CN113460989B - 一种电池级磷酸铁及其制备方法 - Google Patents

一种电池级磷酸铁及其制备方法 Download PDF

Info

Publication number
CN113460989B
CN113460989B CN202110746350.2A CN202110746350A CN113460989B CN 113460989 B CN113460989 B CN 113460989B CN 202110746350 A CN202110746350 A CN 202110746350A CN 113460989 B CN113460989 B CN 113460989B
Authority
CN
China
Prior art keywords
iron phosphate
grade iron
phosphoric acid
battery grade
wet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110746350.2A
Other languages
English (en)
Other versions
CN113460989A (zh
Inventor
谢素龙
刘义明
胡伟
杨守明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Hongda Co ltd
Original Assignee
Sichuan Hongda Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Hongda Co ltd filed Critical Sichuan Hongda Co ltd
Priority to CN202110746350.2A priority Critical patent/CN113460989B/zh
Publication of CN113460989A publication Critical patent/CN113460989A/zh
Application granted granted Critical
Publication of CN113460989B publication Critical patent/CN113460989B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/375Phosphates of heavy metals of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种电池级磷酸铁的制备方法,包括以下步骤:步骤a:将湿法磷酸和碱性化合物混合,反应至PH值为1.8~4.3;步骤b:将步骤a的反应物进行熟化反应,对熟化反应物进行固液分离,得到滤渣和含磷清液;步骤c:将硫酸亚铁溶解成硫酸亚铁溶液,加入氧化剂进行氧化反应,得到硫酸铁溶液;步骤d:将含磷清液与硫酸铁溶液按比例混合,反应得到磷酸铁浆液;步骤e:将磷酸铁浆液进行液固分离,得到磷酸铁滤饼和母液;步骤f:将磷酸铁滤饼洗涤后干燥得到磷酸铁。采用本发明的一种电池级磷酸铁及其制备方法,采用未经净化的湿法磷酸,及工业副产品磷酸亚铁作为主要原材料生产电池级磷酸铁,成本低廉,制备简单。

Description

一种电池级磷酸铁及其制备方法
技术领域
本发明涉及一种电池级磷酸铁及其制备方法,属于磷酸铁生产技术领域。
背景技术
磷酸铁既作为生产锂离子电池正级材料磷酸铁锂的原料,又作为有机农业中的灭螺剂和涂料中基底涂层,应用广泛。磷酸铁的生产方法有多种,电池级磷酸铁对杂质要求极高,对基础原料要求苛刻,目前通常使用高纯度的磷酸或者磷酸盐和铁盐反应,然而这些高纯度的原材料的成本非常的高。目前需要一种能够大幅度降低磷酸铁成本的制备方法,从而降低锂离子电池的生产成本。
湿法磷酸是由硫酸或盐酸等强酸分解磷矿,经过液固分离后所得的是含有多种杂质的磷酸,故湿法磷酸一般用于制造磷肥,如要制取优质的磷酸盐产品,则还需进一步加以净化。湿法磷酸的成本低廉,来源最广泛和廉价的磷源,但是未净化的湿法磷酸中含有Ca、Mg、Al、Fe等杂质,不能直接用来生产电池级磷酸铁,工业应用需要进一步进化净化,但是湿法磷酸净化提纯工艺复杂,用净化后的磷酸制备磷酸铁会造成成本高的问题。磷酸亚铁是生产钛白粉等的工艺副产品,成本较低。
发明内容
本发明的发明目的在于:针对上述存在的问题,提供一种电池级磷酸铁及其制备方法,本发明采用未经净化的湿法磷酸,及工业副产品磷酸亚铁作为主要原材料生产电池级磷酸铁,成本低廉,制备简单。
本发明采用的技术方案如下:
一种电池级磷酸铁及其制备方法,包括以下步骤:
步骤a:将湿法磷酸和碱性化合物混合,反应至PH值为1.8~4.3;
步骤b:将步骤a的反应物进行熟化反应,对熟化反应物进行固液分离,得到滤渣和含磷清液;
步骤c:将硫酸亚铁溶解成硫酸亚铁溶液,加入氧化剂进行氧化反应,得到硫酸铁溶液;
步骤d:将含磷清液与硫酸铁溶液按比例混合,反应得到磷酸铁浆液;
步骤e:将磷酸铁浆液进行液固分离,得到磷酸铁滤饼和母液;
步骤f:将磷酸铁滤饼洗涤后干燥得到磷酸铁。
在本发明步骤a中,通过加入碱性化合物,磷酸、金属离子和碱性化合物中反应生成不溶于水的配合物盐,控制碱性化合物的添加使得混合溶液的pH值为1.8~4.3,发明人发现在pH值为1.8~4.3时,产生的配合物盐在水中的溶解度最低,从而最大限度的去除湿法磷酸中的杂质离子,pH值为1.8~4.3时杂质的去除率可以达到99.5%以上,去除了会影响磷酸铁纯度的杂质。去除大部分杂质离子的含磷清液在与铁离子反应,得到磷酸铁产品,杂质含量低可以达到电池级磷酸铁的要求。在本发明中,如果pH值低于1.8,杂质的去除率会降低;如果pH值高于4.3,会浪费碱性化合物,增加成本,pH值为1.8~4.3时是去除杂质的合理pH值范围。
在本发明中,只去除会影响磷酸铁纯度的金属阳离子,而不用去除不会影响磷酸铁纯度的酸根,不需要将湿法磷酸净化提纯到高品质磷酸,减少湿法磷酸净化提纯工艺,降低成本。制备方法简单,相比直接用高品质磷源制备磷酸铁,可大幅减低磷酸铁成本。
作为优选,步骤a中,将湿法磷酸和碱性化合物混合反应,反应温度为55~100℃,反应时间为1.5~3.5小时。
作为优选,所述湿法磷酸为15~30%(P2O5)浓度的湿法磷酸。
作为优选,所述碱性化合物为氨、氨水、碳酸氢铵、氢氧化钠、碳酸钠、碳酸氢钠、氢氧化钾、碳酸钾、碳酸氢钾中的一种或多种。
在上述方案中,添加碱性化合物并不会引入影响磷酸铁质量的其他金属阳离子。
作为优选,步骤b中,熟化反应时间为1.0~3.0小时,熟化温度为55~65℃。
在上述方案中,通过熟化反应有利于杂质盐类结晶析出和颗粒增大,使得生产的盐能够全部结晶去除,从而增加杂质的去除率。
作为优选,步骤c中,所述氧化剂为双氧水,氧化反应时间为1.0~3.0h。
作为优选,步骤d中,含磷清液与硫酸铁溶液反应至pH值为1.5~3,反应温度为50~95℃,反应时间为3~6小时。
在上述方案中,通过控制pH值为1.5~3达到合理的范围,如果pH值低于1.5,会降低铁离子的收率;如果pH值高于3,会有氢氧化铁生成,影响磷酸铁的纯度。
作为优选,步骤e中的母液,一部分用于溶解步骤c中的硫酸亚铁,另一部分进入浓缩结晶***获得副产品硫酸盐。
在上述方案中,使用母液溶解磷酸亚铁可以提高利用率,减少进入浓缩结晶***的母液量。
作为优选,步骤f中,将磷酸铁滤饼通过去离子水洗涤后,采用旋转闪蒸干燥获得磷酸铁。
一种电池级磷酸铁,由上述电池级磷酸铁的制备方法制得,其特征在于:所述磷酸铁的D50为2-5μm,晶型为无定形和/或斜方晶系。
本发明的一种电池级磷酸铁及其制备方法,以低成本的湿法硫酸和硫酸亚铁作为原材料,通过去除会影响磷酸铁纯度的金属阳离子,从而得到高纯度的电池级磷酸铁,制备简单,成本低廉,能够大范围工业应用减低磷酸铁锂电池的制造成本。
综上所述,由于采用了上述技术方案,本发明的有益效果是:制备简单,成本低廉,可以获得高品质的电池级磷酸铁。
具体实施方式
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
实施例1
本实施例的一种电池级磷酸铁的制备方法,包括以下步骤:
步骤a:将15%(P2O5)浓度湿法磷酸1000g与氨进行中和反应,添加氨至PH值为4.3,反应时间1.5h,反应温度100℃;
步骤b:将步骤a的反应物进行熟化反应3h,反应温度55℃,使用压滤机对熟化反应物进行固液分离,得到滤渣和含磷清液;
步骤c:将200g硫酸亚铁溶解于600g水中制成硫酸亚铁溶液,加入90g双氧水氧化反应1h,得到硫酸铁溶液;
步骤d:将含磷清液与硫酸铁溶液混合至pH值为3,在50℃反应6h,得到磷酸铁浆液;
步骤e:将磷酸铁浆液进行液固分离,得到磷酸铁滤饼和母液;
步骤f:将磷酸铁滤饼通过去离子水洗涤后,采用旋转闪蒸干燥获得磷酸铁。
在本实施例中,步骤e中的母液,一部分用于溶解步骤c中的硫酸亚铁,另一部分进入浓缩结晶***获得副产品硫酸盐。
实施例2
本实施例的一种电池级磷酸铁的制备方法,包括以下步骤:
步骤a:将20%(P2O5)浓度湿法磷酸1000g与氢氧化钠溶液混合,添加氢氧化钠溶液至PH值为3,反应时间2.5h,反应温度76℃;
步骤b:将步骤a的反应物进行熟化反应2h,反应温度60℃,使用压滤机对熟化反应物进行固液分离,得到滤渣和含磷清液;
步骤c:将270g硫酸亚铁溶解于600g水中制成硫酸亚铁溶液,加入120g双氧水氧化反应3h,得到硫酸铁溶液;
步骤d:将含磷清液与硫酸铁溶液混合至pH值为2,在73℃反应4.5h,得到磷酸铁浆液;
步骤e:将磷酸铁浆液进行液固分离,得到磷酸铁滤饼和母液;
步骤f:将磷酸铁滤饼通过去离子水洗涤后,采用旋转闪蒸干燥获得磷酸铁。
实施例3
本实施例的一种电池级磷酸铁的制备方法,包括以下步骤:
步骤a:将30%(P2O5)浓度湿法磷酸1000g和氢氧化钾溶液混合,添加氢氧化钾溶液至PH值为1.8,反应时间3.5h,反应温度55℃;
步骤b:将步骤a的反应物进行熟化反应1h,反应温度65℃,使用压滤机对熟化反应物进行固液分离,得到滤渣和含磷清液;
步骤c:将400g硫酸亚铁溶解于800g水中制成硫酸亚铁溶液,加入160g双氧水氧化反应3h,得到硫酸铁溶液;
步骤d:将含磷清液与硫酸铁溶液混合至pH值为1.5,在95℃反应3h,得到磷酸铁浆液;
步骤e:将磷酸铁浆液进行液固分离,得到磷酸铁滤饼和母液;
步骤f:将磷酸铁滤饼通过去离子水洗涤后,采用旋转闪蒸干燥获得磷酸铁。
实施例4-实施例15
本实施例与实施例3的区别在于:步骤a中的PH值分别为2、2.2、2.4、2.6、2.8、3、3.2、3.4、3.6、3.8、4、4.3。
对比例1
本对比例与实施例3的区别在于:步骤a:将30%(P2O5)浓度湿法磷酸1000g和5g聚合硫酸铁混合,添加氢氧化钠至PH值为1。
对比例2
本对比例与实施例3的区别在于:步骤a:将30%(P2O5)浓度湿法磷酸1000g和5g聚合硫酸铁混合,添加氢氧化钠至PH值为1.2。
对比例3
本对比例与实施例3的区别在于:步骤a:将30%(P2O5)浓度湿法磷酸1000g和5g聚合硫酸铁混合,添加氢氧化钠至PH值为1.4。
对比例4
本对比例与实施例3的区别在于:步骤a:将30%(P2O5)浓度湿法磷酸1000g和5g聚合硫酸铁混合,添加氢氧化钠至PH值为1.6。
对比例5
本对比例与实施例3的区别在于:步骤a:将30%(P2O5)浓度湿法磷酸1000g和5g聚合硫酸铁混合,添加氢氧化钠至PH值为4.5。
对比例6
本对比例与实施例3的区别在于:步骤a:将30%(P2O5)浓度湿法磷酸1000g和5g聚合硫酸铁混合,添加氢氧化钠至PH值为4.7。
对比例7
本对比例与实施例3的区别在于:步骤a:将30%(P2O5)浓度湿法磷酸1000g和5g聚合硫酸铁混合,添加氢氧化钠至PH值为4.9。
对比例8
本对比例与实施例3的区别在于:步骤b不经过熟化,直接固液分离。
对上述实施例和对比例制得的磷酸铁进行检测,其中实施例1-3制得的磷酸铁均符合HG/T 4701-2014的要求,对比例1-3制得的磷酸铁中杂质含磷超标不符合HG/T 4701-2014的要求;并进一步对实施例3-15和对比例1-8中含磷清液进行杂质测试(湿法磷酸中阳离子杂质含量:Ga 0.057%,Mg 0.686%,Al 0.365%),测试含磷清液中杂质结果如下表:
Figure BDA0003142975710000071
Figure BDA0003142975710000081
通过上表不同pH值下的杂质去除情况变化,可以看到,pH值小于1.8时,pH值越小阳离子杂质去除效果越差;pH值在1.8-4.3之间时,阳离子去除效果呈现先涨后降的趋势,在pH值为2.8时阳离子杂质去除效果最好;在pH值大于4.3时,去除效果并不随pH值增加而增加,只会浪费碱性化合物用量,增加成本。总体来说,在pH值为1.8-4.3时具有良好的杂质去除率,从而使制得的磷酸铁能够达到电池级标准。
通过实施例3和对比例8对比,对比例8缺少熟化工艺,使得含磷清液中的杂质并不能完全结晶去除,使制得的磷酸铁杂质含量偏高,不符合电池级磷酸铁要求。
当然在本发明中,采用其他碱性化合物的实施例得到的磷酸铁同样能够达到电池级磷酸铁的要求。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (10)

1.一种电池级磷酸铁的制备方法,其特征在于:包括以下步骤:
步骤a:将湿法磷酸和碱性化合物混合,反应至PH值为1.8~4.3;
步骤b:将步骤a的反应物进行熟化反应,对熟化反应物进行固液分离,得到滤渣和含磷清液;
步骤c:将硫酸亚铁溶解成硫酸亚铁溶液,加入氧化剂进行氧化反应,得到硫酸铁溶液;
步骤d:将含磷清液与硫酸铁溶液按比例混合,反应得到磷酸铁浆液;
步骤e:将磷酸铁浆液进行液固分离,得到磷酸铁滤饼和母液;
步骤f:将磷酸铁滤饼洗涤后干燥得到磷酸铁。
2.如权利要求1所述的电池级磷酸铁的制备方法,其特征在于:步骤a中,将湿法磷酸和碱性化合物混合反应,反应温度为55~100℃,反应时间为1.5~3.5小时。
3.如权利要求1所述的电池级磷酸铁的制备方法,其特征在于:所述湿法磷酸为15~30%P2O5浓度的湿法磷酸。
4.如权利要求1所述的电池级磷酸铁的制备方法,其特征在于:所述碱性化合物为氨、氨水、碳酸氢铵、氢氧化钠、碳酸钠、碳酸氢钠、氢氧化钾、碳酸钾、碳酸氢钾中的一种或多种。
5.如权利要求1所述的电池级磷酸铁的制备方法,其特征在于:步骤b中,熟化反应时间为1.0~3.0小时,熟化温度为55~65℃。
6.如权利要求1所述的电池级磷酸铁的制备方法,其特征在于:步骤c中,所述氧化剂为双氧水,氧化反应时间为1.0~3.0h。
7.如权利要求1所述的电池级磷酸铁的制备方法,其特征在于:步骤d中,含磷清液与硫酸铁溶液反应至pH值为1.5~3,反应温度为50~95℃,反应时间为3~6小时。
8.如权利要求1所述的电池级磷酸铁的制备方法,其特征在于:步骤e中的母液,一部分用于溶解步骤c中的硫酸亚铁,另一部分进入浓缩结晶***获得副产品硫酸盐。
9.如权利要求1所述的电池级磷酸铁及其制备方法,其特征在于:步骤f中,将磷酸铁滤饼通过去离子水洗涤后,采用旋转闪蒸干燥获得磷酸铁。
10.一种电池级磷酸铁,由权利要求1-9任一项所述电池级磷酸铁的制备方法制得,其特征在于:所述磷酸铁的D50为2-5μm,晶型为无定形和/或斜方晶系。
CN202110746350.2A 2021-07-01 2021-07-01 一种电池级磷酸铁及其制备方法 Active CN113460989B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110746350.2A CN113460989B (zh) 2021-07-01 2021-07-01 一种电池级磷酸铁及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110746350.2A CN113460989B (zh) 2021-07-01 2021-07-01 一种电池级磷酸铁及其制备方法

Publications (2)

Publication Number Publication Date
CN113460989A CN113460989A (zh) 2021-10-01
CN113460989B true CN113460989B (zh) 2023-01-31

Family

ID=77877426

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110746350.2A Active CN113460989B (zh) 2021-07-01 2021-07-01 一种电池级磷酸铁及其制备方法

Country Status (1)

Country Link
CN (1) CN113460989B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114906829B (zh) * 2022-04-28 2024-01-02 湖北云翔聚能新能源科技有限公司 一种采用农业级湿法磷酸制备电池级磷酸铁的方法
CN115448271B (zh) * 2022-09-16 2023-10-31 衢州华友钴新材料有限公司 湿法磷酸的纯化方法及纯化***、磷酸铁的制备方法
CN115477293B (zh) * 2022-10-11 2023-09-08 湖北虹润高科新材料有限公司 一种低杂质高比表面积的无水磷酸铁的制备方法
CN115676790B (zh) * 2022-10-28 2024-04-02 贵州川恒化工股份有限公司 一种高振实球形电池级磷酸铁的制备方法
CN115626619B (zh) * 2022-10-28 2024-04-02 贵州川恒化工股份有限公司 一种电池级磷酸铁的制备方法
CN116374978A (zh) * 2023-04-26 2023-07-04 四川大学 制备磷酸铁的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583293B (zh) * 2012-02-09 2014-01-01 昆明川金诺化工股份有限公司 一种电池级正磷酸铁的生产方法
CN103241720B (zh) * 2013-05-20 2015-01-28 昆明理工大学 一种磷酸淤渣制备非晶态磷酸铁的方法
CN108862224B (zh) * 2018-06-27 2021-11-12 武汉工程大学 一种湿法磷酸氨化料浆渣制备磷酸铁的方法
CN111377425A (zh) * 2020-01-19 2020-07-07 江苏乐能电池股份有限公司 一种低成本磷酸铁颗粒的制备方法

Also Published As

Publication number Publication date
CN113460989A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
CN113460989B (zh) 一种电池级磷酸铁及其制备方法
CN109368612B (zh) 一种利用磷酸铁生产废水制备电池级磷酸铁的方法及其制备的磷酸铁
CN101993105B (zh) 一种由磷石膏制备轻质碳酸钙联产硫酸铵的方法
CN104211485B (zh) 生产结晶状磷酸二氢钾和硝酸钾大量元素水溶肥的方法
CN114906829B (zh) 一种采用农业级湿法磷酸制备电池级磷酸铁的方法
CN110342483B (zh) 一种利用磷酸锂废料制备电池级磷酸铁的方法
CN111333047A (zh) 一种利用钛白粉副产品硫酸亚铁合成高纯磷酸铁的方法
CN113526480A (zh) 钛白粉副产物制备磷酸亚铁的方法
CN115321736A (zh) 一种草甘膦生产废水的处理方法及含磷废弃物的高值回用
WO2016059651A1 (en) A process of production of potassium ammonium sulfate compound fertilizer in cost-effective manner directly from concentrated sea bittern
CN109336177B (zh) 一种用双氧水和氨水清洁生产高纯五氧化二钒的方法
CN104891576A (zh) 一种一水合硫酸锰的制备方法
CN1736870A (zh) 硝酸转化法制取硝酸钾方法
CN115676788B (zh) 一种高纯磷酸二氢钾及其制备方法
CN115676790B (zh) 一种高振实球形电池级磷酸铁的制备方法
CN113772647B (zh) 一种高纯磷酸铁及采用多级净化法制备高纯磷酸铁的方法
CN115893749A (zh) 一种锂电正极三元前驱体生产废水的资源化利用方法
CN115477291A (zh) 一种湿法磷酸和钛白副产物制电池级无水磷酸亚铁的方法
CN106829900A (zh) 电石渣用于湿法磷酸脱硫的方法
CN115535979B (zh) 一种磷酸二氢钾及利用磷酸氢钙制备磷酸二氢钾的方法
CN115724453B (zh) 一种磷酸铁母液的净化回收方法
CN110562947A (zh) 一种阳离子金属除杂剂及其应用
CN116477654B (zh) 磷石膏的无害化处理方法
CN117776129A (zh) 利用净化磷酸副产洗余酸生产高纯度电池级磷酸二氢铵的方法
CN116374978A (zh) 制备磷酸铁的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant