CN113461011B - 一种超疏水MXene/碳量子点杂化空心微球、制备方法及其在油包水乳液分离中的应用 - Google Patents

一种超疏水MXene/碳量子点杂化空心微球、制备方法及其在油包水乳液分离中的应用 Download PDF

Info

Publication number
CN113461011B
CN113461011B CN202110821947.9A CN202110821947A CN113461011B CN 113461011 B CN113461011 B CN 113461011B CN 202110821947 A CN202110821947 A CN 202110821947A CN 113461011 B CN113461011 B CN 113461011B
Authority
CN
China
Prior art keywords
mxene
cps
super
deionized water
microspheres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110821947.9A
Other languages
English (en)
Other versions
CN113461011A (zh
Inventor
鲁红典
陈浩然
汪日圆
杨伟
孟威明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University
Original Assignee
Hefei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University filed Critical Hefei University
Priority to CN202110821947.9A priority Critical patent/CN113461011B/zh
Publication of CN113461011A publication Critical patent/CN113461011A/zh
Application granted granted Critical
Publication of CN113461011B publication Critical patent/CN113461011B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/38Liquid-membrane separation
    • B01D61/40Liquid-membrane separation using emulsion-type membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种超疏水MXene/碳量子点杂化空心微球、制备方法及其在油包水乳液分离中的应用,涉及3D‑MXene材料制备领域。以带正电荷的阳离子型CPS微球为模板,以去离子水为介质,经搅拌通过静电作用将带负电荷的MXene纳米片层自组装包覆在CPS表面上制备复合纳米微球,通过真空冷冻干燥、高温热处理得到具有三维蜂窝状多孔结构,由半球状至球状的MXene空心微球结合MXene纳米片层及其附着的碳量子点组成的MXene空心微球,将其超声分散后真空过滤沉积在微孔滤膜上制备得到多孔MXene薄膜。因其显著提高了表面粗糙度并赋予其超疏水性能,对稳定的油包水型乳液展现出良好的分离效率,能够应用于环境保护领域。

Description

一种超疏水MXene/碳量子点杂化空心微球、制备方法及其在 油包水乳液分离中的应用
技术领域
本发明涉及3D-MXene材料制备领域,具体涉及一种超疏水MXene/碳量子点杂化空心微球、制备方法及其在油包水乳液分离中的应用。
背景技术
二维MXene(2D-MXene)是一种新型的二维过渡金属碳化物或氮化物,因其具有高比表面积、优异的亲水性和电化学性能等特性,已被广泛应用于储能、电磁屏蔽和环境保护等领域。然而,从2D-MXene上剥离的纳米片层由于其固有的分子间作用力,如范德华力和氢键作用,容易发生聚集或重新堆积,从而破坏了纳米尺度的分散状态,阻碍了其本身众多纳米特性的展现及其应用。因此,将2D-MXene构筑成复杂的3D-MXene宏观结构,如多孔网络和薄膜、泡沫、气凝胶和水凝胶等,不仅能够克服重堆积的问题,而且能够赋予3D-MXene优异的宏观性能,从而拓展其在实际应用中的潜力。3D-MXene可以通过多种策略来实现,例如将MXene沉积到多孔基材上,辅助添加其他类型的纳米片,以及模板法等。通过这些途径可以实现3D-MXene多孔结构的可控合成,增加其比表面积和表面粗糙度,拓展在能源转换与存储等领域中的应用。
2D-MXene纳米片层因表面带有大量亲水性官能团如-OH和-O等而具有优异亲水性,基于2D-MXene的薄膜在油/水混合物以及水包油乳液分离领域获得的关注。但是目前关于通过将二维纳米材料构筑成三维多孔材料,利用MXene催化脱氢有机物产生碳量子点,从而将亲水性的2D-MXene调控成超疏水性的3D-MXene并将其应用于油包水型乳液分离领域却鲜有报道。
发明内容
本发明的目的是提供一种超疏水多孔MXene/碳量子点杂化空心微球、制备方法及其在油包水乳液分离中的应用。本发明通过将二维MXene片层构筑成具有三维蜂窝状结构的MXene/碳量子点杂化空心微球(HSMX/CQDs),该三维蜂窝状结构由半球状至球状的MXene空心微球结合MXene纳米片层及其附着的碳量子点构成,其微观结构具有大的表面粗糙度并展现出良好超疏水性,将HSMX/CQDs超声分散后,通过真空过滤沉积在微孔滤膜上,该膜对表面活性剂稳定的油包水型乳液具有高效的破乳能力,从而对稳定的油包水型乳液具有良好的分离效率。
同时,本发明还提供了一种超疏水MXene/碳量子点杂化空心微球的制备方法,通过自牺牲模板法,以带正电荷的阳离子型聚苯乙烯微球(CPS)为模板,以去离子水为介质,经搅拌通过静电作用将带负电荷的Ti3C2Tx-MXene纳米片层自组装包覆在CPS表面上制备Ti3C2Tx-MXene包覆CPS复合纳米微球(CPS@MXene),通过真空冷冻干燥获得CPS@MXene粉末,在氮气保护下通过高温热处理去除CPS模板,CPS在热处理过程中被MXene催化脱氢碳化为碳量子点并附着在MXene空心微球表面或片层夹层之间得到MXene/碳量子点杂化空心微球(HSMX/CQDs),将HSMX/CQDs超声分散后,通过真空过滤沉积在微孔滤膜上,最终制备得到超疏水多孔HSMX/CQDs薄膜。
作为本发明制备的优选技术方案,制备方法中:
带负电荷的Ti3C2Tx-MXene纳米片层的分散液采用化学刻蚀法制备:向浓盐酸中加入氟化锂,利用反应生成的氢氟酸刻蚀碳铝钛,将产物用去离子水反复离心洗涤至中性后,收集沉淀物;向沉淀物中加入去离子水,经超声得到黑色分散液;离心分离分散液,取上清液,得到含单层和/或多层表面带有负电荷的MXene分散液。
MXene分散液的制备方法具体为:称取碳铝钛和氟化锂粉末各0.3~0.6g加入到50mL离心管中,依次加入2~4mL去离子水和6~8mL浓盐酸,保鲜膜封住离心管口后扎孔,20~60rpm磁力搅拌40~60h,离心清洗至pH为7,取100~120mL去离子水溶解沉淀物,在10~20℃下超声分散40~60min,3000~5000rpm离心4~8min取上清液,获得MXene分散液。
带正电荷的阳离子型聚苯乙烯微球(CPS)的分散液采用分散聚合法制备:以苯乙烯为单体,甲醇为分散介质,甲基丙烯酰氧乙基三甲基氯化铵(DMC)为分散剂,偶氮二异丁腈(AIBN)为引发剂,在加热和氮气保护条件下制备CPS微球,经无水乙醇和去离子水反复离心洗涤后获得CPS乳白色产物,最后用去离子水超声分散得到单分散、表面带有正电荷的CPS分散液。
CPS分散液的制备方法具体为:将3~6mL去离子水与30~40mL甲醇混合,再加入0.1~0.3mL DMC,150~300rpm机械搅拌10~20min;将0.03~0.04g AIBN加入到3~6mL苯乙烯中,待AIBN溶解完全后加入到上述混合液中,升温至70~90℃,在氮气保护下反应5~8h,用无水乙醇和去离子水反复离心洗涤后获得CPS乳白色沉淀;加入10~50mL去离子水超声分散20~40min获得CPS分散液。
MXene分散液的浓度为3~5mg/mL,CPS分散液的浓度为30~100mg/mL,CPS与MXene的质量比为10∶1,制备获得CPS微球的直径为500~900nm。
制备CPS@MXene复合微球所采用的搅拌速度为500~2000rpm,于室温下搅拌100~150min;获得CPS@MXene粉末是在-60~-20℃下冷冻10~30h,干燥60~80h;高温热处理去除CPS模板是以4~8℃/min的速率升温至380~450℃,在氮气氛围下保温1~3h;将10~20mg的HSMX/CQDs在1~5mL乙醇中搅拌超声分散1~5min后,通过真空过滤沉积在孔径为0.22μm的聚偏氟乙烯(PVDF)微孔滤膜上,获得超疏水多孔HSMX/CQDs薄膜
制备获得CPS@MXene复合微球的直径为600~1000nm。
另外,本发明还提供了该超疏水多孔HSMX/CQDs薄膜在油包水乳液分离中的应用。
与现有技术相比,本发明的有益效果表现在:
本发明将二维MXene纳米片层构筑成具有三维蜂窝状多孔结构的HSMX/CQDs,显著提高了其表面粗糙度并赋予其超疏水性能,通过真空过滤沉积在聚偏氟乙烯(PVDF)微孔滤膜上,获得超疏水多孔HSMX/CQDs薄膜,该膜对稳定的油包水型乳液展现出良好的分离效率,能够应用于环境保护领域。
附图说明
图1是实施例1和实施例2制备的HSMX/CQDs的扫描电镜图。
图2是实施例1制备的HSMX/CQDs的透射电镜图。
图3是实施例1和实施例2制备的HSMX/CQDs的原子力显微镜照片。
图4是实施例1制备的多孔HSMX/CQDs薄膜的接触角和滚动角以及实施例2制备的多孔HSMX/CQDs薄膜的接触角。
具体实施方式
以下结合实施例和附图对本发明做出进一步的详述。
实施例1
制备超疏水HSMX/CQDs薄膜包括以下步骤:
1、称取碳铝钛和氟化锂粉末各0.5g依次加入到50mL离心管中,依次加入2.5mL去离子水和7.5mL浓盐酸,保鲜膜封住离心管口后扎孔,40rpm磁力搅拌48h,离心清洗至pH为7,取100mL去离子水溶解沉淀物,在19℃下超声分散45min,4000rpm离心5min取上清液,获得MXene分散液,浓度为4mg/mL。
2、将4mL去离子水与36mL甲醇混合,再加入0.1mL DMC,220rpm机械搅拌10min,将0.036g AIBN加入到4mL苯乙烯中,待AIBN溶解完全后加入到上述混合液中,升温至80℃,在氮气保护下反应6h,用无水乙醇和去离子水反复离心洗涤后获得CPS乳白色沉淀;加入20mL去离子水超声分散30min获得CPS分散液,浓度为50mg/mL。
3、将25mL上述MXene分散液与20mL上述CPS分散液混合磁力搅拌,CPS与MXene质量比为10∶1,搅拌速度为1000rpm,于室温下搅拌120min;CPS@MXene在-56℃温度下冷冻24h,干燥时间为72h;高温热处理去除CPS模板是以5℃/min的速率升温至410℃,在氮气氛围下保温时间为2h。
4、将15mg HSMX/CQDs在2mL乙醇中搅拌超声分散1min后,通过真空过滤沉积在孔径为0.22μm的聚偏氟乙烯(PVDF)微孔滤膜上,获得超疏水多孔HSMX/CQDs薄膜。
将100mL石蜡液和0.85g Span 80强烈磁力搅拌10min,再与1mL MB溶液混合4h,获得乳化剂稳定的且液滴粒径较小的油包水乳液。将获得的乳液在0.4-0.6bar真空压力下倒入分离装置,计算分离效率和分离通量。
图1a是实施例1制备的HSMX/CQDs的扫描电镜图。如图1a所示,本发明实施例1所得的HSMX/CQDs呈现三维蜂窝状多孔结构,由半球状MXene空心微球结合MXene纳米片层组成,其孔径约750nm。
图2是实施例1制备的HSMX/CQDs透射电镜图。如图2a所示,碳量子点附着在MXene空心微球上,如图2b所示碳量子点晶格间距为0.35±0.02nm。
图3a是实施例1制备的HSMX/CQDs的原子力显微镜照片。如图所示,本发明实施例1所得的HSMX/CQDs展现出复杂的微观表面形貌,中空MXene半球与MXene纳米片层的堆积方式促进了纳米折叠结构的形成,提高了HSMX/CQDs的表面粗糙度(Ra约为122nm)。
如图4所示,本发明实施例1所得的多孔HSMX/CQDs薄膜接触角测量对应图4a,其接触角为156.4°,滚动角测量对应图4b,其滚动角小于6°,说明该薄膜具有超疏水性。
本发明实施例1所得的超疏水多孔HSMX/CQDs薄膜在分离由Span 80乳化剂稳定的石蜡油和水构成的油包水型乳液的应用中,其油水分离效率为97.6%。
实施例2
作为对比,将实施例1的步骤3调整为:将25mL上述MXene分散液与6mL上述CPS分散液混合磁力搅拌,CPS与MXene质量比为3∶1。其他步骤与实施例1完全相同。
图1b是实施例2制备的HSMX/CQDs的扫描电镜图。如图1b所示,实施例2所得到的HSMX/CQDs由外形较为完整的空心球状MXene结合MXene纳米碎片构成,其孔径约760nm。由此可知,通过调控CPS与MXene之间的比例,可以形成不同微观形态的产物,随着MXene添加量的增加,产物形态由半球状向球状转变。
图3b是实施例2制备的HSMX/CQDs的原子力显微镜照片。如图3b所示,本发明实施例2所得的HSMX/CQDs展现出复杂的微观表面形貌,HSMX/CQDs具有一定表面粗糙度(Ra约为94nm)。
图4c是实施例2制备的多孔HSMX/CQDs薄膜的接触角,其接触角为133.0°,不具备超疏水性能。
实施例3
制备超疏水HSMX/CQDs薄膜包括以下步骤:
1、称取碳铝钛和氟化锂粉末各0.5g依次加入到50mL离心管中,依次加入2mL去离子水和8mL浓盐酸,保鲜膜封住离心管口后扎孔,50rpm磁力搅拌50h,离心清洗至pH为7,取100mL去离子水溶解沉淀物,在15℃下超声分散50min,4000rpm离心5min取上清液,获得MXene分散液,浓度为4.4mg/mL。
2、将4mL去离子水与36mL甲醇混合,再加入0.1mL DMC,220rpm机械搅拌15min,将0.036g AIBN加入到4mL苯乙烯中,待AIBN溶解完全后加入到上述混合液中,升温至83℃,在氮气保护下反应7h,用无水乙醇和去离子水反复离心洗涤后获得CPS乳白色沉淀;加入20mL去离子水超声分散35min获得CPS分散液,浓度为50mg/mL。
3、将22.7mL上述MXene分散液与20mL上述CPS分散液混合磁力搅拌,CPS与MXene质量比为10∶1,搅拌速度为1100rpm,于室温下搅拌110min;CPS@MXene在-56℃温度下冷冻20h,干燥时间为70h;高温热处理去除CPS模板是以6℃/min的速率升温至410℃,在氮气氛围下保温时间为3h。
4、将15mg HSMX/CQDs在3mL乙醇中搅拌超声分散1min后,通过真空过滤沉积在孔径为0.22μm的聚偏氟乙烯(PVDF)微孔滤膜上,获得超疏水多孔HSMX/CQDs薄膜。
本实施例制备的HSMX/CQDs的微观形貌与实施例1基本相似,而且本实施例制备的HSMX/CQDs薄膜接触角为154.6°,说明该薄膜具有超疏水性。
以上内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (10)

1.一种超疏水MXene/碳量子点杂化空心微球的制备方法,其特征在于,通过自牺牲模板法,以带正电荷的阳离子型聚苯乙烯微球(CPS)为模板,以去离子水为介质,经搅拌通过静电作用将带负电荷的Ti3C2Tx-MXene纳米片层自组装包覆在CPS表面上制备Ti3C2Tx-MXene包覆CPS复合纳米微球(CPS@MXene),通过真空冷冻干燥获得CPS@MXene粉末,在氮气保护下通过高温热处理去除CPS模板,CPS在热处理过程中被MXene催化脱氢碳化为碳量子点并附着在MXene空心微球表面或片层夹层之间得到MXene/碳量子点杂化空心微球(HSMX/CQDs);
所述带负电荷的Ti3C2Tx-MXene纳米片层的分散液采用化学刻蚀法制备:向浓盐酸中加入氟化锂,利用反应生成的氢氟酸刻蚀碳铝钛,将产物用去离子水反复离心洗涤至中性后,收集沉淀物;向沉淀物中加入去离子水,经超声得到黑色分散液;离心分离分散液,取上清液,得到含单层和/或多层表面带有负电荷的MXene分散液;
所述带正电荷的阳离子型聚苯乙烯微球(CPS)的分散液采用分散聚合法制备:以苯乙烯为单体,甲醇为分散介质,甲基丙烯酰氧乙基三甲基氯化铵(DMC)为分散剂,偶氮二异丁腈(AIBN)为引发剂,在加热和氮气保护条件下制备CPS微球,经无水乙醇和去离子水反复离心洗涤后获得CPS乳白色产物,最后用去离子水超声分散得到单分散、表面带有正电荷的CPS分散液。
2.如权利要求1所述的制备方法,其特征在于,MXene分散液的制备方法具体为:称取碳铝钛和氟化锂粉末各0.3~0.6 g加入到50 mL离心管中,依次加入2~4 mL去离子水和6~8mL浓盐酸,保鲜膜封住离心管口后扎孔,20~60 rpm磁力搅拌40~60 h,离心清洗至pH为7,取100~120 mL去离子水溶解沉淀物,在10~20 ℃下超声分散40~60 min,3000~5000rpm离心4~8 min取上清液,获得MXene分散液。
3.如权利要求1所述的制备方法,其特征在于,CPS分散液的制备方法具体为:将3~6mL去离子水与30~40 mL甲醇混合,再加入0.1~0.3 mL DMC,150~300 rpm机械搅拌10~20 min;将0.03~0.04 g AIBN加入到3~6 mL苯乙烯中,待AIBN溶解完全后加入到上述混合液中,升温至70~90 ℃,在氮气保护下反应5~8 h,用无水乙醇和去离子水反复离心洗涤后获得CPS乳白色沉淀;加入10~50 mL去离子水超声分散20~40 min获得CPS分散液。
4.如权利要求1所述的制备方法,其特征在于,MXene分散液的浓度为3~5 mg/mL,CPS分散液的浓度为30~100 mg/mL,CPS与MXene的质量比为10∶1,制备获得CPS微球的直径为500~900 nm。
5.如权利要求1所述的制备方法,其特征在于,制备CPS@MXene复合微球所采用的搅拌速度为500~2000 rpm,于室温下搅拌100~150 min;获得CPS@MXene粉末是在-60~-20℃下冷冻10~30 h,干燥60~80 h;高温热处理去除CPS模板是以4~8 ℃/min的速率升温至380~450 ℃,在氮气氛围下保温1~3 h。
6.如权利要求5所述的制备方法,其特征在于,制备获得CPS@MXene复合微球的直径为600~1000 nm。
7.如权利要求1~6任一项所述制备方法制备的超疏水MXene/碳量子点杂化空心微球,其特征在于,具有三维蜂窝状多孔结构,由半球状至球状的MXene空心微球结合MXene纳米片层及其附着的碳量子点组成。
8.利用如权利要求7所述超疏水MXene/碳量子点杂化空心微球制备超疏水多孔HSMX/CQDs薄膜的方法,其特征在于,将MXene/碳量子点杂化空心微球(HSMX/CQDs)超声分散后,通过真空过滤沉积在微孔滤膜上,最终制备得到超疏水多孔HSMX/CQDs薄膜。
9.如权利要求8所述的方法,其特征在于,将10~20 mg的HSMX/CQDs在1~5 mL乙醇中搅拌超声分散1~5 min后,通过真空过滤沉积在孔径为0.22 μm的聚偏氟乙烯(PVDF)微孔滤膜上,获得超疏水多孔HSMX/CQDs薄膜。
10.如权利要求8或9所述方法制备的超疏水多孔HSMX/CQDs薄膜在油包水乳液分离中的应用。
CN202110821947.9A 2021-07-21 2021-07-21 一种超疏水MXene/碳量子点杂化空心微球、制备方法及其在油包水乳液分离中的应用 Active CN113461011B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110821947.9A CN113461011B (zh) 2021-07-21 2021-07-21 一种超疏水MXene/碳量子点杂化空心微球、制备方法及其在油包水乳液分离中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110821947.9A CN113461011B (zh) 2021-07-21 2021-07-21 一种超疏水MXene/碳量子点杂化空心微球、制备方法及其在油包水乳液分离中的应用

Publications (2)

Publication Number Publication Date
CN113461011A CN113461011A (zh) 2021-10-01
CN113461011B true CN113461011B (zh) 2022-08-12

Family

ID=77881572

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110821947.9A Active CN113461011B (zh) 2021-07-21 2021-07-21 一种超疏水MXene/碳量子点杂化空心微球、制备方法及其在油包水乳液分离中的应用

Country Status (1)

Country Link
CN (1) CN113461011B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102528844B1 (ko) * 2021-06-15 2023-05-08 성균관대학교산학협력단 멕신나노닷코어-탄소쉘 다기능성 촉매 및 그의 제조방법
CN115055169A (zh) * 2022-06-21 2022-09-16 深圳市海扬粉体科技有限公司 一种超双疏3D-MXene空心微球粉体及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108129691A (zh) * 2017-12-22 2018-06-08 江南大学 一种超疏水用微纳双级聚合物复合微球的制备方法
CN108630920A (zh) * 2018-04-17 2018-10-09 北京化工大学 一种纳米金属氧化物/MXene异质结构复合材料及其制备方法
CN110606487A (zh) * 2019-10-16 2019-12-24 大连理工大学 一种孔径可控的蜂窝状三维多孔MXene及其通用合成方法
CN111463021A (zh) * 2020-04-09 2020-07-28 北京化工大学 一种三维多孔MXene/石墨烯复合膜及其制备方法和应用
CN112452299A (zh) * 2020-12-09 2021-03-09 山东大学 一种MXene基三维多孔柔性自支撑膜及其制备方法与在电化学吸附染料中的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102061617B1 (ko) * 2017-10-27 2020-01-02 한국과학기술원 그래핀 플레이크로 패시베이션된 콜로이드 양자점 복합체 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108129691A (zh) * 2017-12-22 2018-06-08 江南大学 一种超疏水用微纳双级聚合物复合微球的制备方法
CN108630920A (zh) * 2018-04-17 2018-10-09 北京化工大学 一种纳米金属氧化物/MXene异质结构复合材料及其制备方法
CN110606487A (zh) * 2019-10-16 2019-12-24 大连理工大学 一种孔径可控的蜂窝状三维多孔MXene及其通用合成方法
CN111463021A (zh) * 2020-04-09 2020-07-28 北京化工大学 一种三维多孔MXene/石墨烯复合膜及其制备方法和应用
CN112452299A (zh) * 2020-12-09 2021-03-09 山东大学 一种MXene基三维多孔柔性自支撑膜及其制备方法与在电化学吸附染料中的应用

Also Published As

Publication number Publication date
CN113461011A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
CN113461011B (zh) 一种超疏水MXene/碳量子点杂化空心微球、制备方法及其在油包水乳液分离中的应用
Xie et al. Review of research on template methods in preparation of nanomaterials
AU2020102002A4 (en) Preparation method of graphene-carbon nanotube hybrid sponge
KR101195912B1 (ko) 구형의 다공성 탄소구조체 및 이의 제조 방법
CN107790102B (zh) 一种三维褶皱球状MOFs@rGO吸油材料及制备方法
CN112452299B (zh) 一种MXene基三维多孔柔性自支撑膜及其制备方法与在电化学吸附染料中的应用
Banerjee et al. Surface confined atom transfer radical polymerization: access to custom library of polymer-based hybrid materials for speciality applications
CN109276998B (zh) 一种高性能Janus正渗透膜及其制备方法
US11123696B2 (en) Microbubble integrated structure and method of manufacturing the same
Chen et al. Recent advances in the synthesis and applications of anisotropic carbon and silica-based nanoparticles
CN106378093B (zh) 一种磁性空心石墨烯基复合微球材料的制备方法及其应用
CN107511078B (zh) 太阳光驱动抗污染纳米片组装杂化膜的制备方法
Bao et al. Fabrication of hollow silica spheres and their application in polyacrylate film forming agent
CN113648850B (zh) 具有高通量和高去除率MXene/还原多孔氧化石墨烯(r-HGO)复合膜的制备方法
CN110606487A (zh) 一种孔径可控的蜂窝状三维多孔MXene及其通用合成方法
Zou et al. Synthetic strategies for hollow particles with open holes on their surfaces
CN103359746B (zh) 一种双层中空二氧化硅纳米球及其制备方法
CN110642246B (zh) 一种石墨烯微球的制备方法
CN108597911A (zh) 一种具有贯通介孔结构的二维氮掺杂碳材料及其制备方法
CN108190866B (zh) 一种油包水乳液法简单地控制合成海胆状石墨烯球的方法
CN107880218B (zh) 一种聚合物中空纳米微球及其制备方法和应用
Fu et al. A general synthesis strategy for hierarchical porous metal oxide hollow spheres
CN113680291B (zh) 一种顺磁性金属氧化物/尖晶石/碳复合微球的制备方法
CN114057232A (zh) 一维核壳磁性有序大介孔碳纳米棒及其制备方法
CN107651668B (zh) 一种高密度n掺杂的石墨烯材料的可扩展制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant