比模块;
所述变传动比模块用于根据获得的转向盘转角信号、车速信号计算出智能车两个转向电机的目标转角,并将其传递给转向执行模块;
所述转向执行模块包括转向电机A、减速器A、传动齿轮A、转向电机B、减速器B、传动齿轮B、齿条、左转向横拉杆和右转向横拉杆,其中,转向电机A通过减速器A和传动齿轮A的转轴相连,转向电机B通过减速器B和传动齿轮B的转轴相连;传动齿轮A、传动齿轮B均和所述齿条啮合;所述齿条左、右两端分别和所述左转向横拉杆、右转向横拉杆固连;所述左转向横拉杆、右转向横拉杆分别和智能车的左转向车轮、右转向车轮对应相连;转向电机A、转向电机B型号相同;
所述智能车双电机线控转向***跟踪及同步控制方法包含如下步骤:
所述转向电机A、转向电机B采用转角环、电流环双闭环控制,其中,转角环采用二阶自抗扰控制器控制,电流环采用滑模控制器控制,以加强双电机线控转向***的跟踪性能;
所述转角环二阶自抗扰控制器包含三阶扩张状态观测器和状态误差反馈控制律;
所述转向电机A和转向电机B之间采用交叉耦合同步控制结构,采集转向电机A和转向电机B的实际转角做差经过同步控制器得到的补偿电流信号给转向电机A和转向电机B的电流环,消除转向电机A和转向电机B之间转角不一致性,以加强双电机线控转向***的同步性能。
作为本发明一种智能车双电机线控转向***的跟踪及同步控制方法进一步的优化方案,所述转角环二阶自抗扰控制器的三阶扩张状态观测器的建立包括以下步骤:
步骤A.1),建立转向电机运动学方程:
Figure BDA0003157917000000021
式中,J为转动惯量;B为黏滞摩擦系数;Kt为转矩系数;TL为负载转矩;θ为电机的转角;ia为电机的电流;
步骤A.2),将转向电机运动学方程写成二阶自抗扰控制的标准形式:
Figure BDA0003157917000000022
式中,f为***转角环的总扰动;
Figure BDA0003157917000000023
分别为对转向电机转矩系数Kt的估计、转动惯量J的估计;y为电机的转角;b0为***控制增益的估计值;u为控制器输出;
步骤A.3),定义状态变量:
Figure BDA0003157917000000024
步骤A.4),将等式(2)写成状态空间形式:
Figure BDA0003157917000000031
式中,
Figure BDA0003157917000000032
为***的状态变量,
Figure BDA0003157917000000033
C=[1 0 0],D=[00 0],F=[0 0 0];
步骤A.5),建立三阶扩张状态观测器对***的总扰动进行估计:
Figure BDA0003157917000000034
式中,z=[z1,z2,z3]T为扩张观测器的状态变量;L=[β1β2β3]T为观测增益矩阵;
步骤A.6),将A,B,L,C带入公式(5)中得到三阶扩张状态观测器的状态空间形式:
Figure BDA0003157917000000035
步骤A.7),对等式(5)进行化简得到:
Figure BDA0003157917000000036
步骤A.8),将等式(4)减去等式(7):
Figure BDA0003157917000000037
步骤A.9),定义两个***状态变量误差为x-z=e,则式(8)改写为:
Figure BDA0003157917000000038
步骤A.10),矩阵A-LC稳定就有e→0,从而能使得z→x,而矩阵A-LC稳定的条件是其特征多项式的根均具有负实部,矩阵A-LC的特征多项式为:
Figure BDA0003157917000000039
式中,s为拉普拉斯算子;
步骤A.11),建立性能稳定且能给出稳定过渡过程的特征方程,其表达式为:
(s+ω0)3=s3+3ω0s2+3ω0 2s+ω0 3 (11)
式中,ω0为观测器带宽;
步骤A.12),结合等式(10)和(11)得到β1=3ω0、β2=3ω0 2、β3=ω0 3,因此三阶扩张状态观测器为:
Figure BDA0003157917000000041
作为本发明一种智能车双电机线控转向***的跟踪及同步控制方法进一步的优化方案,所述转角环二阶自抗扰控制器的状态误差反馈控制律的建立包括以下步骤:
步骤B.1),状态误差反馈控制律为:
Figure BDA0003157917000000042
式中,kp、kd分别是比例控制增益、微分控制增益;r为***的参考输入,u为控制器输出,u0为状态误差反馈控制律的输出;
步骤B.2),三阶扩张状态观测器满足以下条件:
Figure BDA0003157917000000043
步骤B.3),联合等式(2)、(13)、(14)得到:
Figure BDA0003157917000000044
步骤B.4),对等式(15)进行拉普拉斯变化得到:
Figure BDA0003157917000000045
步骤B.5),将等式(16)改写为传递函数形式:
Figure BDA0003157917000000046
步骤B.6),根据极点配置方法,将等式(17)的极点配置在闭环带宽ωc上:
Figure BDA0003157917000000047
步骤B.7),根据等式(17)和等式(18),得到
Figure BDA0003157917000000048
kd=2ωc,因此状态误差反馈控制律为:
Figure BDA0003157917000000051
作为本发明一种智能车双电机线控转向***的跟踪及同步控制方法进一步的优化方案,所述同步控制器的补偿电流计算方法为:
i′=k(θ12) (20)
式中,θ1、θ2分别为转向电机A、转向电机B的实际转角;i′为同步控制器输出的补偿电流。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:
转向执行模块中的转向电机A、转向电机B采用转角环、电流环双闭环控制,其中转角环采用二阶自抗扰控制器控制,能够有效解决由于外部负载扰动、电机参数摄动以及控制模型失配等因素引起的电机跟踪性和鲁棒性较差的问题;此外,转向电机A和转向电机B之间采用交叉耦合同步控制结构,采集转向电机A和转向电机B的实际转角做差经过同步控制器得到的补偿电流信号给转向电机A和转向电机B的电流环,消除转向电机A和转向电机B之间转角不一致性,从而加强双电机之间的同步性能;因此具有广阔的市场应用前景。
附图说明
图1是本发明智能车双电机线控转向***跟踪及同步控制示意图;
图2是本发明转向电机转角环二阶自抗扰控制、电流环滑模控制示意图。
具体实施方式
下面结合附图对本发明的技术方案做进一步的详细说明:
本发明可以以许多不同的形式实现,而不应当认为限于这里所述的实施例。相反,提供这些实施例以便使本公开透彻且完整,并且将向本领域技术人员充分表达本发明的范围。在附图中,为了清楚起见放大了组件。
本发明公开一种智能车双电机线控转向***跟踪及同步控制方法,所述智能车双电机线控转向***包括转向盘转角传感器、车速传感器、变传动比模块和转向执行模块;
所述转向盘转角传感器用于获得转向盘转角信号,并将其传递给所述变传动比模块;
所述车速传感器用于获取智能车的车速信号,并将其传递给所述变传动比模块;
所述变传动比模块用于根据获得的转向盘转角信号、车速信号计算出智能车两个转向电机的目标转角,并将其传递给转向执行模块;
所述转向执行模块包括转向电机A、减速器A、传动齿轮A、转向电机B、减速器B、传动齿轮B、齿条、左转向横拉杆和右转向横拉杆,其中,转向电机A通过减速器A和传动齿轮A的转轴相连,转向电机B通过减速器B和传动齿轮B的转轴相连;传动齿轮A、传动齿轮B均和所述齿条啮合;所述齿条左、右两端分别和所述左转向横拉杆、右转向横拉杆固连;所述左转向横拉杆、右转向横拉杆分别和智能车的左转向车轮、右转向车轮对应相连;转向电机A、转向电机B型号相同;
如图1、图2所示,所述智能车双电机线控转向***跟踪及同步控制方法包含如下步骤:
所述智能车双电机线控转向***跟踪及同步控制方法包含如下步骤:
所述转向电机A、转向电机B采用转角环、电流环双闭环控制,其中,转角环采用二阶自抗扰控制器控制,电流环采用滑模控制器控制,以加强双电机线控转向***的跟踪性能;
所述转角环二阶自抗扰控制器包含三阶扩张状态观测器和状态误差反馈控制律;
所述转向电机A和转向电机B之间采用交叉耦合同步控制结构,采集转向电机A和转向电机B的实际转角做差经过同步控制器得到的补偿电流信号给转向电机A和转向电机B的电流环,消除转向电机A和转向电机B之间转角不一致性,以加强双电机线控转向***的同步性能。
图1、图2中,θsw为转向盘转角;θ*为转向电机A、转向电机B的参考转角;v为车速;θ1为转向电机A实际转角;θ2为转向电机B实际转度;i1为转向电机A实际电流;i2为转向电机B实际电流;i、同步控制器输出的补偿电流;δf为车轮转角;TL1为转向电机A的负载转矩;TL2为转向电机B的负载转矩;ud1为转向电机A的输入电压;ud2为转向电机B的输入电压图中,J为转动惯量;B为黏滞摩擦系数;Kt为转矩系数;Ke为反电动势系数;ω为电机角速度;R为定子电阻;L为定子绕组的等效电感;ia为电机电流;TL为负载转矩;θ为电机的转角;z1,z2,z3为扩张观测器的状态变量;
Figure BDA0003157917000000061
为***控制增益的估计值;
Figure BDA0003157917000000062
为转向电机转矩系数Kt的估计值;
Figure BDA0003157917000000063
为转动惯量J的估计值。
所述转角环二阶自抗扰控制器的三阶扩张状态观测器的建立包括以下步骤:
步骤A.1),建立转向电机运动学方程:
Figure BDA0003157917000000064
式中,J为转动惯量;B为黏滞摩擦系数;Kt为转矩系数;TL为负载转矩;θ为电机的转角;ia为电机的电流;
步骤A.2),将转向电机运动学方程写成二阶自抗扰控制的标准形式:
Figure BDA0003157917000000071
式中,f为***转角环的总扰动;
Figure BDA0003157917000000072
分别为对转向电机转矩系数Kt的估计、转动惯量J的估计;y为电机的转角;b0为***控制增益的估计值;u为控制器输出;
步骤A.3),定义状态变量:
Figure BDA0003157917000000073
步骤A.4),将等式(2)写成状态空间形式:
Figure BDA0003157917000000074
式中,
Figure BDA0003157917000000075
为***的状态变量,
Figure BDA0003157917000000076
C=[1 0 0],D=[0 0 0],F=[0 0 0];
步骤A.5),建立三阶扩张状态观测器对***的总扰动进行估计:
Figure BDA0003157917000000077
式中,z=[z1,z2,z3]T为扩张观测器的状态变量;L=[β1 β2 β3]T为观测增益矩阵;
步骤A.6),将A,B,L,C带入公式(5)中得到三阶扩张状态观测器的状态空间形式:
Figure BDA0003157917000000078
步骤A.7),对等式(5)进行化简得到:
Figure BDA0003157917000000079
步骤A.8),将等式(4)减去等式(7):
Figure BDA0003157917000000081
步骤A.9),定义两个***状态变量误差为x-z=e,则式(8)改写为:
Figure BDA0003157917000000082
步骤A.10),矩阵A-LC稳定就有e→0,从而能使得z→x,而矩阵A-LC稳定的条件是其特征多项式的根均具有负实部,矩阵A-LC的特征多项式为:
Figure BDA0003157917000000083
式中,s为拉普拉斯算子;
步骤A.11),建立性能稳定且能给出稳定过渡过程的特征方程,其表达式为:
(s+ω0)3=s3+3ω0s2+3ω0 2s+ω0 3 (11)
式中,ω0为观测器带宽;
步骤A.12),结合等式(10)和(11)得到β1=3ω0、β2=3ω0 2、β3=ω0 3,因此三阶扩张状态观测器为:
Figure BDA0003157917000000084
所述转角环二阶自抗扰控制器的状态误差反馈控制律的建立包括以下步骤:
步骤B.1),状态误差反馈控制律为:
Figure BDA0003157917000000085
式中,kp、kd分别是比例控制增益、微分控制增益;r为***的参考输入,u为控制器输出,u0为状态误差反馈控制律的输出;
步骤B.2),三阶扩张状态观测器满足以下条件:
Figure BDA0003157917000000086
步骤B.3),联合等式(2)、(13)、(14)得到:
Figure BDA0003157917000000091
步骤B.4),对等式(15)进行拉普拉斯变化得到:
Figure BDA0003157917000000092
步骤B.5),将等式(16)改写为传递函数形式:
Figure BDA0003157917000000093
步骤B.6),根据极点配置方法,将等式(17)的极点配置在闭环带宽ωc上:
Figure BDA0003157917000000094
步骤B.7),根据等式(17)和等式(18),得到
Figure BDA0003157917000000095
kd=2ωc,因此状态误差反馈控制律为:
Figure BDA0003157917000000096
所述同步控制器的补偿电流计算方法为:
i′=k(θ12) (20)
式中,θ1、θ2分别为转向电机A、转向电机B的实际转角;i′为同步控制器输出的补偿电流。
本技术领域技术人员可以理解的是,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种智能车双电机线控转向***的跟踪及同步控制方法,所述智能车双电机线控转向***包括转向盘转角传感器、车速传感器、变传动比模块和转向执行模块;
所述转向盘转角传感器用于获得转向盘转角信号,并将其传递给所述变传动比模块;
所述车速传感器用于获取智能车的车速信号,并将其传递给所述变传动比模块;
所述变传动比模块用于根据获得的转向盘转角信号、车速信号计算出智能车两个转向电机的目标转角,并将其传递给转向执行模块;
所述转向执行模块包括转向电机A、减速器A、传动齿轮A、转向电机B、减速器B、传动齿轮B、齿条、左转向横拉杆和右转向横拉杆,其中,转向电机A通过减速器A和传动齿轮A的转轴相连,转向电机B通过减速器B和传动齿轮B的转轴相连;传动齿轮A、传动齿轮B均和所述齿条啮合;所述齿条左、右两端分别和所述左转向横拉杆、右转向横拉杆固连;所述左转向横拉杆、右转向横拉杆分别和智能车的左转向车轮、右转向车轮对应相连;转向电机A、转向电机B型号相同;
其特征在于,所述智能车双电机线控转向***跟踪及同步控制方法包含如下过程:
所述转向电机A、转向电机B采用转角环、电流环双闭环控制,其中,转角环采用二阶自抗扰控制器控制,电流环采用滑模控制器控制,以加强双电机线控转向***的跟踪性能;
所述转角环二阶自抗扰控制器包含三阶扩张状态观测器和状态误差反馈控制律;
所述转向电机A和转向电机B之间采用交叉耦合同步控制结构,采集转向电机A和转向电机B的实际转角做差经过同步控制器得到的补偿电流信号给转向电机A和转向电机B的电流环,消除转向电机A和转向电机B之间转角不一致性,以加强双电机线控转向***的同步性能;
所述转角环二阶自抗扰控制器的三阶扩张状态观测器的建立包括以下步骤:
步骤A.1),建立转向电机运动学方程:
Figure FDA0003523675460000011
式中,J为转动惯量;B为黏滞摩擦系数;Kt为转矩系数;TL为负载转矩;θ为电机的转角;ia为电机的电流;
步骤A.2),将转向电机运动学方程写成二阶自抗扰控制的标准形式:
Figure FDA0003523675460000021
式中,f为***转角环的总扰动;
Figure FDA0003523675460000022
分别为对转向电机转矩系数Kt的估计、转动惯量J的估计;y为电机的转角;b0为***控制增益的估计值;u为控制器输出;
步骤A.3),定义状态变量:
Figure FDA0003523675460000023
步骤A.4),将等式(2)写成状态空间形式:
Figure FDA0003523675460000024
式中,
Figure FDA0003523675460000025
为***的状态变量,
Figure FDA0003523675460000026
C=[1 0 0],D=[0 00],F=[0 0 0];
步骤A.5),建立三阶扩张状态观测器对***的总扰动进行估计:
Figure FDA0003523675460000027
式中,z=[z1,z2,z3]T为扩张观测器的状态变量;L=[β1 β2 β3]T为观测增益矩阵;
步骤A.6),将A,B,L,C带入公式(5)中得到三阶扩张状态观测器的状态空间形式:
Figure FDA0003523675460000028
步骤A.7),对等式(5)进行化简得到:
Figure FDA0003523675460000029
步骤A.8),将等式(4)减去等式(7):
Figure FDA0003523675460000031
步骤A.9),定义两个***状态变量误差为x-z=e,则式(8)改写为:
Figure FDA0003523675460000032
步骤A.10),矩阵A-LC稳定就有e→0,从而能使得z→x,而矩阵A-LC稳定的条件是其特征多项式的根均具有负实部,矩阵A-LC的特征多项式为:
Figure FDA0003523675460000033
式中,s为拉普拉斯算子;
步骤A.11),建立性能稳定且能给出稳定过渡过程的特征方程,其表达式为:
(s+ω0)3=s3+3ω0s2+3ω0 2s+ω0 3 (11)
式中,ω0为观测器带宽;
步骤A.12),结合等式(10)和(11)得到β1=3ω0、β2=3ω0 2、β3=ω0 3,因此三阶扩张状态观测器为:
Figure FDA0003523675460000034
2.根据权利要求1所述的智能车双电机线控转向***的跟踪及同步控制方法,其特征在于,所述转角环二阶自抗扰控制器的状态误差反馈控制律的建立包括以下步骤:
步骤B.1),状态误差反馈控制律为:
Figure FDA0003523675460000035
式中,kp、kd分别是比例控制增益、微分控制增益;r为***的参考输入,u为控制器输出,u0为状态误差反馈控制律的输出;
步骤B.2),三阶扩张状态观测器满足以下条件:
Figure FDA0003523675460000036
步骤B.3),联合等式(2)、(13)、(14)得到:
Figure FDA0003523675460000041
步骤B.4),对等式(15)进行拉普拉斯变化得到:
Figure FDA0003523675460000042
步骤B.5),将等式(16)改写为传递函数形式:
Figure FDA0003523675460000043
步骤B.6),根据极点配置方法,将等式(17)的极点配置在闭环带宽ωc上:
Figure FDA0003523675460000044
步骤B.7),根据等式(17)和等式(18),得到
Figure FDA0003523675460000045
kd=2ωc,因此状态误差反馈控制律为:
Figure FDA0003523675460000046
3.根据权利要求1所述的智能车双电机线控转向***的跟踪及同步控制方法,其特征在于,所述同步控制器的补偿电流计算方法为:
i′=k(θ12) (20)
式中,θ1、θ2分别为转向电机A、转向电机B的实际转角;i′为同步控制器输出的补偿电流。
CN202110783048.4A 2021-07-12 2021-07-12 一种智能车双电机线控转向***跟踪及同步控制方法 Active CN113479258B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110783048.4A CN113479258B (zh) 2021-07-12 2021-07-12 一种智能车双电机线控转向***跟踪及同步控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110783048.4A CN113479258B (zh) 2021-07-12 2021-07-12 一种智能车双电机线控转向***跟踪及同步控制方法

Publications (2)

Publication Number Publication Date
CN113479258A CN113479258A (zh) 2021-10-08
CN113479258B true CN113479258B (zh) 2022-04-22

Family

ID=77937942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110783048.4A Active CN113479258B (zh) 2021-07-12 2021-07-12 一种智能车双电机线控转向***跟踪及同步控制方法

Country Status (1)

Country Link
CN (1) CN113479258B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2622434A (en) * 2022-09-16 2024-03-20 Zf Automotive Uk Ltd A dual motor drive assembly

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005045835A1 (de) * 2005-09-24 2007-03-29 Zf Lenksysteme Gmbh Steuersystem für einen Synchronmotor
JP4748171B2 (ja) * 2008-02-08 2011-08-17 株式会社デンソー Eps用モータ駆動装置
CN102710183B (zh) * 2012-06-13 2016-01-20 苏州汇川技术有限公司 多电机交叉耦合同步控制***及方法
JP7249822B2 (ja) * 2019-03-11 2023-03-31 株式会社ジェイテクト モータの制御装置
CN110190792B (zh) * 2019-04-30 2021-04-02 西安理工大学 基于自抗扰控制的路感模拟永磁同步电机控制方法
CN211765842U (zh) * 2020-01-03 2020-10-27 南京航空航天大学 一种双电机智能线控转向***
CN111017010B (zh) * 2020-01-03 2023-11-07 南京航空航天大学 一种双电机智能线控转向***及同步控制方法
CN111464073A (zh) * 2020-04-30 2020-07-28 南京工程学院 一种双电机同步控制装置及方法
CN113071558B (zh) * 2021-03-22 2022-04-05 南京航空航天大学 一种双电机智能线控转向***及其控制方法

Also Published As

Publication number Publication date
CN113479258A (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
CN111017010B (zh) 一种双电机智能线控转向***及同步控制方法
CN113071558B (zh) 一种双电机智能线控转向***及其控制方法
US8340867B2 (en) Steering system
US11066095B2 (en) Controller for steering system and method for controlling steering system
US20190039647A1 (en) Electric power steering apparatus
US20190300044A1 (en) Electric power steering apparatus
CN101472780B (zh) 用于机动车的电动动力转向***
CN113479258B (zh) 一种智能车双电机线控转向***跟踪及同步控制方法
CN110190792B (zh) 基于自抗扰控制的路感模拟永磁同步电机控制方法
CN103329425B (zh) 电动助力转向装置的控制装置
CN111756286B (zh) 一种高性能鲁棒永磁同步轮毂电机复合控制器
CN101691124A (zh) 一种无传感器汽车电动助力转向***的控制方法
CN115092243B (zh) 一种双电机驱动的电动转向装置及其控制方法
CN211765842U (zh) 一种双电机智能线控转向***
CN114928285A (zh) 一种双轴驱动电动汽车双开关磁阻电机转速同步控制技术
CN205327155U (zh) 循环球式电动转向器
CN112859613B (zh) 基于谐波减速器的控制力矩陀螺框架***高精度控制方法
CN112821827A (zh) 一种cmg框架***谐波减速器扰动抑制***
CN112061229A (zh) 一种电动助力转向***的摩擦补偿方法
CN111055917A (zh) 一种电液耦合智能转向***及模式切换控制方法
CN111017009A (zh) 一种复合智能转向***及其控制和故障诊断方法
CN106945480B (zh) 磁阻电机式谐波传动的车辆主动横向稳定杆
CN211710936U (zh) 一种复合智能转向***
CN109000522B (zh) 差动式双余度舵机的安全优化控制方法
CN210011793U (zh) 一种转向***的执行机构及车辆

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant