CN113461657A - 一种有机小分子凝胶剂及其制备方法和应用 - Google Patents

一种有机小分子凝胶剂及其制备方法和应用 Download PDF

Info

Publication number
CN113461657A
CN113461657A CN202110942442.8A CN202110942442A CN113461657A CN 113461657 A CN113461657 A CN 113461657A CN 202110942442 A CN202110942442 A CN 202110942442A CN 113461657 A CN113461657 A CN 113461657A
Authority
CN
China
Prior art keywords
gel
fuel
organic
preparation
mannitol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110942442.8A
Other languages
English (en)
Other versions
CN113461657B (zh
Inventor
潘伦
邹吉军
刘洋
张香文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202110942442.8A priority Critical patent/CN113461657B/zh
Publication of CN113461657A publication Critical patent/CN113461657A/zh
Application granted granted Critical
Publication of CN113461657B publication Critical patent/CN113461657B/zh
Priority to US17/855,574 priority patent/US11661417B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/06Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/72Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 spiro-condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/14Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D317/18Radicals substituted by singly bound oxygen or sulfur atoms
    • C07D317/20Free hydroxyl or mercaptan
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L7/00Fuels produced by solidifying fluid fuels
    • C10L7/02Fuels produced by solidifying fluid fuels liquid fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/22Function and purpose of a components of a fuel or the composition as a whole for improving fuel economy or fuel efficiency
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels

Abstract

本发明提供了一种有机小分子凝胶剂及其制备方法和应用,属于凝胶燃料技术领域。本发明提供的有机小分子凝胶剂含有环丙烷结构,环丙烷结构属于高张力结构,赋予凝胶剂优异的凝胶性能,且高张力环丙烷结构也可大幅提升凝胶剂的燃烧性能,可使燃料的点火延迟缩短,发挥促燃效果。而且,本发明提供的有机小分子凝胶含有的多个羟基可以通过氢键作用有效形成凝胶,因而其对高能量密度燃料和含能纳米流体燃料均具有优异的凝胶性能并具有剪切变稀特性,形成稳定凝胶时最低凝胶剂均不高于1%。

Description

一种有机小分子凝胶剂及其制备方法和应用
技术领域
本发明涉及凝胶燃料技术领域,尤其涉及一种有机小分子凝胶剂及其制备方法和应用。
背景技术
为了满足航空航天燃料的使用需求,提供动力的燃料一方面要具有良好的燃烧性能;另一方面还需要具备很好的使用性能。凝胶燃料在储存和运输过程中保持稳定的凝胶状态,在使用时受外力剪切作用后可以变为低黏度的液体状态。这一特点使凝胶燃料同时具备了固体燃料和液体燃料的优势,可以有效提升燃料的使用性能。在此基础上,可通过向凝胶中添加含能金属纳米颗粒(铝、硼等)大幅提升燃料的能量密度,并通过凝胶态提高燃料的储存稳定性,从而大幅提升燃料的综合性能。
虽然可以通过外力破坏凝胶燃料结构而变成液态,但由于凝胶本身具有一定的复凝性,使得凝胶燃料的黏度相对于液体燃料会有所增大,导致其更难雾化。同时,凝胶剂与燃料的燃烧性能差异也会影响凝胶燃料的使用。因此,降低凝胶剂对燃料的影响的一个重要手段就是降低凝胶剂的含量。目前报道的凝胶剂可以分为有机凝胶剂和无机凝胶剂,其中有机凝胶剂又可分为聚合物凝胶剂和有机小分子凝胶剂。在形成稳定凝胶时,无机凝胶剂和聚合物凝胶剂的添加量一般都高于5wt%,且无机凝胶剂不可燃,这对于燃料的燃烧性能有较大的影响。而有机小分子凝胶剂不仅具有可燃性,其最低凝胶剂添加量可低于1wt%,同时使用有机小分子凝胶剂的凝胶燃料具有很好的剪切变稀性能,可以最大程度上保持燃料本身性能(Padwal M B,Natan B,Mishra D P.Gel propellants[J].Progress inEnergy and Combustion Science,2021,83:100885)。
由于凝胶剂与液体燃料燃烧性能的差异,有机凝胶液滴的燃烧存在四个阶段。第一个阶段是升温阶段,这一过程与纯液体燃料液滴的燃烧相似;在第二阶段,凝胶剂会在液滴表面形成凝胶层,然后随着液滴内的燃料受热而膨胀或发生微***;在第三阶段,凝胶层破裂引发燃料蒸汽喷射和燃烧;在第四阶段,凝胶层发生燃烧(Lee D,Won J,Baek S W,etal.Autoignition Behavior of an Ethanol-Methylcellulose Gel Droplet in a HotEnvironment[J].Energies,2018,11(8))。这表明凝胶燃料的燃烧速率相比于液体燃料会有所降低。因此提升凝胶燃料的燃烧速率对于凝胶燃料的使用具有重要意义。在不改变燃料本身结构的情况下,通过改变凝胶剂的结构增强其燃烧性能是提升凝胶燃料燃烧速率最为可行的方法之一。因此需要开发一种具有高含能结构的易燃有机小分子凝胶剂,同时实现其凝胶性能和促燃效果,以提高凝胶燃料的综合性能。
发明内容
本发明的目的在于提供一种有机小分子凝胶剂及其制备方法和应用,所述有机小分子胶凝剂具有高张力结构,具有凝胶性能和促燃效果。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种有机小分子凝胶剂,具有式I所示结构:
Figure BDA0003215621430000021
式I中,R包括
Figure BDA0003215621430000022
其中,R1包括-H、-CH3、-CH2CH3或Cl。
优选的,所述的有机小分子凝胶剂包括:
Figure BDA0003215621430000023
Figure BDA0003215621430000031
本发明提供了上述技术方案所述有机小分子胶凝剂的制备方法,包括以下步骤:
将D-甘露醇、含高张力结构化合物、催化剂和有机溶剂混合,进行缩合反应,得到有机小分子胶凝剂;
所述含高张力结构化合物具有式II或式III所示结构:
Figure BDA0003215621430000032
式II和式III中,R包括
Figure BDA0003215621430000033
R1包括-H、-CH3、-CH2CH3或Cl。
优选的,所述D-甘露醇与含高张力结构化合物的摩尔比为1:(2.0~3.5)。
优选的,所述催化剂包括氯化锌或对甲基苯磺酸。
优选的,所述氯化锌与D-甘露醇的摩尔比为(0.03~0.06):0.05;所述对甲基苯磺酸与D-甘露醇的摩尔比为(0.01~0.03):0.05。
优选的,所述缩合反应的温度为20~60℃,时间为12h~48h。
优选的,所述有机溶剂包括二甲基甲酰胺或乙二醇二甲醚。
本发明提供了上述技术方案所述有机小分子胶凝剂或上述技术方案所述制备方法制备得到的有机小分子胶凝剂在凝胶燃料中的应用。
优选的,所述凝胶燃料包括液体航煤燃料、高能量密度燃料或含能纳米流体燃料。
本发明提供了一种有机小分子凝胶剂,所述有机小分子胶凝剂含有环丙烷结构,环丙烷结构属于高张力结构,键角处于扭曲状态含有一定的张力能,结构极不稳定,因此结构更加易燃,能够提升凝胶剂的燃烧性能,可使燃料的点火延迟缩短,发挥促燃效果。而且,本发明提供的有机小分子凝胶含有的多个羟基可以通过氢键作用有效形成凝胶,赋予凝胶剂优异的凝胶性能,因而其对高能量密度燃料和含能纳米流体燃料均具有优异的凝胶性能并具有剪切变稀特性,形成稳定凝胶时最低凝胶剂均不高于1%。
本发明提供了所述有机小分子凝胶剂的制备方法,本发明以D-甘露醇为起始原料,通过羟基保护反应引入环丙烷结构,形成对燃料具有有效凝胶性能并发挥促燃作用的有机小分子凝胶剂。本发明的制备工艺简单,原料来源广泛、成本低廉。
本发明提供的有机小分子凝胶剂可将3号喷气燃料(RP-3)、高密度燃料(HD-01、HD-3、QC)及含能纳米流体燃料制备成具有优异凝胶性能的凝胶燃料,以制备具有剪切变稀性能的凝胶燃料,同时显著缩短燃料点火延迟时间,适用于液体航煤、高能量密度燃料和含能纳米流体燃料的凝胶化过程,并能有效提升凝胶燃料的燃烧速率。
实施例的结果表明,本发明提供的有机小分子凝胶剂可以有效凝胶化多种高密度燃料,其最低成胶浓度不高于凝胶总质量的1wt%,形成的凝胶具有优异的剪切变稀和触变性能,与不含环丙烷结构的凝胶剂相比具有明显促燃作用。
附图说明
图1为应用例1制备的JP-10凝胶燃料的实物图;
图2为应用例1制备的JP-10凝胶燃料的SEM图;
图3为应用例1制备的JP-10凝胶燃料的液滴点火实验图;
图4为实施例1~3制备的有机小分子凝胶剂的红外谱图。
具体实施方式
本发明提供了一种有机小分子凝胶剂,具有式I所示结构:
Figure BDA0003215621430000041
式I中,R包括
Figure BDA0003215621430000051
其中,R1包括-H、-CH3、-CH2CH3或Cl。
在本发明中,所述有机小分子凝胶剂优选包括:
Figure BDA0003215621430000052
本发明提供了上述技术方案所述有机小分子胶凝剂的制备方法,包括以下步骤:
将D-甘露醇、含高张力结构化合物、催化剂和有机溶剂混合,进行缩合反应,得到有机小分子胶凝剂;
所述含高张力结构化合物具有式II或式III所示结构:
Figure BDA0003215621430000053
式II和式III中,R包括
Figure BDA0003215621430000054
R1包括-H、-CH3、-CH2CH3或Cl。
在本发明中,若无特殊说明,所需制备原料均为本领域技术人员熟知的市售商品。
本发明将D-甘露醇、含高张力结构化合物、催化剂和有机溶剂混合,进行缩合反应。在本发明中,所述含高张力结构化合物优选包括环丙酮、环丙甲醛、环丙基甲基酮、环丙基乙基甲酮、(1,1-二甲氧基)甲基环丙烷、(1,1-二甲氧基)乙基环丙烷或环丙基甲酰氯;所述D-甘露醇与含高张力结构化合物摩尔比优选为1:(2.0~3.5),更优选为1:(2.8~3.2)。
在本发明中,所述催化剂优选包括氯化锌或对甲基苯磺酸;所述氯化锌与D-甘露醇的摩尔比优选为(0.03~0.06):0.05,更优选为0.05:0.05;所述对甲基苯磺酸与D-甘露醇的摩尔比优选为(0.01~0.03):0.05,更优选为0.02:0.05。
在本发明中,所述有机溶剂优选包括二甲基甲酰胺或乙二醇二甲醚;所述D-甘露醇与有机溶剂的用量比优选为0.05mol:(100~150)mL,更优选为0.05mol:(110~130)mL。
在本发明中,所述D-甘露醇、含高张力结构化合物、催化剂和有机溶剂混合的过程优选为将D-甘露醇和催化剂溶于有机溶剂中,加入含高张力结构化合物。
在本发明中,所述缩合反应的温度优选为20~60℃,更优选为30~50℃,时间优选为12h~48h,更优选为36h;所述缩合反应优选在搅拌条件下进行,本发明对所述搅拌的速率没有特殊的限定,按照本领域熟知的过程进行即可。
在本发明中,所述缩合反应的过程如下式所示(式中R与上述相同):
Figure BDA0003215621430000061
完成所述缩合反应后,本发明优选将所得产物体系与饱和氯化钠溶液和二氯甲烷混合(饱和氯化钠溶液和二氯甲烷的体积比优选为1:1),搅拌15min,将所得物料过滤后,采用二氯甲烷洗涤,将所得洗涤物料采用二氯甲烷萃取水相,合并有机相,采用饱和NaCl溶液洗涤后,使用无水Na2SO4干燥,过滤后,进行旋蒸,得到有机小分子凝胶剂。本发明对所述过滤、洗涤、萃取和旋蒸的过程没有特殊的限定,按照本领域熟知的过程进行即可。
本发明提供了上述技术方案所述有机小分子胶凝剂或上述技术方案所述制备方法制备得到的有机小分子胶凝剂在凝胶燃料中的应用。在本发明中,所述凝胶燃料优选包括液体航煤燃料、高能量密度燃料或含能纳米流体燃料。在本发明的应用例中,所述凝胶燃料具体为JP-10燃料、RP-3燃料、HD-03燃料、QC燃料或铝基含能纳米流体(5%Al+HD-01)。
本发明对所述应用的方法没有特殊的限定,按照本领域熟知的方法应用即可。在本发明的应用例中,所述凝胶燃料的制备方法具体是将所述有机小分子凝胶剂与燃料混合,加热搅拌,直至混合物变澄清,将所得产物在室温下冷却,直至变为不流动的类固态,形成凝胶燃料。本发明对所述加热搅拌的过程没有特殊的限定,根据实际需求进行调整即可。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
将D-甘露醇9.11g(0.05mol)和氯化锌6.82g(0.05mol)溶于100mL DMF中,加入环丙酮8.41g(0.15mol)后,25℃下搅拌反应12h;反应完成后,将100mL饱和氯化钠溶液和100mL二氯甲烷加入到所得体系中搅拌15min,将所得物料过滤并用100mL二氯甲烷洗涤,使用二氯甲烷萃取水相,合并有机相并用饱和NaCl溶液洗涤,将所得洗涤后物料用无水Na2SO4干燥。过滤,进行旋蒸,得到有机小分子胶凝剂5.1g,结构式为:
Figure BDA0003215621430000071
实施例2
将D-甘露醇9.11g(0.05mol)和氯化锌6.82g(0.05mol)溶于100mL DMF中,加入环丙甲醛10.51g(0.15mol)后,25℃下搅拌反应12h;反应完成后,将100mL饱和氯化钠溶液和100mL二氯甲烷加入到所得体系中搅拌15min,将所得物料过滤并用100mL二氯甲烷洗涤,将所得洗涤物料使用二氯甲烷萃取水相,合并有机相并用饱和NaCl溶液洗涤,将所得物料用无水Na2SO4干燥,过滤后,进行旋蒸,得到小分子胶凝剂6.0g,结构式为:
Figure BDA0003215621430000081
实施例3
将D-甘露醇9.11g(0.05mol)和氯化锌6.82g(0.05mol)溶于100mL DMF中,加入环丙基甲基酮12.62g(0.15mol)后,30℃下搅拌反应20h;反应完成后,将100mL饱和氯化钠溶液和100mL二氯甲烷加入到所得体系中搅拌15min,将所得物料过滤并用100mL二氯甲烷洗涤,将所得洗涤物料使用二氯甲烷萃取水相,合并有机相并用饱和NaCl溶液洗涤,将所得物料用无水Na2SO4干燥,过滤后,进行旋蒸,得到有机小分子胶凝剂6.3g,结构式为:
Figure BDA0003215621430000082
实施例4
将D-甘露醇9.11g(0.05mol)和对甲基苯磺酸1.88g(0.01mol)溶于100mL DMF中,加入(1,1-二甲氧基)甲基环丙烷17.42g(0.15mol)后,40℃下搅拌反应36h;反应完成后,将100mL饱和氯化钠溶液和100mL二氯甲烷加入到所得体系中搅拌15min,将所得物料过滤并用100mL二氯甲烷洗涤,使用二氯甲烷萃取水相,合并有机相并用饱和NaCl溶液洗涤,将所得洗涤后物料用无水Na2SO4干燥,过滤后,进行旋蒸,得到有机小分子胶凝剂9.6g,结构式同实施例2。
实施例5
将D-甘露醇9.11g(0.05mol)和对甲苯磺酸1.88g(0.01mol)溶于100mL DMF中,加入(1,1-二甲氧基)乙基环丙烷19.68g(0.15mol)后,40℃下搅拌反应48h;反应完成后,将100mL饱和氯化钠溶液和100mL二氯甲烷加入到所得体系中搅拌15min,将所得物料过滤并用100mL二氯甲烷洗涤,使用二氯甲烷萃取水相,合并有机相并用饱和NaCl溶液洗涤,将所得洗涤后物料用无水Na2SO4干燥,过滤后,进行旋蒸,得到有机小分子胶凝剂12.5g,结构式同实施例3。
对比例1
与实施例1的区别仅在于:将环丙酮替换为等物质的量的丙酮,其他同实施例1。
对比例2
与实施例2的区别仅在于:将环丙甲醛替换为等物质的量的2-甲基丙醛,其他同实施例2。
对比例3
与实施例3的区别仅在于:将环丙基甲基酮替换为等物质的量的3-甲基-2-丁酮,其他同实施例3。
对比例4
与实施例4的区别仅在于:将(1,1-二甲氧基)甲基环丙烷替换为等物质的量的2-甲基丙醛,其他同实施例4。
对比例5
与实施例5的区别仅在于:将(1,1-二甲氧基)乙基环丙烷替换为等物质的量的3-甲基-2-丁酮,其他同实施例5。
应用例1
将实施例1制备的凝胶剂与JP-10燃料按质量比1/99混合后在90℃下加热搅拌,直至溶液变澄清,在室温下冷却1h至不流动的类固态,形成凝胶燃料,为半透明状的凝胶燃料。
1)将应用例1制备的凝胶燃料用外力搅拌破坏后,静置5~10h,观察发现,可恢复至凝胶状态,说明所制备的凝胶燃料具有复凝性。
2)采用旋转粘度计对所制备的凝胶燃料进行黏度测试,凝胶燃料黏度为467.5Pa·s,60rpm剪切10min后黏度降低至97mPa·s。
对比应用例1
与应用例1的区别仅在于:使用对比例1的凝胶剂替换实施例1的凝胶剂,其他同应用例1。
采用平板点火试验对应用例1和对比应用例1制备的凝胶燃料的点火延迟时间进行测定,结果表明,在凝胶剂添加量为1wt%条件下,应用例1制备的JP-10凝胶燃料在430℃下的点火延迟为2378ms,相比于对比应用例1制备的双丙酮-D-甘露醇为凝胶剂制备的凝胶燃料点火延迟缩短了496ms。
应用例2
将实施例2制备的凝胶剂与RP-3燃料按质量比1/99混合后在100℃下加热搅拌,直至溶液变澄清,在室温下冷却,直至呈现为不流动的类固态,形成凝胶燃料,为半透明状的凝胶燃料。
按照应用例1的方法,对应用例2的凝胶燃料进行测试,结果表明,该凝胶燃料具有复凝性,将凝胶用外力搅拌破坏后,静置5~10h可恢复至凝胶状态。该凝胶燃料黏度为417.5Pa·s,60rpm剪切后黏度降低至85mPa·s。
对比应用例2
与应用例2的区别仅在于:使用对比例2的凝胶剂替换实施例2的凝胶剂,其他同应用例2。
采用平板点火试验对应用例2和对比应用例2制备的凝胶燃料的点火延迟时间进行测定,结果表明,在凝胶剂添加量为1wt%条件下制备的RP-3凝胶燃料在420℃下的点火延迟为2012ms。相比于对比应用例2制备的凝胶燃料点火延迟缩短了422ms。
应用例3
将实施例3制备的凝胶剂与HD-03燃料按质量比1/99混合后在110℃下加热搅拌,直至溶液变澄清,后在室温下冷却至呈现不流动的类固态,形成凝胶燃料,为半透明状的凝胶燃料。
按照应用例1的方法,对应用例3的凝胶燃料进行测试,结果表明,所制备的凝胶燃料具有复凝性,将凝胶用外力搅拌破坏后,静置5~10h可恢复至凝胶状态。该凝胶燃料黏度为1081.7Pa·s,60rpm剪切10min后黏度降低至219mPa·s。
对比应用例3
与应用例3的区别仅在于:使用对比例3的凝胶剂替换实施例3的凝胶剂,其他同应用例3。
采用平板点火试验对应用例3和对比应用例3制备的凝胶燃料的点火延迟时间进行测定,结果表明,在凝胶剂添加量为1wt%条件下制备的HD-03凝胶燃料在440℃下的点火延迟为2767ms。相比于对比应用例3制备的凝胶燃料点火延迟缩短了361ms。
应用例4
将实施例4制备的凝胶剂与QC燃料按质量比1/99混合后在80℃下加热搅拌,直至溶液变澄清,在室温下冷却直至呈现为不流动的类固态,形成凝胶燃料,为半透明状的凝胶燃料。
按照应用例1的方法,对应用例4的凝胶燃料进行测试,结果表明,所制备的凝胶具有复凝性,将凝胶用外力搅拌破坏后,静置5~10h可恢复至凝胶状态。该凝胶燃料黏度为1599.1Pa·s,60rpm剪切10min后黏度降低至155mPa·s。
对比应用例4
与应用例4的区别仅在于:使用对比例4的凝胶剂替换实施例4的凝胶剂,其他同应用例4。
采用平板点火试验对应用例4和对比应用例4制备的凝胶燃料的点火延迟时间进行测定,结果表明,在凝胶剂添加量为1wt%条件下制备的QC凝胶燃料在460℃下的点火延迟为3054ms。相比于对比应用例4制备的凝胶燃料点火延迟缩短了422ms。
应用例5
将实施例5制备的凝胶剂与铝基含能纳米流体(5%Al+HD-01)按质量比1/99混合后在100℃下加热搅拌,直至溶液变澄清,在室温下冷却直至呈现不流动的类固态,形成凝胶燃料。
按照应用例1的方法,对应用例5的凝胶燃料进行测试,结果表明,所制备的凝胶具有复凝性,将凝胶用外力搅拌破坏后,静置5~10h可恢复至凝胶状态。该凝胶燃料黏度为1276.1Pa·s,60rpm剪切10min后黏度降低至135mPa·s。
对比应用例5
与应用例5的区别仅在于:使用对比例5的凝胶剂替换实施例5的凝胶剂,其他同应用例5。
采用平板点火试验对应用例5和对比应用例5制备的凝胶燃料的点火延迟时间进行测定,结果表明,在凝胶剂添加量为1wt%条件下制备的铝基含能纳米流体(5%Al+HD-01)凝胶燃料在430℃下的点火延迟为2233ms,相比于对比应用例5制备的凝胶燃料点火延迟缩短了323ms。
表征及性能测试
1)对应用例1制备的凝胶燃料拍照,所得实物图片见图1;由图1可以看出,凝胶燃料为半透明状并具有较好的凝胶状态。
2)对应用例1制备的凝胶燃料进行SEM测试,结果见图2;由图2可以看出,凝胶剂自组装成为三维网络结构,从而稳定燃料分子形成凝胶。
3)对应用例1制备的凝胶燃料进行点火实验,在不同时间的照片见图3;由图3可以看出,该凝胶燃料点火延迟较短,为2378ms,燃烧速度较快。
4)对实施例1、实施例2和实施例3制备的有机小分子凝胶剂进行傅里叶红外光谱测试,所得结果见图4;由图4可知,在3385cm-1左右为甘露醇中羟基对应的伸缩振动峰;3040cm-1为环丙烷结构的C-H的碳伸缩振动,实施例1~3在2800~2950cm-1范围内的峰为烷基的C-H伸缩振动峰,其差异表示的实施例1~3制备的有机小分子凝胶剂结构的差异;1200cm-1及1111cm-1左右处呈现醚键的伸缩振动。红外光谱测试表明,实施例1~3制备的有机小分子凝胶剂结构中具备环丙烷及醚键结构,证明成功将环丙烷结构引入到甘露醇中。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种有机小分子凝胶剂,其特征在于,具有式I所示结构:
Figure FDA0003215621420000011
式I中,R包括
Figure FDA0003215621420000012
其中,R1包括-H、-CH3、-CH2CH3或Cl。
2.根据权利要求1所述的有机小分子凝胶剂,其特征在于,包括:
Figure FDA0003215621420000013
3.权利要求1或2所述有机小分子胶凝剂的制备方法,包括以下步骤:
将D-甘露醇、含高张力结构化合物、催化剂和有机溶剂混合,进行缩合反应,得到有机小分子胶凝剂;
所述含高张力结构化合物具有式II或式III所示结构:
Figure FDA0003215621420000014
式II和式III中,R包括
Figure FDA0003215621420000015
R1包括-H、-CH3、-CH2CH3或Cl。
4.根据权利要求3所述的制备方法,其特征在于,所述D-甘露醇与含高张力结构化合物的摩尔比为1:(2.0~3.5)。
5.根据权利要求3所述的制备方法,其特征在于,所述催化剂包括氯化锌或对甲基苯磺酸。
6.根据权利要求5所述的制备方法,其特征在于,所述氯化锌与D-甘露醇的摩尔比为(0.03~0.06):0.05;所述对甲基苯磺酸与D-甘露醇的摩尔比为(0.01~0.03):0.05。
7.根据权利要求3所述的制备方法,其特征在于,所述缩合反应的温度为20~60℃,时间为12h~48h。
8.根据权利要求3所述的制备方法,其特征在于,所述有机溶剂包括二甲基甲酰胺或乙二醇二甲醚。
9.权利要求1或2所述有机小分子胶凝剂或权利要求3~8任一项所述制备方法制备得到的有机小分子胶凝剂在凝胶燃料中的应用。
10.根据权利要求9所述的应用,其特征在于,所述凝胶燃料包括液体航煤燃料、高能量密度燃料或含能纳米流体燃料。
CN202110942442.8A 2021-08-17 2021-08-17 一种有机小分子凝胶剂及其制备方法和应用 Active CN113461657B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110942442.8A CN113461657B (zh) 2021-08-17 2021-08-17 一种有机小分子凝胶剂及其制备方法和应用
US17/855,574 US11661417B2 (en) 2021-08-17 2022-06-30 Low-molecular mass organic gellant and preparation method and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110942442.8A CN113461657B (zh) 2021-08-17 2021-08-17 一种有机小分子凝胶剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113461657A true CN113461657A (zh) 2021-10-01
CN113461657B CN113461657B (zh) 2022-05-17

Family

ID=77866741

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110942442.8A Active CN113461657B (zh) 2021-08-17 2021-08-17 一种有机小分子凝胶剂及其制备方法和应用

Country Status (2)

Country Link
US (1) US11661417B2 (zh)
CN (1) CN113461657B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103937328A (zh) * 2013-01-18 2014-07-23 施乐公司 作为载体改性剂和胶凝剂的环己基-甘露醇双缩酮衍生物
CN105646438A (zh) * 2015-12-22 2016-06-08 天津大学 一种缩酮类糖醇基小分子凝胶因子及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100578616B1 (ko) * 2004-07-23 2006-05-10 한미약품 주식회사 D-에리트로-2,2-다이플루오로-2-데옥시-1-옥소라이보스화합물의 제조방법
US10343144B2 (en) * 2015-05-29 2019-07-09 Hindustan Petroleum Corporation Ltd. Molecular gelators for containing oil spillage
EP3307736B1 (en) * 2016-06-30 2021-04-14 Hindustan Petroleum Corporation Ltd. Mannitol based gelators for oil spillage applications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103937328A (zh) * 2013-01-18 2014-07-23 施乐公司 作为载体改性剂和胶凝剂的环己基-甘露醇双缩酮衍生物
CN105646438A (zh) * 2015-12-22 2016-06-08 天津大学 一种缩酮类糖醇基小分子凝胶因子及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ADIYALA VIDYASAGAR: "Soft Optical Devices from Self-Healing Gels Formed by Oil and Sugar-Based Organogelators", 《ANGEW. CHEM. INT. ED.》 *
JINWEN CAO: "Synthesis and Characterization of Gelled High-Density Fuels with Low-Molecular Mass Gellant", 《PROPELLANTS EXPLOS. PYROTECH.》 *
PETER MCNEICE: "Low molecular weight gelators (LMWGs) for ionic liquids: the role of hydrogen bonding and sterics in the formation of stable low molecular weight ionic liquid gels", 《GREEN CHEM.》 *

Also Published As

Publication number Publication date
US20230061028A1 (en) 2023-03-02
US11661417B2 (en) 2023-05-30
CN113461657B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
RU2716711C1 (ru) Соединение с органической аминовой солью, имеющее анион в качестве донора со2 и его использование в качестве вспенивающего агента
CN113461657B (zh) 一种有机小分子凝胶剂及其制备方法和应用
AU2013366061A1 (en) A hydrogen-storage-material
CN106117992A (zh) 一种阻燃聚对苯二甲酸乙二醇酯体系及其制备方法
CN104059697B (zh) 具有高热沉的碳氢燃料组合物
CN111943786B (zh) 基于pickering乳液法制备***/铝粉核壳结构球形复合物的方法
JP2007023055A (ja) 界面活性剤系用の液体増粘剤
CN102796283B (zh) 一种复合型膨胀阻燃剂及其制备方法
JP3315980B2 (ja) カルボン酸の使用によるセルロースエステルの製造方法
CN101844955B (zh) 一种微气孔无烟烟花药的敏化方法
US1999828A (en) Nitrated polyhydric alcohol emulsion and process of producing
Tang et al. Structural manipulation of aminal-crosslinked polybutadiene for recyclable and healable elastomers
CN104945206A (zh) 一种高温敏化工艺乳化***用复合油相及其制备方法
CN110724238B (zh) 一种阻燃硬质聚氨酯泡沫的制备方法
JP2001502377A (ja) ペルフルオロ化エーテルを使用した非クロロフルオロカーボン気泡性レゾール発泡体の製造
CN110305648B (zh) 一种用于高凝稠油的降凝、降粘剂及其制备方法
CN104017190B (zh) 一种阻燃抗熔滴pet纳米复合材料的制备方法
Shee et al. Poly (2-methyl-5-vinyl tetrazole)-poly (3-nitratomethyl-3-methyl oxetane) blend: an insensitive energetic binder for propellant and explosive formulations
CN109574775A (zh) 一种高反应活性团聚硼颗粒的制备方法
DE2144420C3 (de) Salpetrigsäureester von Glykolen und Glykolderivaten, deren Herstellung und Verwendung
US3200092A (en) Process for producing small particles of nitrocellulose
CN105237558A (zh) 碳硼烷基高氯酸铵及其制备方法与应用
CN114395130B (zh) 一种用于制备低粘度水性环氧乳液的乳化剂及其制备方法和包含该乳化剂的水性环氧乳液
Guo et al. Micro-nanoarchitectonic of aluminum-hydrogel propellant with static stability and dynamic rheology
Sun et al. Self-assembly of single-chain nanoparticles from block copolymers into inverse bicontinuous structures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant