CN113328233B - 电子设备 - Google Patents

电子设备 Download PDF

Info

Publication number
CN113328233B
CN113328233B CN202010132991.4A CN202010132991A CN113328233B CN 113328233 B CN113328233 B CN 113328233B CN 202010132991 A CN202010132991 A CN 202010132991A CN 113328233 B CN113328233 B CN 113328233B
Authority
CN
China
Prior art keywords
segment
antenna
metal
gap
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010132991.4A
Other languages
English (en)
Other versions
CN113328233A (zh
Inventor
吴鹏飞
王汉阳
冯堃
余冬
侯猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN202010132991.4A priority Critical patent/CN113328233B/zh
Priority to PCT/CN2021/073626 priority patent/WO2021169700A1/zh
Priority to EP21760008.9A priority patent/EP4099504A4/en
Priority to US17/802,900 priority patent/US20230146114A1/en
Publication of CN113328233A publication Critical patent/CN113328233A/zh
Application granted granted Critical
Publication of CN113328233B publication Critical patent/CN113328233B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • H01Q1/244Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas extendable from a housing along a given path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/35Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请提供一种天线设计方案,通过设置一种槽天线及线天线组成的天线结构,并通过对称馈电和反对称馈电,以使天线结构激励产生四种天线模式:共模槽天线、差模槽天线、共模线天线以及差模线天线,从而实现高隔离度、低ECC的MIMO天线特性。而且,该天线结构能够实现覆盖较多频段的天线,从而使得具有有限空间的电子设备能够发射或者接收较多频段的电磁波信号。

Description

电子设备
技术领域
本申请涉及天线技术领域,特别涉及一种电子设备。
背景技术
电子设备特别是手机产品,随着曲面屏柔性屏等关键技术的快速发展,电子设备的轻薄化、极致屏占比已成为一种趋势,这种设计大大压缩了天线排布空间。在这种天线排布紧张的环境,传统天线很难满足多通信频段的性能需求,故而,如何在手机上实现多频段覆盖的天线成为当务之急。
发明内容
本申请提供一种电子设备。电子设备的天线可覆盖较多的频段。
第一方面,本申请提供了一种电子设备。电子设备包括电路板及天线结构。所述天线结构包括第一金属段、第二金属段、第一导电段、第二导电段、第一馈电电路以及第二馈电电路。所述第一金属段与所述电路板的侧面之间形成第一缝隙。所述第二金属段与所述电路板的侧面之间形成第二缝隙。所述第二缝隙连通所述第一缝隙。
在第一方向上,所述第一金属段包括依次连接的第一部分、第一接地部分和第二部分。所述第二金属段包括依次连接的第三部分、第二接地部分和第四部分。所述第二部分与所述第三部分形成第三缝隙。所述第三缝隙连通所述第一缝隙与所述第二缝隙。所述第一部分背向所述第一接地部分的端部为未接地的开放端。所述第四部分背向所述第二接地部分的端部为未接地的开放端。
所述第一馈电电路的负极接地。所述第一馈电电路的正极连接所述第一金属段的所述第二部分,并且连接所述第二金属段的所述第三部分。
所述第一导电段包括第一端及第二端。所述第一端接地。所述第二端连接所述第一金属段的所述第一部分。所述第二导电段包括第三端及第四端。所述第三端接地。所述第四端连接所述第二金属段的所述第四部分。所述第二馈电电路的负极电连接于所述第一端与所述第二端之间。所述第二馈电电路的正极电连接于所述第三端与所述第四端之间。
在本实施例中,所述天线结构能够激励出多个谐振模式,从而实现天线可覆盖多个频段。
一种实施方式中,所述天线结构还包括第一绝缘段及第二绝缘段。在所述第一方向上,所述第一绝缘段连接于所述第一部分的开放端。所述第二绝缘段连接于所述第四部分的开放端。
一种实施方式中,所述电子设备包括边框,所述电路板、所述第一馈电电路与所述第二馈电电路均位于所述边框所围的区域内。所述第一金属段、所述第二金属段、所述第一绝缘段及所述第二绝缘段均为所述边框的一部分。所述边框还包括填充于所述第三缝隙的第三绝缘段。
在本实施方式中,通过利用边框来形成天线结构的辐射体,从而可以节省天线设计空间。
一种实施方式中,所述天线结构用于产生五个谐振模式,以扩宽所述所述天线结构辐射或者接收信号的频段。
一种实施方式中,所述天线结构还包括桥结构。所述桥结构的一端连接所述第一金属段的所述第二部分。所述桥结构的另一端连接所述第二金属段的所述第三部分。所述第一馈电电路的正极连接于所述桥结构的中部。
在本实施方式中,桥结构的结构简单,易于加工,容易实现。
一种实施方式中,所述天线结构还包括第三导电段、第四导电段、第一匹配电路及第二匹配电路。所述第一导电段的所述第二端依次连接所述第一匹配电路、所述第三导电段及所述第一部分。所述第二导电段的所述第四端依次连接所述第二匹配电路、所述第四导电段及所述第四部分。
一种实施方式中,所述第一导电段与所述第二导电段为从所述电路板中地板延伸出来的两条对称的平行导线。
一种实施方式中,所述电子设备的宽度方向为X方向。所述电子设备的长度方向为Y方向。所述电子设备的厚度方向为Z方向。在Z方向上,所述第一导电段及所述第二导电段与所述第三导电段及所述第四导电段存在高度差。
第二方面,本申请提供了一种电子设备。电子设备包括第一金属段、第二金属段、电路板、第一类天线及第二类天线。在第一方向上,所述第一金属段包括依次连接的第一部分、第一接地部分和第二部分。所述第二金属段包括依次连接的第三部分、第二接地部分和第四部分。所述第二部分与所述第三部分形成第三缝隙,所述第一部分背向所述第一接地部分的端部为未接地的开放端。所述第四部分背向所述第二接地部分的端部为未接地的开放端。
所述第一类天线包括第一缝隙及第一馈电电路。所述第一缝隙连通所述第三缝隙。其中,所述第一缝隙开设在所述第一金属段及所述第二金属段与所述电路板之间。所述第一缝隙包括第一侧边及第二侧边。所述第一侧边由所述电路板的一侧边构成。所述第二侧边由所述第一接地部分、所述第二部分、所述第三部分以及所述第二接地部分构成。所述第一馈电电路的负极接地。所述第一馈电电路的正极连接所述第一金属段的所述第二部分,并且连接所述第二金属段的所述第三部分。
所述第二类天线包括所述第一部分、所述第一接地部分、所述第二接地部分和所述第四部分、第一导电段、第二导电段以及第二馈电电路。所述第一导电段包括第一端及第二端。所述第一端接地。所述第二端连接所述第一金属段的所述第一部分。所述第二导电段包括第三端及第四端。所述第三端接地。所述第四端连接所述第二金属段的所述第四部分。所述第二馈电电路的负极电连接于所述第一端与所述第二端之间。所述第二馈电电路的正极电连接于所述第三端与所述第四端之间。
在本实施例中,天线结构能够激励出多个谐振模式,从而实现天线可覆盖多个频段。
一种实施方式中,所述天线结构还包括第一绝缘段及第二绝缘段。在所述第一方向上,所述第一绝缘段连接于所述第一部分的开放端。所述第二绝缘段连接于所述第四部分的开放端。
一种实施方式中,所述电子设备包括边框。所述电路板、所述第一馈电电路与所述第二馈电电路均位于所述边框所围的区域内。所述第一金属段与所述第二金属段均为所述边框的一部分。所述边框还包括填充于所述第三缝隙的第三绝缘段。
在本实施方式中,通过利用边框来形成天线结构的辐射体,从而可以节省天线设计空间。
一种实施方式中,所述天线结构用于产生五个谐振模式,以扩宽所述所述天线结构辐射或者接收信号的频段。
一种实施方式中,所述天线结构还包括桥结构。所述桥结构的一端连接所述第一金属段的所述第二部分。所述桥结构的另一端连接所述第二金属段的所述第三部分。所述第一馈电电路的正极连接于所述桥结构的中部。
在本实施方式中,桥结构的结构简单,易于加工,容易实现。
一种实施方式中,所述天线结构还包括第三导电段、第四导电段、第一匹配电路及第二匹配电路。所述第一导电段的所述第二端依次连接所述第一匹配电路、所述第三导电段及所述第一部分。所述第二导电段的所述第四端依次连接所述第二匹配电路、所述第四导电段及所述第四部分。
一种实施方式中,所述第一导电段与所述第二导电段为从所述电路板中地板延伸出来的两条对称的平行导线。
一种实施方式中,所述电子设备的宽度方向为X方向。所述电子设备的长度方向为Y方向。所述电子设备的厚度方向为Z方向。在Z方向上,所述第一导电段及所述第二导电段与所述第三导电段及所述第四导电段存在高度差。
第三方面,本申请提供了一种电子设备。电子设备包括电路板及天线结构,所述天线结构包括第一金属段、第二金属段、第三金属段、第一导电段、第二导电段、第一馈电电路以及第二馈电电路。所述第一金属段与所述电路板的侧面之间形成第一缝隙。所述第二金属段与所述电路板的侧面之间形成第二缝隙。所述第三金属段与所述电路板的侧面之间形成第三缝隙,所述第一缝隙、所述第二缝隙及所述第三缝隙相互连通。
在第一方向上,所述第二金属段包括依次连接的第一部分、第一接地部分和第二部分。所述第一金属段的一端与所述第一部分形成第四缝隙,另一端接地。所述第三金属段的一端与所述第二部分形成第五缝隙,另一端接地。所述第四缝隙与所述第五缝隙连通所述第一缝隙、所述第二缝隙及所述第三缝隙。
所述第一馈电电路的负极接地,所述第一馈电电路的正极连接所述第二金属段的所述第一部分以及所述第二部分。
所述第一导电段包括第一端及第二端。所述第一端接地,所述第二端连接所述第一金属段。所述第二导电段包括第三端及第四端。所述第三端接地。所述第四端连接所述第三金属段。所述第二馈电电路的负极电连接于所述第一端与所述第二端之间。所述第二馈电电路的正极电连接于所述第三端与所述第四端之间。
一种实施方式中,所述天线结构用于产生六个谐振模式,以扩宽所述天线结构辐射或者接收信号的频段。
一种实施方式中,所述电子设备包括边框。所述电路板、所述第一馈电电路与所述第二馈电电路均位于所述边框所围的区域内。所述第一金属段、所述第二金属段及所述第三金属段均为所述边框的一部分。所述边框还包括填充于所述第四缝隙的第一绝缘段,以及填充于所述第五缝隙的第二绝缘段。
一种实施方式中,所述天线结构还包括桥结构。所述桥结构的一端连接所述第二金属段的所述第一部分。所述桥结构的另一端连接所述第二金属段的所述第二部分。所述第一馈电电路的正极连接于所述桥结构的中部。
一种实施方式中,所述天线结构还包括第三导电段、第四导电段、第一匹配电路及第二匹配电路。所述第一导电段的所述第二端依次连接所述第一匹配电路、所述第三导电段及所述第一金属段。所述第二导电段的所述第四端依次连接所述第二匹配电路、所述第四导电段及所述第三金属段。
一种实施方式中,所述第一导电段与所述第二导电段为从所述电路板中地板延伸出来的两条对称的平行导线。
一种实施方式中,所述电子设备的宽度方向为X方向。所述电子设备的长度方向为Y方向。所述电子设备的厚度方向为Z方向。在Z方向上,所述第一导电段及所述第二导电段与所述第三导电段及所述第四导电段存在高度差。
第四方面,本申请提供一种电子设备。电子设备包括电路板及天线结构。所述天线结构包括第一金属段、第二金属段、第三金属段、第四金属段、第一导电段、第二导电段、第一馈电电路以及第二馈电电路。所述第一金属段与所述电路板的侧面之间形成第一缝隙。所述第二金属段与所述电路板的侧面之间形成第二缝隙。所述第三金属段与所述电路板的侧面之间形成第三缝隙。所述第四金属段与所述电路板的侧面之间形成第四缝隙。所述第一缝隙、所述第二缝隙、所述第三缝隙及所述第四缝隙相互连通。
在第一方向上,所述第二金属段与所述第一金属段之间形成第五缝隙。所述第二金属段与所述第三金属段形成第六缝隙。所述第三金属段与所述第四金属段之间形成第七缝隙。所述第五缝隙、所述第六缝隙与所述第七缝隙连通所述第一缝隙、所述第二缝隙、所述第三缝隙及所述第四缝隙。所述第一金属段背向所述第五缝隙的端部接地。所述第二金属段朝向所述第五缝隙的端部接地。所述第三金属段朝向所述第七缝隙的端部接地。所述第四金属段背向所述第七缝隙的端部接地。
所述第一馈电电路的负极接地。所述第一馈电电路的正极连接所述第二金属段以及所述第三金属段。
所述第一导电段包括第一端及第二端。所述第一端接地。所述第二端连接所述第一金属段。所述第二导电段包括第三端及第四端。所述第三端接地。所述第四端连接所述第四金属段。所述第二馈电电路的负极电连接于所述第一端与所述第二端之间。所述第二馈电电路的正极电连接于所述第三端与所述第四端之间。
在本实施例中,天线结构能够激励出多个谐振模式,从而实现天线可覆盖多个频段。
一种实施方式中,所述电子设备包括边框。所述电路板、所述第一馈电电路与所述第二馈电电路均位于所述边框所围的区域内。所述第一金属段、所述第二金属段、所述第三金属段及所述第四金属段均为所述边框的一部分。所述边框还包括填充于所述所述第五缝隙的第一绝缘段、填充于所述第六缝隙的第二绝缘段,以及填充于所述第七缝隙的第三绝缘段。
在本实施方式中,通过利用边框来形成天线结构的辐射体,从而可以节省天线设计空间。
一种实施方式中,所述天线结构还包括桥结构。所述桥结构的一端连接所述所述第二金属段的所述第一部分。所述桥结构的另一端连接所述第二金属段的所述第二部分。所述第一馈电电路的正极连接于所述桥结构的中部。
在本实施方式中,桥结构的结构简单,易于加工,容易实现。
一种实施方式中,所述天线结构还包括第三导电段、第四导电段、第一匹配电路及第二匹配电路。所述第一导电段的所述第二端依次连接所述第一匹配电路、所述第三导电段及所述第一金属段。所述第二导电段的所述第四端依次连接所述第二匹配电路、所述第四导电段及所述第三金属段。
在本实施方式中,第一匹配电路用于匹配天线阻抗。此时,第一匹配电路可用于缩小第一导电段以及第三导电段的尺寸。所述第二匹配电路也用于匹配天线阻抗。此时,第二匹配电路可用于缩小第二导电段以及第四导电段的尺寸。
一种实施方式中,所述第一导电段与所述第二导电段为从所述电路板中地板延伸出来的两条对称的平行导线。
一种实施方式中,所述电子设备的宽度方向为X方向。所述电子设备的长度方向为Y方向,所述电子设备的厚度方向为Z方向。在Z方向上,所述第一导电段及所述第二导电段与所述第三导电段及所述第四导电段存在高度差。
第五方面,本申请提供一种电子设备。电子设备包括电路板及天线结构。所述天线结构包括第一金属段、第二金属段、第三金属段、第一导电段、第二导电段、第一馈电电路以及第二馈电电路。所述第一金属段与所述电路板的侧面之间形成第一缝隙。所述第二金属段与所述电路板的侧面之间形成第二缝隙。所述第三金属段与所述电路板的侧面之间形成第三缝隙。所述第一缝隙、所述第二缝隙及所述第三缝隙相互连通。
在第一方向上,所述第二金属段包括依次连接的第一部分、第一接地部分和第二部分。所述第一金属段与所述第一部分形成第四缝隙。所述第三金属段与所述第二部分形成第五缝隙。所述第四缝隙与所述第五缝隙连通所述第一缝隙、所述第二缝隙及所述第三缝隙。所述第一金属段朝向所述第二金属段的端部接地。所述第四金属段朝向所述第二金属段的端部接地。
所述第一馈电电路的负极接地。所述第一馈电电路的正极连接所述第二金属段的所述第一部分以及所述第二部分。
所述第一导电段包括第一端及第二端。所述第一端接地。所述第二端连接所述第一金属段。所述第二导电段包括第三端及第四端。所述第三端接地。所述第四端连接所述第三金属段。所述第二馈电电路的负极电连接于所述第一端与所述第二端之间。所述第二馈电电路的正极电连接于所述第三端与所述第四端之间。
在本实施例中,天线结构能够激励出多个谐振模式,从而实现天线可覆盖多个频段。
一种实施方式中,所述电子设备包括边框。所述电路板、所述第一馈电电路与所述第二馈电电路均位于所述边框所围的区域内。所述第一金属段、所述第二金属段及所述第三金属段均为所述边框的一部分。所述边框还包括填充于所述所述第四缝隙的第一绝缘段,以及填充于所述第五缝隙的第二绝缘段。
在本实施方式中,通过利用边框来形成天线结构的辐射体,从而可以节省天线设计空间。
一种实施方式中,所述天线结构还包括桥结构。所述桥结构的一端连接所述所述第二金属段的所述第一部分。所述桥结构的另一端连接所述第二金属段的所述第二部分。所述第一馈电电路的正极连接于所述桥结构的中部。
在本实施方式中,桥结构的结构简单,易于加工,容易实现。
一种实施方式中,所述天线结构还包括第三导电段、第四导电段、第一匹配电路及第二匹配电路。所述第一导电段的所述第二端依次连接所述第一匹配电路、所述第三导电段及所述第一金属段。所述第二导电段的所述第四端依次连接所述第二匹配电路、所述第四导电段及所述第三金属段。
在本实施方式中,第一匹配电路用于匹配天线阻抗。此时,第一匹配电路可用于缩小第一导电段以及第三导电段的尺寸。所述第二匹配电路也用于匹配天线阻抗。此时,第二匹配电路可用于缩小第二导电段以及第四导电段的尺寸。
一种实施方式中,所述第一导电段与所述第二导电段为从所述电路板中的地板延伸出来的两条对称的平行导线。
一种实施方式中,所述电子设备的宽度方向为X方向。所述电子设备的长度方向为Y方向。所述电子设备的厚度方向为Z方向。在Z方向上,所述第一导电段及所述第二导电段与所述第三导电段及所述第四导电段存在高度差。
第六方面,本申请提供一种电子设备。电子设备包括电路板及天线结构。所述天线结构包括第一金属段、第二金属段、第三金属段、第一导电段、第二导电段、第一馈电电路以及第二馈电电路。所述第一金属段与所述电路板的侧面之间形成第一缝隙。所述第二金属段与所述电路板的侧面之间形成第二缝隙。所述第三金属段与所述电路板的侧面之间形成第三缝隙。所述第一缝隙、所述第二缝隙及所述第三缝隙相互连通。
在第一方向上,所述第一金属段的一端与所述第二金属段形成第四缝隙,另一端接地。所述第三金属段的一端与所述第二金属段形成第五缝隙,另一端接地。所述第四缝隙与所述第五缝隙连通所述第一缝隙、所述第二缝隙及所述第三缝隙。所述第二金属段朝向所述第四缝隙的端部接地,所述第二金属段朝向所述第五缝隙的端部接地。
所述第一馈电电路的负极接地,所述第一馈电电路的正极连接所述第二金属段。
所述第一导电段包括第一端及第二端。所述第一端接地,所述第二端连接所述第一金属段。所述第二导电段包括第三端及第四端。所述第三端接地。所述第四端连接所述第三金属段。所述第二馈电电路的负极电连接于所述第一端与所述第二端之间。所述第二馈电电路的正极电连接于所述第三端与所述第四端之间。
在本实施例中,天线结构能够激励出多个谐振模式,从而实现天线可覆盖多个频段。
一种实施方式中,所述电子设备包括边框。所述电路板、所述第一馈电电路与所述第二馈电电路均位于所述边框所围的区域内。所述第一金属段、所述第二金属段及所述第三金属段均为所述边框的一部分。所述边框还包括填充于所述所述第四缝隙的第一绝缘段,以及填充于所述第五缝隙的第二绝缘段。
在本实施方式中,通过利用边框来形成天线结构的辐射体,从而可以节省天线设计空间。
一种实施方式中,所述天线结构还包括第三导电段、第四导电段、第一匹配电路及第二匹配电路。所述第一导电段的所述第二端依次连接所述第一匹配电路、所述第三导电段及所述第一金属段。所述第二导电段的所述第四端依次连接所述第二匹配电路、所述第四导电段及所述第三金属段。
在本实施方式中,第一匹配电路用于匹配天线阻抗。此时,第一匹配电路可用于缩小第一导电段以及第三导电段的尺寸。所述第二匹配电路也用于匹配天线阻抗。此时,第二匹配电路可用于缩小第二导电段以及第四导电段的尺寸。
一种实施方式中,所述第一导电段与所述第二导电段为从所述电路板中地板延伸出来的两条对称的平行导线。
一种实施方式中,所述电子设备的宽度方向为X方向。所述电子设备的长度方向为Y方向。所述电子设备的厚度方向为Z方向。在Z方向上,所述第一导电段及所述第二导电段与所述第三导电段及所述第四导电段存在高度差。
附图说明
图1是本申请实施例提供的电子设备的一种实施方式的结构示意图;
图2是图1所示的电子设备的分解示意图;
图3A为本申请涉及的共模槽天线的示意图;
图3B为共模槽天线模式的电流、电场、磁流的分布的示意图;
图4A为本申请涉及的差模槽天线的示意图;
图4B为差模槽天线模式的电流、电场、磁流的分布的示意图;
图5A示出了本申请提供的共模线天线;
图5B示出了本申请提供的共模线天线模式的电流、电场的分布示意图;
图6A示出了本申请提供的差模线天线;
图6B示出了本申请提供的差模线天线模式的电流、电场的分布;
图7是图1所示电子设备在A-A线处的剖面示意图;
图8是图7所示的电子设备在B处的一种实施方式的放大示意图;
图9是图8所示的电子设备的天线结构的一种实施方式的示意图;
图10是图9所示天线结构的反射系数曲线图;
图11是图9所示天线结构的效率曲线图;
图12是图9所示天线结构的隔离度曲线图;
图13a是图9所示的天线结构在频率为1.84GHz的信号下的电流及电场的流向示意图;
图13b是图9所示的天线结构在频率为2.07GHz的信号下的电流及电场的流向示意图;
图13c是图9所示的天线结构在频率为2.49GHz的信号下的电流及电场的流向示意图;
图13d是图9所示的天线结构在频率为2.04GHz的信号下的电流及电场的流向示意图;
图13e是图9所示的天线结构在频率为2.21GHz的信号下的电流及电场的流向示意图;
图13f是图9所示的天线结构在频率为1.84GHz的信号下的辐射方向示意图;
图13g是图9所示的天线结构在频率为2.07GHz的信号下的辐射方向示意图;
图13h是图9所示的天线结构在频率为2.49GHz的信号下的辐射方向示意图;
图13i是图9所示的天线结构在频率为2.04GHz的信号下的辐射方向示意图;
图13j是图9所示的天线结构在频率为2.21GHz的信号下的辐射方向示意图;
图14是图8所示的电子设备的天线结构的另一种实施方式的示意图;
图15是图8所示的电子设备的天线结构的再一种实施方式的示意图;
图16是图7所示的电子设备在B处的另一种实施方式的放大示意图;
图17是图16所示的电子设备的天线结构的一种实施方式的示意图;
图18是图17所示天线结构的反射系数曲线图;
图19是图17所示天线结构的效率曲线图;
图20是图17所示天线结构的隔离度曲线图;
图21a是图17所示的天线结构在频率为1.75GHz的信号下的电流及电场的流向示意图;
图21b是图17所示的天线结构在频率为2.36GHz的信号下的电流及电场的流向示意图;
图21c是图17所示的天线结构在频率为2.79GHz的信号下的电流及电场的流向示意图;
图21d是图17所示的天线结构在频率为1.87GHz的信号下的电流及电场的流向示意图;
图21e是图17所示的天线结构在频率为2.36GHz的信号下的电流及电场的流向示意图;
图21f是图17所示的天线结构在频率为2.87GHz的信号下的电流及电场的流向示意图;
图21g是图17所示的天线结构在频率为1.75GHz的信号下的辐射方向的示意图;
图21h是图17所示的天线结构在频率为2.36GHz的信号下的辐射方向的示意图;
图21i是图17所示的天线结构在频率为2.79GHz的信号下的辐射方向的示意图;
图21j是图17所示的天线结构在频率为1.87GHz的信号下的辐射方向的示意图;
图21k是图17所示的天线结构在频率为2.36GHz的信号下的辐射方向的示意图;
图21l是图17所示的天线结构在频率为2.87GHz的信号下的辐射方向的示意图;
图22是图16所示的电子设备的天线结构的另一种实施方式的示意图;
图23a是图7所示的电子设备在B处的另一种实施方式的放大示意图;
图23b是图23a所示的电子设备的天线结构的示意图;
图24a是图7所示的电子设备在B处的另一种实施方式的放大示意图;
图24b是图24a所示的电子设备的天线结构的示意图;
图25a是图7所示的电子设备在B处的另一种实施方式的放大示意图;
图25b是图25a所示的电子设备的天线结构的示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
请参阅图1,图1是本申请实施例提供的电子设备的一种实施方式的结构示意图。电子设备100可以为手机、平板电脑(tablet personal computer)、膝上型电脑(laptopcomputer)、个人数码助理(personal digital assistant,PDA)、照相机、个人计算机、笔记本电脑、车载设备、可穿戴设备、增强现实(augmented reality,AR)眼镜、AR头盔、虚拟现实(virtual reality,VR)眼镜或者VR头盔。图1所示实施例的电子设备100以手机为例进行阐述。其中,为了便于描述,如图1所示,定义电子设备100的宽度方向为X轴。电子设备100的长度方向为Y轴。电子设备100的厚度方向为Z轴。
请参阅图2,并结合图1所示,图2是图1所示的电子设备的分解示意图。电子设备100包括壳体10、屏幕20及电路板30。
其中,壳体10可用于支撑屏幕20以及电子设备100内相关器件。
一种实施方式中,壳体10包括后盖11及边框12。后盖11与屏幕20相对设置。后盖11与屏幕20安装于边框12的相背两侧,此时,后盖11、边框12与屏幕20共同围设出收容空间13。收容空间13可用于收容电子设备100的器件,例如电池、扬声器、麦克风或者听筒。结合附图1所示,附图1示意了后盖11、边框12与屏幕20围成大致呈长方体的结构。
一种实施方式中,后盖11可通过粘胶固定连接于边框12上。在另一种实施方式中,后盖11也可以与边框12形成一体结构,即后盖11与边框12一体成型。
其中,后盖11的材质可以是金属材料,也可以是绝缘材料,例如玻璃或者塑料等。此外,边框12的材质可以为金属材料,也可以为绝缘材料,例如塑料或者玻璃等。
其中,屏幕20安装于壳体10。屏幕20可用于显示图像、文字等。
一种实施方式中,屏幕20包括保护盖板21和显示屏22。保护盖板21层叠于显示屏22。保护盖板21可以紧贴显示屏22设置,可主要用于对显示屏22起到保护防尘作用。保护盖板21的材质可以为但不仅限于为玻璃。显示屏22可以采用有机发光二极管(organiclight-emitting diode,OLED)显示屏,有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light-emitting diode,AMOLED)显示屏,迷你发光二极管(mini organic light-emitting diode)显示屏,微型发光二极管(micro organic light-emitting diode)显示屏,微型有机发光二极管(micro organic light-emitting diode)显示屏,量子点发光二极管(quantum dot light emitting diodes,QLED)显示屏。
其中,电路板30可用于安装电子设备100的电子元器件。例如,电子元器件可以包括中央处理器(central processing unit,CPU)、电池管理单元和基带处理单元。电路板30位于屏幕20与后盖11之间,也即电路板30位于收容空间13内。电路板30在电子设备100内的位置不仅限于附图1虚线所示意的位置。
此外,电路板30可以为硬质电路板,也可以为柔性电路板,也可以为软硬结合电路板。此外,电路板30可以采用FR-4介质板,也可以采用罗杰斯(Rogers)介质板,也可以采用Rogers和FR-4的混合介质板,等等。这里,FR-4是一种耐燃材料等级的代号,Rogers介质板为一种高频板。
此外,电子设备100包括多个天线。在本申请中,“多个”是指至少两个。天线用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。
电子设备100可以通过天线,以利用以下一种或多种通信技术与网络或其他设备通信。其中,通信技术包括蓝牙(bluetooth,BT)通信技术、全球定位***(globalpositioning system,GPS)通信技术、无线保真(wirelessfidelity,Wi-Fi)通信技术、全球移动通讯***(global system for mobile communications,GSM)通信技术、宽频码分多址(wideband code division multiple access,WCDMA)通信技术、长期演进(long termevolution,LTE)通信技术、5G通信技术、SUB-6G通信技术以及未来其他通信技术等。
此外,天线包括接地板。接地板可以用于可以用于使天线的辐射体接地。接地板可以为电子设备100的电路板30,也可以为电子设备100的部分壳体10。当然,接地板也可以集成在电子设备100的其他部件中,例如屏幕20。在本申请中,以接地板是电路板30为例进行描述。
可以理解的是,图1及图2仅示意性的示出了电子设备100包括的一些部件,这些部件的实际形状、实际大小和实际构造不受图1及图2限定。
此外,为了给用户带来更为舒适的视觉感受,电子设备100可以采用全面屏工业设计(industry design,ID)。全面屏意味着极大的屏占比(通常在90%以上)。全面屏的边框12宽度大幅缩减,需要对电子设备100内部器件,如前置摄像头、受话器、指纹识别器、天线等,进行重新布局。尤其对于天线设计来说,净空区域缩减,天线空间进一步被压缩。而天线的尺寸、带宽、效率是相互关联、相互影响的,减小天线尺寸(空间),天线的效率带宽积(efficiency-bandwidth product)势必减小。
在传统的天线设计中,在天线设计空间进一步缩减的情况下,在金属边框、玻璃后盖这种常见ID的手机上,往往在整机四周布局多个不同的辐射体来实现多输入多输出(multi-input multi-output,MIMO)天线。但是,这多个不同的辐射体需要在天线形式、接地、馈电等方面符合较高要求,才能实现较高的天线隔离度以及较低的包络相关系数(envelopeIcorrelation coefficient,ECC)。
本申请提供的天线设计方案可应用于MIMO天线中。通过设置一种天线结构,以及利用两种馈电方式:对称馈电和反对称馈电,可实现高隔离度、低ECC的MIMO天线特性。此外,天线结构还能实现覆盖较多频段的天线,从而使得具有有限空间的电子设备100也可以发射或者接收较多频段的电磁波信号。
首先,介绍本申请涉及四个天线模式。
1.共模(common mode,CM)槽天线模式
如图3A所示,图3A为本申请涉及的共模槽天线的示意图。槽天线101可包括:缝隙103、馈电点107以及馈电点109。其中,缝隙103可开设在PCB17的地板上。缝隙103的一侧设有开口105,开口105可具体开设在该侧的中间位置。馈电点107以及馈电点109可分别设置在开口105的两侧。馈电点107、馈电点109可分别用于连接槽天线101的馈源的正极、负极。例如,采用同轴传输线对槽天线101进行馈电,同轴传输线的中心导体(transmission linecenter conductor)可通过传输线连接至馈电点107,同轴传输线的外导体(transmissionline outer conductor)可通过传输线连接至馈电点109。同轴传输线的外导体是接地的。
也即是说,槽天线101可在开口105处馈电,开口105又可以称为馈电处。馈源的正极可连接在开口105的一侧,馈源的负极可连接在开口105的另一侧。
如图3B所示,图3B为共模槽天线模式的电流、电场、磁流的分布的示意图。电流在槽天线101的中间位置两侧呈现同向分布,但电场、磁流在槽天线101的中间位置两侧呈现反向分布。图3A中示出的这种馈电结构可以称为反对称馈电结构。图3B所示的这种槽天线模式可以称为CM槽天线模式。图3B所示的电场、电流、磁流可分别称为CM槽天线模式的电场、电流、磁流。
CM槽天线模式的电流、电场是槽天线101的中间位置两侧的槽各自工作在1/4波长模式产生的:电流在槽天线101的中间位置处弱,在槽天线101的两端强。电场在槽天线101的中间位置处强,在槽天线101的两端弱。
2.差模(differential mode,DM)槽天线模式
如图4A所示,图4A为本申请涉及的差模槽天线的示意图。槽天线110可包括:缝隙113、馈电点117以及馈电点115。其中,缝隙113可开设在PCB17的地板上。馈电点117、馈电点115可分别设置在缝隙113的两个侧边的中间位置。馈电点117、馈电点115可分别用于连接槽天线110的馈源的正极、负极。例如,采用同轴传输线对槽天线110进行馈电,同轴传输线的中心导体可通过传输线连接至馈电点117,同轴传输线的外导体可通过传输线连接至馈电点115。同轴传输线的外导体是接地的。
也即是说,槽天线110的中间位置112处连接馈源,中间位置112又可以称为馈电处。馈源的正极可连接缝隙113的一侧边,馈源的负极可连接缝隙113的另一侧边。
如图4B所示,图4B为差模槽天线模式的电流、电场、磁流的分布的示意图。电流在槽天线110的中间位置112两侧呈现反向分布,但电场、磁流在槽天线110的中间位置112两侧呈现同向分布。图4A中示出的这种馈电结构可以称为对称馈电结构。图4B所示的这种槽天线模式可以称为DM槽天线模式。图4B所示的电场、电流、磁流可分布称为DM槽天线模式的电场、电流、磁流。
DM槽天线模式的电流、电场是整个缝隙113工作在1/2波长模式产生:电流在槽天线110的中间位置处弱,在槽天线110的两端强。电场在槽天线110的中间位置处强,在槽天线110的两端弱。
3.共模(common mode,CM)线天线模式
如图5A所示,图5A示出了本申请提供的共模线天线。线天线101在中间位置103处连接馈源。馈源的正极连接在线天线101的中间位置103,馈源的负极连接地(例如地板)。
如图5B所示,图5B示出了本申请提供的共模线天线模式的电流、电场的分布示意图。电流在中间位置103两侧反向,呈现对称分布;电场在中间位置103两侧,呈现同向分布。如图5B所示,馈电102处的电流呈现同向分布。基于馈电102处的电流同向分布,图5A中示出的这种馈电结构可以称为对称馈电结构。图5B所示的这种线天线模式,可以称为CM线天线模式。图5B所示的电流、电场可分别称为CM线天线模式的电流、电场。
CM线天线模式的电流、电场是线天线101在中间位置103两侧的两个水平枝节作为1/4波长天线产生的。电流在线天线101的中间位置103处强,在线天线101的两端弱。电场在线天线101的中间位置103处弱,在线天线101的两端强。
4.差模(differential mode,DM)线天线模式
如图6A所示,图6A示出了本申请提供的差模线天线。线天线104在中间位置106处连接馈源。馈源的正极连接在中间位置106的一侧,馈源的负极连接在中间位置106的另一侧。
如图6B所示,图6B示出了本申请提供的差模线天线模式的电流、电场的分布。电流在中间位置106两侧同向,呈现反对称分布;电场在中间位置106两侧呈反向分布。如图6B所示,馈电105处的电流呈现反向分布。基于馈电105处的电流反向分布,图6A所示出的这种馈电结构可以称为反对称馈电结构。图6B所示的这种线天线模式可以称为DM线天线模式。图6B所示的电流、电场可分别称为DM线天线模式的电流、电场。
DM线天线模式的电流、电场是整个线天线104作为1/2波长天线产生的。电流在线天线104的中间位置106处强,在线天线104的两端弱。电场在线天线104的中间位置106处弱,在线天线104的两端强。
第一种实施例:通过设置一种槽天线和线天线组成的天线结构,并利用两种馈电方式,以使天线结构激励出四种天线模式:共模槽天线、差模槽天线、共模线天线及差模线天线。这样,本实施例可通过两种馈电方式,以使槽天线和线天线组成的天线结构激励出多种谐振模式,从而实现天线可覆盖多个频段。
请参阅图7,图7是图1所示电子设备在A-A线处的剖面示意图。边框12包括相对设置的第一长边框121以及第二长边框122与相对设置的第一短边框123以及第二短边框124。第一短边框123与第二短边框124连接在第一长边框121与第二长边框122之间。此时,边框12的形状呈矩形,或者大致呈矩形。电路板30位于第一长边框121、第二长边框122、第一短边框123以及第二短边框124所围成的区域内。在本实施例中,天线结构的辐射体是第一短边框123的一部分为例进行说明。在其他实施例中,天线结构的辐射体也可以是第一长边框121的一部分、第二长边框122的一部分或者第二短边框124的一部分。当然,在其他实施例中,第一长边框121的一部分、第二长边框122的一部分、第一短边框123的一部分以及第二短边框124的一部分中的两个或者两个以上均可以作为天线结构的辐射体。
请参阅图8,图8是图7所示的电子设备在B处的一种实施方式的放大示意图。
首先,结合相关附图具体描述一下槽天线的辐射体的结构以及线天线的辐射体的结构。
在第一方向上(附图8示意了第一方向为X方向,在其他实施方式中,第一方向也可以为Y方向),第一短边框123包括依次连接的第一金属段的1231、第一绝缘段1232和第二金属段1233,也即第一绝缘段1232连接在第一金属段1231与第二金属段1233之间。此时,第一绝缘段1232将第一金属段1231与第二金属段1233电隔离。可以理解的是,第一金属段1231与第二金属段1233之间形成第三缝隙。第一绝缘段1232可以通过在第三缝隙内填充绝缘材料所形成,例如绝缘材料可以为聚合物、玻璃、陶瓷等材料或者这些材料的组合。在其他实施例中,第三缝隙内可填充空气,也即第三缝隙未填充任何绝缘材料。
在其他实施例中,第三缝隙内也可以设置有至少一个悬浮金属段。此时,第三缝隙内被悬浮金属段分成多个部分。
在其他实施例中,第一金属段的1231与第二金属段1233的位置可以对调。此时,第一金属段的1231位于第一绝缘段1232的右边。第二金属段1233位于第一绝缘段1232的左边。
第一金属段的1231包括依次连接的第一部分1、第一接地部分2及第二部分3。换言之,第一接地部分2连接在第一部分1与第二部分3之间。第一接地部分2指的是第一金属段的1231中接地的部分。第一接地部分2的大小及形状不局限于附图8所示意的大小及形状。
可以理解的是,第一接地部分2接地的方式具有多种。一种实施方式中,边框12包括连接枝节125。连接枝节125的材质为导电材料,例如金属材料。此时,第一接地部分2通过连接枝节125电连接于电路板30的地板。连接枝节125可以与第一金属段1231为一体成型结构。当然,连接枝节125也可以通过焊接或者粘接固定于第一金属段1231。在其他实施方式中,电子设备100也可以包括弹片。第一接地部分2通过弹片电连接于电路板30的地板。
此外,第一金属段1231与电路板30之间设置有第一缝隙31。第一缝隙31连通第一金属段1231与第二金属段1233之间形成第三缝隙。一种实施方式中,第一缝隙31内可填充绝缘材料,例如第一缝隙31内可填充聚合物、玻璃、陶瓷等材料或者这些材料的组合。另一种实施方式中,第一缝隙31内可填充空气,也即第一缝隙31未填充任何绝缘材料。
此外,第二金属段1233包括第三部分4、第二接地部分5及第三部分6。可以理解的是,第二接地部分5指的是第二金属段1233中接地的部分。具体的,第二接地部分5电连接于电路板30的地板。第二接地部分5与电路板30的地板的电连接方式可参阅第一接地部分2与电路板30的地板的电连接方式。
此外,第二金属段1233与电路板30之间设置有第二缝隙32。第二缝隙32与第一缝隙31相连通。此外,第二缝隙32连通第一金属段1231与第二金属段1233之间形成第三缝隙。第二缝隙32的设置方式可参阅第一缝隙31的设置方式,这里不再赘述。
请参阅图9,并结合图8所示,图9是图8所示的电子设备的天线结构的一种实施方式的示意图。第一部分1与第一接地部分2形成第一辐射体101。第二部分3与第一接地部分2形成第二辐射体102。此时,第一接地部分2为第一辐射体101与第二辐射体102的接地端。第一辐射体101远离第一接地部分2的端部为未接地的开放端。第二辐射体102远离第一接地部分2的端部为未接地的开放端。
此外,第三部分4与第二接地部分5形成第三辐射体103。第四部分6与第二接地部分5形成第四辐射体104。此时,第二接地部分5为第三辐射体103与第四辐射体104的接地端,第三辐射体103远离第二接地部分5的端部为未接地的开放端。第四辐射体104远离第二接地部分5的端部为未接地的开放端。
这样,第二辐射体102与第三辐射体103形成槽天线40的辐射体。第一辐射体101与第四辐射体104形成线天线50的辐射体。
在本实施例中,第二辐射体102的长度与第三辐射体103的长度相等,且第二辐射体102的长度与第三辐射体103的长度均为1/4波长。波长可依据第第二辐射体102与第三辐射体103的工作频率f1计算得到。具体的,辐射信号在空气中的波长可以如下计算:波长=光速/f1。辐射信号在介质中的波长可以如下计算:
Figure BDA0002396301240000121
其中,ε为该介质的相对介电常数。此时,槽天线40的辐射体的对称性较佳。可以理解的是,实际应用中,第二辐射体102的长度与第三辐射体103的长度难以完全相等,可以通过调整匹配电路等来补偿这种结构上的不平衡。
第一辐射体101的长度与第四辐射体104的长度相等,且第一辐射体101的长度与第四辐射体104的长度为1/4波长。波长可依据第一辐射体101与第四辐射体104的工作频率f1计算得到。具体的,辐射信号在空气中的波长可以如下计算:波长=光速/f1。辐射信号在介质中的波长可以如下计算:
Figure BDA0002396301240000122
其中,ε为该介质的相对介电常数。此时,线天线50的辐射体较佳。可以理解的是,实际应用中,第一辐射体101的长度与第四辐射体104的长度难以完全相等,可以通过调整匹配电路等来补偿这种结构上的不平衡。
在其他实施例中,第二辐射体102的长度与第三辐射体103的长度也可以不相等。第一辐射体101的长度与第四辐射体104的长度也可以不相等。
请再次参阅图8,第一短边框123还可以包括第二绝缘段1237以及第三绝缘段1239。第二绝缘段1237连接于第一部分1。第三绝缘段1239连接于第四部分6。第二绝缘段1237用于将第一金属段1231与边框12其他金属段电隔离。第三绝缘段1239用于将第二金属段1233与边框12其他金属段电隔离。
其次,下文将结合相关附图具体描述一种对称馈电方式。
请再次参阅图8及图9,槽天线40包括桥结构41。桥结构41的材质为导电材料,例如,金属材料。桥结构41位于边框12的内侧。
在本实施例中,桥结构41设置于电路板30,且桥结构41与电路板30的地板绝缘设置。一种实施方式中,电路板30朝屏幕20的表面为地板。此时,在电路板30背离屏幕20的表面设置桥结构41。这样,桥结构41能够与电路板30的地板绝缘设置。桥结构41的结构形式可以是柔性电路板、激光直接成型(laser direct structuring,LDS)金属、模内注塑金属或印刷电路板的走线。再一种实施方式中,在电路板30朝屏幕20的表面设置支架。支架的材质为绝缘材料,例如塑料。此时,支架与电路板30的地板绝缘设置。再将桥结构41设置于支架上。这样,桥结构41也能够与电路板30的地板绝缘设置。
在本实施例中,桥结构41为对称图形。例如,桥结构41的形状为“П”形。此时,桥结构41的对称性较佳,也即槽天线40的对称性较佳。桥结构41的结构较为简单,易于制备。在其他实施方式中,桥结构41的形状也可以为弧形。此外,桥结构41也可以为非对称图形。
此外,桥结构41的一端连接于第二辐射体102。一种实施方式中,桥结构41的一端通过弹片连接于的第二辐射体102。桥结构41的另一端连接于第三辐射体103。一种实施方式中,桥结构41的另一端通过弹片连接于第三辐射体103。此时,第二辐射体102连接桥结构41的位置为槽天线40的第一个馈电点。第三辐射体103连接桥结构41的位置为槽天线40的第二个馈电点。
请再次参阅图8及图9,槽天线40还包括第一馈电电路42。第一馈电电路42的负极接地,也即第一馈电电路42的负极电连接于电路板30的地板。第一馈电电路42的正极电连接于桥结构41的中部。附图8通过箭头简单地示意了第一馈电电路42的正极和负极的朝向。箭头的指向为负极指向正极。可以理解的是,该种馈电方式为对称馈电方式。
一种实施方式中,第一馈电电路42包括馈源和电容。馈源的负极电连接于电路板30的地板。馈源的正极电连接于电容的一侧。电容的另一侧电连接于桥结构41的中部。换言之,电容电连接于馈源的正极与桥结构41的中部。
其次,下文将结合相关附图具体描述一下反对称馈电方式。
请再次参阅图8及图9,线天线50包括第一导电段51、第三导电段52及第一匹配电路56。第一导电段51及第三导电段52的材质均为导电材料,例如,金属材料。第一导电段51、第三导电段52及第一匹配电路56位于边框12的内侧。
此外,第一导电段51包括第一端511及远离第一端511设置的第二端512。第一导电段51的第一端511电连接于电路板30的地板,也即第一端511接地。可以理解的是,第一端511与电路板30的地板的电连接方式可参阅第一金属段1231与电路板30的地板的电连接方式。这里不再赘述。
此外,第一导电段51的第二端512通过第一匹配电路56电连接于第三导电段52。可以理解的是,第一匹配电路56用于匹配天线阻抗。第一匹配电路56可以包括至少一个电路组件。例如,第一匹配电路56可以包括作为集总元件的电阻器、电感器和电容器中的至少一个。例如,第一匹配电路56可以包括作为分布元件的电感和电容中的至少一个。在其他实施方式中,第二端512也可以直接电连接于第三导电段52。
此外,第三导电段52远离第一匹配电路56的端部连接于第一辐射体101。一种实施方式中,第三导电段52远离第一匹配电路56的端部分通过弹片连接于第一辐射体101。此时,第一辐射体101连接于第三导电段52的位置为第一个馈电点。
在本实施方式中,第一导电段51、第三导电段52及第一匹配电路56设置于电路板30的地板,第一导电段51、第三导电段52及第一匹配电路56均与电路板30的地板绝缘设置。
一种实施方式中,电路板30朝屏幕20的表面设置有地板。此时,在电路板30朝屏幕20的表面设置支架。支架的材质为绝缘材料,例如塑料。再将第一导电段51设置于支架上。此外,在电路板30背离屏幕20的表面设置第三导电段52。再者,在电路板30设置镂空区域,将第一匹配电路56设置于镂空区域内。可以理解的是,因为第一导电段51与第三导电段52位于电路板30相背的两面(也即第一导电段51与第三导电段52在Z方向上存在高度差),所以附图8通过实线简单地示意了第三导电段52,通过虚线简单地示意了第一导电段51。这样,第一导电段51、第三导电段52及第一匹配电路56也能够与电路板30的地板绝缘设置。此外,第一导电段51与第三导电段52的结构形式可以是柔性电路板、激光直接成型金属、模内注塑金属或印刷电路板的走线。
另一种实施方式中,在电路板30背离屏幕20的表面设置第一导电段51、第三导电段52及第一匹配电路56。通过在电路板30设置镂空区域,以使第一导电段51的第一端511能够通过镂空区域电连接于电路板30的地板。这样,第一导电段51、第三导电段52及第一匹配电路56均能够与电路板30的地板绝缘设置。此外,第一导电段51与第三导电段52的结构形式可以是柔性电路板、激光直接成型金属、模内注塑金属或印刷电路板的走线。
请再次参阅图4及图5,线天线50还包括第二导电段53、第四导电段54及第二匹配电路57。第二导电段53及第四导电段54的材质均为导电材料,例如,金属材料。第二导电段53、第四导电段54及第二匹配电路57位于边框12的内侧,也即收容空间13内。此外,第二导电段53、第四导电段54及第二匹配电路57的设置方式可参阅第一导电段51、第三导电段52及第一匹配电路56的设置方式。这里不再赘述。此时,第二导电段53与第四导电段54在Z方向上存在高度差)。
此外,第二导电段53包括第三端531及远离第三端531设置的第四端532。第二导电段53的第三端531电连接于电路板30的地板,也即第一端511接地。可以理解的是,第三端531与电路板30的地板的电连接方式可参阅第一金属段1231与电路板30的地板的电连接方式。这里不再赘述。
此外,第二导电段53的第四端532通过第二匹配电路57电连接于第四导电段54。可以理解的是,第二匹配电路57用于匹配天线阻抗。第二匹配电路57可以包括至少一个电路组件。例如,第二匹配电路57可以包括作为集总元件的电阻器、电感器和电容器中的至少一个。例如,第二匹配电路57可以包括作为分布元件的电感和电容中的至少一个。在其他实施方式中,第四端532也可以直接电连接于第四导电段54。
此外,第四导电段54远离第二导电段53的一端连接于第四辐射体104。一种实施方式中,第四导电段54远离第二导电段53的一端通过弹片连接于第四辐射体104。此时,第四辐射体104连接于第四导电段54的位置为第二个馈电点。
在本实施方式中,第一导电段51与第二导电段53为两条对称的平行导线。一种实施方式中,第一导电段51的形状为“丨”形。第二导电段53的形状也为“丨”形。此时,第一导电段51与第二导电段53的对称性较佳,也即线天线50的结构对称性较佳。第一导电段51与第二导电段53的结构简单,易于制备。在其他实施方式中,第一导电段51也可以为弧形。第二导电段53也可以为弧形。第一导电段51与第二导电段53也可以为非对称图形。
在本实施例中,第三导电段52与第四导电段54为对称图形。一种实施方式中,第三导电段52的形状为“┌”形。第四导电段54的形状为“┐”形。此时,第三导电段52与第四导电段54对称性较佳,也即线天线50的结构对称性较佳。第三导电段52与第四导电段54的结构简单,易于制备。在其他实施方式中,第三导电段52也可以为弧形。第四导电段54也可以为弧形。第三导电段52与第四导电段54也可以为非对称图形。
此外,线天线50还包括第二馈电电路55。第二馈电电路55的负极电连接于第一导电段51的第一端511与第二端512之间。第二馈电电路55的正极电连接于第二导电段53的第三端531与第四端532之间。在本实施方式中,第二馈电电路55的负极电连接于第一端511与第二端512的中间位置。第二馈电电路55的正极电连接于第三端531与第四端532的中间位置。此时,线天线50的结构的对称性较佳。在其他实施方式中,第二馈电电路55的负极也可以偏离第一端511与第二端512的中间位置。第二馈电电路55的正极也可以偏离第三端531与第四端532的中间位置。此外,附图8通过箭头简单地示意了第二馈电电路55的正极和负极的朝向。箭头的指向为负极指向正极,也即自左向右。可以理解的是,这种馈电方式为反对称馈电方式。此外,在其他实施例中,当第一金属段的1231与第二金属段1233的位置对调时,第二馈电电路55的正极和负极的朝向为自右向左。
可以理解的是,通过上文以及相关附图,本实施例具体介绍了一种槽天线40与线天线50结组成的天线结构,以及天线结构的两种馈电方式:对称馈电以及反对称馈电。下文将结合相关附图具体描述这种天线结构的天线性能。
下文具体描述一下电子设备100的相关部分件的具体参数。具体的,电子设备100的边框12厚度约为4毫米,宽度约为3毫米。电子设备100的边框12与电路板30的地板之间的净空区域的宽度约为1毫米,也即第一缝隙31以及第二缝隙32的宽度均约为1毫米。第一绝缘段1232的宽约为2毫米。第一绝缘段1232、第二绝缘段1237以及第三绝缘段1239采用的绝缘材料的介电常数为3.0,损耗角为0.01。此外,第一缝隙31以及第二缝隙32内填充的绝缘材料的介电常数也为3.0,损耗角也为0.01。
请参阅图10,图10是图9所示天线结构的反射系数曲线图。其中,在图10中,实线线条代表的是天线结构在反对称馈电方式下的反射系数曲线。图10中的虚线表示的是天线结构在对称馈电方式下的反射系数曲线。图10的横坐标代表频率(单位为GHz),纵坐标代表反射系数(单位dB)。
根据图10的实线可以看出在反对称的馈电方式下,天线结构可以产生三个谐振模式,且该三个谐振模式的谐振频率分别在1.84GHz的附近(实线箭头1所指的位置)、2.07GHz的附近(实线箭头2所指的位置)以及2.49GHz的附近(实线箭头3所指的位置)。此外,根据图10的虚线可以看出在对称的馈电方式下,天线结构可以产生两个谐振模式。两个谐振模式的谐振频率分别在2.04GHz的附近(虚线箭头1所指的位置)和2.21GHz的附近(虚线箭头2所指的位置)。可以理解的是,本实施例是以频段0至3GHz为例进行描述。当然,在其他实施例中,通过调节相关参数(例如,槽天线40的第二辐射体102的长度、槽天线40的第三辐射体103的长度,或者线天线50的第一辐射体101的长度,或者线天线50的第四辐射体104的长度),从而在其他频段(例如:3GHz至6GHz,6GHz至8GHz,或者8GHz至11GHz等)内,天线结构也可以产生五个谐振模式,也即产生五个谐振频率。
可以理解的是,通过设置一种槽天线40和线天线50组成的天线结构,并利用两种馈电方式,可以使得天线结构激励出五个谐振模式,从而实现天线覆盖多个频段。
此外,请参阅图11,图11是图9所示天线结构的效率曲线图。其中,在图11中,实线线条1(实线箭头1所指的曲线)代表的是天线结构在反对称馈电方式下的***效率曲线。在图11中,实线线条2(实线箭头2所指的曲线)代表的是天线结构在对称馈电方式下的***效率曲线。在图11中,虚线线条1(虚线箭头1所指的曲线)代表的是天线结构在反对称馈电方式下的辐射效率曲线。在图11中,虚线线条2(虚线箭头2所指的曲线)代表的是天线结构在对称馈电方式下的辐射效率曲线。图11的横坐标代表频率(单位为GHz),纵坐标代表效率(单位dB)。根据附图11可知,天线结构在反对称馈电方式下,产生的激励谐振信号拓宽了天线结构的带宽。此外,天线结构在对称馈电方式下,产生的激励谐振信号拓宽了天线结构的带宽。故而,天线结构的天线性能更佳。
请参阅图12,图12是图9所示天线结构的隔离度曲线图。图12的横坐标代表频率(单位为GHz),纵坐标代表效率(单位dB)。根据附图12可知,天线结构在反对称馈电方式下,产生的激励谐振信号以及天线结构在对称馈电方式下,产生的激励谐振信号的隔离度可以达到16dB(箭头所指的位置)以上。故而,天线结构的天线性能更佳。
以下结合图13a至图13e来具体描述一下天线结构在五个谐振频率下的电流及电场流向示意图。图13a是图9所示的天线结构在频率为1.84GHz的信号下的电流及电场的流向示意图。图13b是图9所示的天线结构在频率为2.07GHz的信号下的电流及电场的流向示意图。图13c是图9所示的天线结构在频率为2.49GHz的信号下的电流及电场的流向示意图。图13d是图9所示的天线结构在频率为2.04GHz的信号下的电流及电场的流向示意图。图13e是图9所示的天线结构在频率为2.21GHz的信号下的电流及电场的流向示意图。
请参阅图13a,天线结构上产生了第一种电流。第一种电流的电流流向具有两部分:一部分为第三辐射体103的接地端传输至第三辐射体103的开放端,另一部分为第二辐射体102的开放端传输至第二辐射体102的接地端。此外,第二辐射体102与第三辐射体103各自一侧的电场方向不同。
请参阅图13b,天线结构上产生了第二种电流。第二种电流的流向具有两部分:一部分为第一导电段51、第三导电段52、第一辐射体101的接地端以及第二辐射体102,另一部分为第三辐射体103、第四辐射体104、第四导电段54以及第二导电段53。第二种电流的流向大致呈一环状。此外,第二辐射体102与第三辐射体103各自一侧的电场方向不同。此外,第一导电段51、第三导电段52两边的电场方向也相反。第四导电段54以及第二导电段53两边的电场方向也相反。
请参阅图13c,天线结构上产生了第三种电流。第三种电流的流向具有两部分:一部分为第四辐射体104的开放端、第三辐射体103的接地端以及第三辐射体103的开放端,另一部分为第二辐射体102的开放端、第二辐射体102的接地端以及第一辐射体101的开放端。此外,第一辐射体101及第二辐射体102和第三辐射体103及第四辐射体104一侧的电场方向相同。此外,第一辐射体101及第二辐射体102和第三辐射体103及第四辐射体104各自一侧的电场方向不同。
请参阅图13d,天线结构上产生了第四种电流。第四种电流具体流向包括两部分。一部分为第四辐射体104的开放端、第三辐射体103的接地端以及第三辐射体103的开放端,另一部分为第一辐射体101的开放端、第一辐射体101的接地端以及第二辐射体102的开放端。此外,第一辐射体101及第二辐射体102和第三辐射体103及第四辐射体104各自一侧的电场方向相同。
请参阅图13e,天线结构上产生了第五种电流的流向。第五种电流具体流向包括四部分。第一部分为桥结构41的馈电端流向第二辐射体102,第二部分为第二辐射体102的接地端流向第二辐射体102的开放端。第三部分为桥结构41的馈电端流向第三辐射体103。第四部分为第三辐射体103的开放端流向第三辐射体103的接地端。此外,第二辐射体102与第三辐射体103各自一侧的电场方向相同。
以下结合图13f至图13j来具体描述一下天线结构在五个谐振频率下的辐射方向示意图。图13f是图9所示的天线结构在频率为1.84GHz的信号下的辐射方向示意图。图13g是图9所示的天线结构在频率为2.07GHz的信号下的辐射方向示意图。图13h是图9所示的天线结构在频率为2.49GHz的信号下的辐射方向示意图。图13i是图9所示的天线结构在频率为2.04GHz的信号下的辐射方向示意图。图13j是图9所示的天线结构在频率为2.21GHz的信号下的辐射方向示意图。
请参阅图13f至图13h,图13f至图13h的天线结构在反对称馈电下,产生的天线信号的辐射方向在Y轴方向的辐射强度较强,在X轴方向的辐射强度较弱,也即频率为1.84GHz的共模槽天线在Y轴方向的辐射强度较强、频率为2.07GHz的共模槽天线在Y轴方向的辐射强度较强、2.49GHz的差模线天线在Y轴方向的辐射强度较强。
请参阅图13i至图13j,图13i至图13j的天线结构在对称馈电下,产生的天线信号的辐射方向在Y轴方向的辐射强度较弱,在X轴方向的辐射强度较强,也即频率为2.04GHz的共模线天线在X轴方向的辐射强度较强、频率为2.21GHz的差模槽天线在X轴方向的辐射强度较强。
此外,根据图13f至图13j可知,在相同的频段(例如本实施方式的0-3GHz)下,天线结构在反对称馈电方式下,产生的激励谐振信号以及天线结构在对称馈电方式下,产生的激励谐振信号的方向差异较大。此时,天线结构辐射范围较广。
此外,通过图13f至图13j的两个天线的辐射方向图可以计算出在反对称馈电下,产生的天线信号与在对称馈电下,产生的天线信号的ECC均小于0.1。换言之,本实施例的天线结构的ECC较小。
在本实施例中,通过设置一种槽天线40和线天线50组成的天线结构,并利用两种馈电方式,以使天线结构激励出四个天线谐振,其中差模线天线具有两个谐振模式,从而实现天线覆盖多个频段。
此外,天线结构在反对称馈电方式下,产生的激励谐振信号,以及天线结构在对称馈电方式下,产生的激励谐振信号,两者之间的隔离度可以达到16dB以上,从而使得天线结构的天线性能较佳。
扩展实施例一,与第一种实施例相同的技术内容不再赘述:请参阅图14,图14是图8所示的电子设备的天线结构的另一种实施方式的示意图。槽天线40还包括第一调谐电路44和第二调谐电路45。第一调谐电路44的一部分电连接于第一金属段1231朝向第二金属段1233的端部,一部分接地。换言之,第二辐射体102的开放端通过第一调谐电路44接地。第一调谐电路44用于调整第二辐射体102的电长度。第二调谐电路45的一部分电连接于第二金属段1233朝向第一金属段1231的端部,一部分接地。换言之,第三辐射体103的开放端通过第二调谐电路45接地。第二调谐电路45用于调整第三辐射体103的电长度。一种实施方式中,第一调谐电路44为电容。此时,通过设置电容的工作参数,可以有效地调整第二辐射体102的电长度,从而在第二辐射体102的电长度减小时,可以实现槽天线40的小型化设置。此外,第二调谐电路45也可以为电容。
扩展实施例二,与第一种实施例相同的技术内容不再赘述:请参阅图15,图15是图8所示的电子设备的天线结构的再一种实施方式的示意图。线天线50还包括第三调谐电路58。第三调谐电路58电连接于第三导电段52远离第一金属段1231的端部与第四导电段54远离第二金属段1233的端部之间。第三调谐电路58用于调整第一辐射体101的电长度以及第四辐射体104的电长度。例如,第三调谐电路58为电容。电容电连接于第三导电段52与第四导电段54之间。此时,通过调整电容的参数,可以减小第一辐射体101的电长度以及第四辐射体104的电长度,从而在第一辐射体101的电长度以及第四辐射体104的电长度减小时,可实现线天线50的小型化设置。
可以理解的是,本实施例的天线结构也可以包括扩展实施一的天线结构的第一调谐电路44和第二调谐电路45。具体可参阅扩展实施例一。
扩展实施例三,与第一种实施例相同的技术内容不再赘述:边框12的材质为绝缘材料。此时,第一短边框123的材质也为绝缘材料。此时,在第一短边框123的内侧依次形成第一金属段1231、第一绝缘段1232及第二金属段1233。第一金属段1231与第二金属段1233的结构形式可以是柔性电路板、激光直接成型(laser direct structuring,LDS)金属、模内注塑金属或印刷电路板的走线。此外,第一绝缘段1232可以通过在第一金属段1231与第二金属段1233之间的缝隙内填充绝缘材料形成,例如绝缘材料为聚合物、玻璃、陶瓷等材料或者这些材料的组合。在其他实施方式中,第一绝缘段1232也可以为缝隙,也即缝隙内未填充绝缘材料。
第二种实施例,与第一种实施例相同的技术内容不再赘述:通过设置另一种槽天线和线天线组成的天线结构,并利用两种馈电方式,以使天线结构激励出四种天线模式:共模槽天线、差模槽天线、共模线天线及差模线天线。其中,共模线天线具有两个谐振模式。共模槽天线也具有两个谐振模式。这样,本实施例可通过一种槽天线40和线天线50组成的天线结构激励出多种谐振模式,从而实现天线可覆盖多个频段。
本实施例以槽天线和线天线组成的天线结构的辐射体是第一短边框123的一部分为例进行说明。在其他实施例中,槽天线和线天线组成的天线结构的辐射体也可以是第一长边框121的一部分、第二长边框122的一部分或者第二短边框124的一部分。
首先,结合相关附图具体描述一下槽天线的辐射体的结构及线天线的辐射体的结构。
请参阅图16,图16是图7所示的电子设备在B处的另一种实施方式的放大示意图。
第一短边框123包括依次连接的第一金属段1231、第一绝缘段1232、第二金属段1233、第二绝缘段1234及第三金属段1235。换言之,第一绝缘段1232位于第一金属段1231与第二金属段1233之间。第二绝缘段1234位于第二金属段1233与第三金属段1235之间。
此外,第二金属段1233包括第一部分1、第一接地部分2及第二部分3。第一部分1连接于第一绝缘段1232。第二部分3连接于第二绝缘段1234。可以理解的是,第一金属段1231与第一部分1之间形成第四缝隙。第一绝缘段1232可以通过在第四缝隙内填充绝缘材料所形成,例如绝缘材料可以为聚合物、玻璃、陶瓷等材料或者这些材料的组合。在其他实施例中,第四缝隙内可填充空气,也即第四缝隙未填充任何绝缘材料。此外,第二部分3与第三金属段1235之间形成第五缝隙。第二绝缘段1234可以通过在第五缝隙内填充绝缘材料所形成,例如绝缘材料可以为聚合物、玻璃、陶瓷等材料或者这些材料的组合。
此外,本实施例的第一接地部分2的接地方式可参阅第一种实施例的第一接地部分2的接地方式,这里不再赘述。此外,第一金属段1231远离第一绝缘段1232的端部接地。第三金属段1235远离第二绝缘段1234的端部接地。第一金属段1231的接地方式与第三金属段1235的接地方式可参阅第一种实施例的第一接地部分2的接地方式,这里不再赘述。
此外,第一金属段1231与电路板30的地板之间设置有第一缝隙31。第一缝隙31连通第一金属段1231与第一部分1之间形成第四缝隙、以及第二部分3与第三金属段1235之间形成第五缝隙。一种实施方式中,第一缝隙31内可填充绝缘材料,例如第一缝隙31内可填充聚合物、玻璃、陶瓷等材料或者这些材料的组合。另一种实施方式中,第一缝隙31内可填充空气,也即第一缝隙31未填充任何绝缘材料。
此外,第二金属段1233与电路板30的地板之间设置有第二缝隙32。第二缝隙32连通第一缝隙31。第二缝隙32连通第一金属段1231与第一部分1之间形成第四缝隙、以及第二部分3与第三金属段1235之间形成第五缝隙。第二缝隙32的设置方式可参阅第一缝隙31的设置方式。这里不再赘述。
此外,第三金属段1235与电路板30的地板之间设置有第三缝隙33。第三缝隙33连通第一缝隙31与第二缝隙32。第三缝隙33连通第一缝隙31。第二缝隙32连通第一金属段1231与第一部分1之间形成第四缝隙、以及第二部分3与第三金属段1235之间形成第五缝隙。第三缝隙33的设置方式可参阅第一缝隙31的设置方式。这里不再赘述。
请参阅图17,并结合图16,图17是图16所示的电子设备的天线结构的一种实施方式的示意图。第一部分1与第一接地部分2形成第二辐射体102。第二部分3与第一接地部分2形成第三辐射体103。第二辐射体102与第三辐射体103形成线天线50的辐射体。
此外,第一金属段1231形成第一辐射体101。第三金属段1235形成第四辐射体104。第一辐射体101与第四辐射体104形成槽天线40的辐射体。
其次,本实施例的线天线50的馈电方式可参阅第一个实施例的槽天线40的馈电方式。这里不再赘述。
此外,本实施例的槽天线40的馈电方式可参阅第一个实施例的线天线50的馈电方式。这里不再赘述。
在本实施例中,第二辐射体102的长度与第三辐射体103的长度相等,且第二辐射体102的长度与第三辐射体103的长度均为1/4波长。波长1可依据第二辐射体102与第三辐射体103的工作频率f1计算得到。具体的,辐射信号在空气中的波长1可以如下计算:波长=光速/f1。辐射信号在介质中的波长1可以如下计算:
Figure BDA0002396301240000191
其中,ε为该介质的相对介电常数。
第一辐射体101的长度与第四辐射体104的长度相等,且第一辐射体101与第四辐射体104的长度为1/4波长。波长1可依据第一辐射体101与第四辐射体104的工作频率f1计算得到。具体的,辐射信号在空气中的波长1可以如下计算:波长=光速/f1。辐射信号在介质中的波长1可以如下计算:
Figure BDA0002396301240000192
其中,ε为该介质的相对介电常数。
在其他实施例中,第二辐射体102的长度与第三辐射体103的长度也可以不相等。第一辐射体101的长度与第四辐射体104的长度也可以不相等。
上文具体介绍了一种线天线50与槽天线40组成的天线结构,以及天线结构的两种馈电方式:对称馈电以及反对称馈电。下文将结合相关附图具体描述这种天线结构的天线性能。
此外,下文具体描述一下电子设备100的相关部分件的具体参数。电子设备100的边框12厚度约为4毫米,宽度约为3毫米。电子设备100的边框12与电路板30的地板之间的净空区域的宽度约为1毫米,也即第一缝隙31、第二缝隙32以及第三缝隙33的宽度均约为1毫米。第一绝缘段1232以及第二绝缘段1234的宽约为2毫米。第一绝缘段1232以及第二绝缘段1234采用的绝缘材料的介电常数为3.0,损耗角为0.01。此外,第一缝隙31、第二缝隙32以及第三缝隙33内填充的绝缘材料的介电常数也为3.0,损耗角也为0.01。
请参阅图18,图18是图17所示天线结构的反射系数曲线图。其中,在图18中,曲线箭头1所指的曲线代表的是天线结构在反对称馈电方式的反射系数曲线。图18中的曲线箭头2所指的曲线是天线结构在对称馈电方式的反射系数。图18的横坐标代表频率(单位为GHz),纵坐标代表反射系数(单位dB)。
根据图18中曲线箭头1所指的曲线可以看出在反对称的馈电方式下,天线结构可以产生三个谐振模式,且该三个谐振模式的谐振频率分别在1.75GHz的附近(实线箭头1所指的位置)、2.36GHz的附近(实线箭头2所指的位置)以及2.79GHz的附近(实线箭头3所指的位置)。此外,根据图18中曲线箭头2所指的曲线可以看出在对称的馈电方式下,天线结构可以产生三个谐振模式。三个谐振模式的谐振频率分别在1.87GHz的附近(虚线箭头1所指的位置)、2.36GHz的附近(虚线箭头2所指的位置)以及2.87GHz的附近(虚线箭头3所指的位置)。可以理解的是,本实施例是以频段0至3GHz为例进行描述。当然,在其他实施例中,通过调节相关参数(例如,线天线50的第二辐射体102的长度、线天线50的第三辐射体103的长度,或者槽天线40的第一辐射体101的长度,或者线天线50的第四辐射体104的长度),从而在其他频段(例如:3GHz至6GHz,6GHz至8GHz,或者8GHz至11GHz等)内,天线结构也可以产生六个谐振模式,也即产生六个谐振频率。
在本实施例中,通过设置一种槽天线40和线天线50组成的天线结构,并利用两种馈电方式,以使天线结构激励出六个谐振模式,从而实现天线覆盖多个频段。
请参阅图19,图19是图17所示天线结构的效率曲线图。其中,在图19中,实线线条1(实线箭头1所指的曲线)代表的是天线结构在反对称馈电方式下的***效率曲线。在图19中,实线线条2(实线箭头2所指的曲线)代表的是天线结构在对称馈电方式下的***效率曲线。在图19中,虚线线条1(虚线箭头1所指的曲线)代表的是天线结构在反对称馈电方式下的辐射效率曲线。在图19中,虚线线条2(虚线箭头2所指的曲线)代表的是天线结构在对称馈电方式下的辐射效率曲线。图19的横坐标代表频率(单位为GHz),纵坐标代表效率(单位dB)。根据附图19可知,天线结构在反对称馈电方式下,产生的激励谐振信号拓宽了天线结构的带宽。此外,天线结构在对称馈电方式下,产生的激励谐振信号拓宽了天线结构的带宽。故而,天线结构的天线性能更佳。
请参阅图20,图20是图17所示天线结构的隔离度曲线图。图20的横坐标代表频率(单位为GHz),纵坐标代表效率(单位dB)。根据附图20可知,天线结构在反对称馈电方式下,产生的激励谐振信号以及天线结构在对称馈电方式下,产生的激励谐振信号的隔离度可以达到22dB(箭头所指的位置)以上。故而,天线结构的天线性能更佳。
以下结合图21a至图21f来具体描述一下天线结构在六个谐振频率下的电流及电场流向示意图。图21a是图17所示的天线结构在频率为1.75GHz的信号下的电流及电场的流向示意图。图21b是图17所示的天线结构在频率为2.36GHz的信号下的电流及电场的流向示意图。图21c是图17所示的天线结构在频率为2.79GHz的信号下的电流及电场的流向示意图。图21d是图17所示的天线结构在频率为1.87GHz的信号下的电流及电场的流向示意图。图21e是图17所示的天线结构在频率为2.36GHz的信号下的电流及电场的流向示意图。图21f是图17所示的天线结构在频率为2.87GHz的信号下的电流及电场的流向示意图。
请参阅图21a,天线结构上产生了第一种电流。第一种电流的电流流向具有两部分:一部分为第一辐射体101的开放端传输至第一辐射体101的接地端。另一部分为第四辐射体104的接地端传输至第四辐射体104的开放端。此外,第一辐射体101与第四辐射体104各自一侧的电场方向不同。
请参阅图21b,天线结构上产生了第二种电流。第二种电流的电流流向具有三部分:一部分为第四辐射体104的开放端、第四导电段54、第二导电段53、第一导电段51、第三导电段52以及第一辐射体101的开放端。另一部分为第一辐射体101的接地端流向第一辐射体101的开放端。再一部分为第四辐射体104的开放端流向第四辐射体104接地端。此外,第一辐射体101与第四辐射体104各自一侧的电场方向不同。此外,第一导电段51、第三导电段52两边的电场方向也相反。第四导电段54以及第二导电段53两边的电场方向也相反。
请参阅图21c,天线结构上产生了第三种电流。第三种电流的电流流向为第三辐射体103的开放端、第二辐射体102的接地端以及第二辐射体102的开放端。此外,第三辐射体103与第二辐射体102各自一侧的电场方向不同。
请参阅图21d,天线结构上产生了第四种电流。第四种电流的电流流向具有两部分:一部分为第一辐射体101的开放端传输至第一辐射体101的接地端。另一部分为第四辐射体104的开放端传输至第四辐射体104的接地端。第一辐射体101与第四辐射体104各自一侧的电场方向相同。
请参阅图21e,天线结构上产生了第五种电流。第五种电流的电流流向具有两部分:第一部分为第二辐射体102的接地端传输至第二辐射体102开放端。第二部分为第三辐射体103的接地端传输至第三辐射体103的开放端。此外,第三辐射体103与第二辐射体102各自一侧的电场方向相同。可以理解的是,2.36GHz谐振模式主要通过第二辐射体102与第三辐射体103作用。
请参阅图21f,天线结构上产生了第六种电流。具体流向包括四部分。第一部分为桥结构41的馈电端的左侧部分流向馈电端的电流。第二部分为流向桥结构41的馈电端的右侧部分流向馈电端的电流。第三部分为桥结构41流向第二辐射体102的开放端的电流。第四部分为桥结构41流向第三辐射体103的开放端的电流。此外,第三辐射体103与第二辐射体102各自一侧的电场方向相同。可以理解的是,2.87GHz谐振模式除了第二辐射体102以及第三辐射体103的作用,还通过对称馈电的桥结构41的作用。
以下结合图21g至图21l来具体描述一下天线结构在五个谐振频率下的辐射方向示意图。图21g是图17所示的天线结构在频率为1.75GHz的信号下的辐射方向的示意图。图21h是图17所示的天线结构在频率为2.36GHz的信号下的辐射方向的示意图。图21i是图17所示的天线结构在频率为2.79GHz的信号下的辐射方向的示意图。图21j是图17所示的天线结构在频率为1.87GHz的信号下的辐射方向的示意图。图21k是图17所示的天线结构在频率为2.36GHz的信号下的辐射方向的示意图。图21l是图17所示的天线结构在频率为2.87GHz的信号下的辐射方向的示意图。
请参阅图21g至图21i,图21g至图21i的天线结构在反对称馈电下,产生的天线信号的辐射方向在Y轴方向的辐射强度较强,在X轴方向的辐射强度较弱,也即频率为1.75GHz的共模槽天线在Y轴方向的辐射强度较强、频率为2.36GHz的共模槽天线在Y轴方向的辐射强度较强、2.79GHz的差模线天线在Y轴方向的辐射强度较强。
请参阅图21j至图21l,图21j至图21l的天线结构在反对称馈电下,产生的天线信号的辐射方向在X轴方向的辐射强度较强,在Y轴方向的辐射强度较弱,也即频率为1.87GHz的差模槽天线在X轴方向的辐射强度较强、频率为2.36GHz的共模线天线在X轴方向的辐射强度较强、2.87GHz的共模线天线在X轴方向的辐射强度较强。
此外,根据图13f至图13j可知,在相同的频段(例如本实施方式的0-3GHz)下,天线结构在反对称馈电方式下,产生的激励谐振信号以及天线结构在对称馈电方式下,产生的激励谐振信号的方向差异较大。此时,天线结构辐射范围较广。
此外,通过图21g至图21l的两个天线的辐射方向图可以计算出在反对称馈电下,产生的天线信号与在对称馈电下,产生的天线信号的ECC均小于0.1。换言之,本实施例的天线结构的ECC较小。
在本实施例中,通过设置一种槽天线40和线天线50组成的天线结构,并利用两种馈电方式,以使天线结构激励出六个谐振模式,也即产生六个谐振频率,从而实现天线覆盖多个频段。
此外,天线结构在反对称馈电方式下,产生的激励谐振信号以及天线结构在对称馈电方式下,产生的激励谐振信号,两者之间的隔离度可以达到22dB以上,从而使得天线结构的天线性能更佳。
扩展实施例一,与第二种实施例相同的技术内容不再赘述:请参阅图22,图22是图16所示的电子设备的天线结构的另一种实施方式的示意图。槽天线40还包括第一调谐电路44和第二调谐电路45。第一调谐电路44的一部分连接于第一辐射体101朝向第二辐射体102的端部,另一部分接地。换言之,第一辐射体101的开放端通过第一调谐电路44接地。第一调谐电路44用于调整第一辐射体101的电长度。第二调谐电路45的一部分连接于第四辐射体104朝向第三辐射体103的端部,另一部分接地。换言之,第四辐射体104的开放端通过第二调谐电路45接地。例如,第一调谐电路44为电容。第二调谐电路45也为电容。此时,通过设置电容的工作参数,可以有效地调整第一辐射体101的电长度以及第四辐射体104的电长度,从而在第一辐射体101的电长度以及第四辐射体104的电长度减小时,可实现槽天线40的小型化设置。
扩展实施例二,与第二种实施例相同的技术内容不再赘述:边框12的材质为绝缘材料。此时,第一短边框123的材质也为绝缘材料。此时,在第一短边框123的内侧形成依次连接的第一金属段1231、第一绝缘段1232、第二金属段1233、第二绝缘段1234及第三金属段1235。第一金属段1231、第二金属段1233以及第三金属段1235的结构形式可以是柔性电路板、激光直接成型(laser direct structuring,LDS)金属、模内注塑金属或印刷电路板的走线。此外,第一绝缘段1232以及第二绝缘段1234可以通过填充绝缘材料形成,例如绝缘材料为聚合物、玻璃、陶瓷等材料或者这些材料的组合。在其他实施方式中,第一绝缘段1237以及第二绝缘段1234可以为缝隙,也即缝隙内未填充绝缘材料。
第三种实施例与第一种实施例及第二种实施例相同的技术内容不再赘述:在本实施例中,通过设置两个槽天线(第一槽天线和第二槽天线)组成的天线结构,并利用两种馈电方式,以使天线结构激励出多个谐振模式,从而实现天线可覆盖多个频段。
请参阅图23a及图23b,图23a是图7所示的电子设备在B处的另一种实施方式的放大示意图。图23b是图23a所示的电子设备的天线结构的示意图。图23b是图23a所示的天线结构的示意图。本实施例以两个槽天线组成的天线结构的辐射体是第一短边框123的一部分为例进行说明。在其他实施例中,两个槽天线组成的天线结构的辐射体也可以是第一长边框121的一部分、第二长边框122的一部分或者第二短边框124的一部分。
具体的,两个槽天线为第一槽天线61和第二槽天线62。
首先,第一短边框123依次连接的第一金属段1231、第一绝缘段1232、第二金属段1233、第二绝缘段1234、第三金属段1235、第三绝缘段1236与第四金属段1237。换言之,第一绝缘段1232位于第一金属段1231与第二金属段1233之间。第二绝缘段1234位于第二金属段1233与第三金属段1235之间。第三绝缘段1236位于第三金属段1235与第四金属段1237之间。可以理解的是,第一金属段1231与第二金属段1233之间形成第五缝隙。第一绝缘段1232可以通过在第五缝隙内填充绝缘材料所形成,例如绝缘材料可以为聚合物、玻璃、陶瓷等材料或者这些材料的组合。在其他实施例中,第五缝隙内可填充空气,也即第五缝隙未填充任何绝缘材料。第二绝缘段1234以及第三绝缘段1236的设置方式可参阅第一绝缘段1232的设置方式。这里不再赘述。
此外,第一金属段1231远离第一绝缘段1232的端部分接地。本实施例的第一金属段1231的接地方式可参阅第一种实施例的第一接地部分2的接地方式,这里不再赘述。第二金属段1233靠近第一绝缘段1232的端部分接地。第三金属段1235靠近第三绝缘段1236的端部分接地。第四金属段1237远离第三绝缘段1236的端部分接地。本实施例的第二金属段1233、第三金属段1235与第四金属段1237的接地方式可参阅第一种实施例的第一接地部分2的接地方式,这里不再赘述。
此外,第一金属段1231与电路板30的地板之间设置有第一缝隙31。一种实施方式中,第一缝隙31内可填充绝缘材料,例如第一缝隙31内可填充聚合物、玻璃、陶瓷等材料或者这些材料的组合。该绝缘材料连接于第一绝缘段1232、第二绝缘段1234及第三绝缘段1236。另一种实施方式中,第一缝隙31内可填充空气,也即第一缝隙31未填充任何绝缘材料。
此外,第二金属段1233与电路板30的地板之间设置有第二缝隙32。第二缝隙32连通第一缝隙31。第二缝隙32的设置方式可参阅第一缝隙31的设置方式。这里不再赘述。
此外,第三金属段1235与电路板30的地板之间设置有第三缝隙33。第三缝隙33连通第一缝隙31与第二缝隙32。第三缝隙33的设置方式可参阅第一缝隙31的设置方式。这里不再赘述。
此外,第三金属段1235与电路板30的地板之间设置有第四缝隙34。第四缝隙34连通第一缝隙31、第二缝隙32与第三缝隙33。第四缝隙34的设置方式可参阅第一缝隙31的设置方式。这里不再赘述。
这样,第一金属段1231形成第一辐射体101。第二金属段1233形成第二辐射体102。第三金属段1235形成第三辐射体103。第四金属段1237形成第四辐射体104。
此外,第二辐射体102与第三辐射体103形成第一槽天线61的辐射体。
此外,第一辐射体101与第四辐射体104形成第二槽天线62的辐射体。
其次,本实施例的第一槽天线61的馈电方式可参阅第一个实施例的槽天线40的馈电方式。这里不再赘述。
此外,本实施例的第二槽天线62的馈电方式可参阅第一个实施例的线天线50的馈电方式。这里不再赘述。
可以理解的是,本实施例可通过一种两个槽天线组成的天线结构激励出多个谐振模式,从而实现天线可覆盖多个频段。
第四种实施例与第一种实施例及第二种实施例相同的技术内容不再赘述:通过设置两个线天线组成的天线结构,并利用两种馈电方式,以使天线结构激励出多个谐振模式,从而实现天线可覆盖多个频段。
请参阅图24a及图24b,图24a是图7所示的电子设备在B处的另一种实施方式的放大示意图。图24b是图24a所示的电子设备的天线结构的示意图。以两个线天线组成的天线结构的辐射体是第一短边框123的一部分为例进行说明。在其他实施例中,两个线天线组成的天线结构的辐射体也可以是第一长边框121的一部分、第二长边框122的一部分或者第二短边框124的一部分。
具体的,两个线天线为第一线天线71和第二线天线72。
第一短边框123包括依次连接的第一金属段1231、第一绝缘段1232、第二金属段1233、第二绝缘段1234及第三金属段1235。换言之,第一绝缘段1232位于第一金属段1231与第二金属段1233之间。第二绝缘段1234位于第二金属段1233与第三金属段1235之间。
此外,第二金属段1233包括第一部分1、第一接地部分2及第二部分3。第一部分1连接于第一绝缘段1232。第二部分3连接于第二绝缘段1234。可以理解的是,第一金属段1231与第一部分1之间形成第四缝隙。第一绝缘段1232可以通过在第四缝隙内填充绝缘材料所形成,例如绝缘材料可以为聚合物、玻璃、陶瓷等材料或者这些材料的组合。在其他实施例中,第四缝隙内可填充空气,也即第四缝隙未填充任何绝缘材料。此外,第二部分3与第三金属段1235之间形成第五缝隙。第二绝缘段1234可以通过在第五缝隙内填充绝缘材料所形成,例如绝缘材料可以为聚合物、玻璃、陶瓷等材料或者这些材料的组合。
此外,本实施例的第一接地部分2的接地方式可参阅第一种实施例的第一接地部分2的接地方式,这里不再赘述。此外,第一金属段1231靠近第一绝缘段1232的端部接地。第三金属段1235靠近第二绝缘段1234的端部接地。第一金属段1231的接地方式与第三金属段1235的接地方式可参阅第一种实施例的第一接地部分2的接地方式,这里不再赘述。
此外,第一金属段1231与电路板30之间设置有第一缝隙31。一种实施方式中,第一缝隙31内可填充绝缘材料,例如第一缝隙31内可填充聚合物、玻璃、陶瓷等材料或者这些材料的组合。该绝缘材料连接于第一绝缘段1232。另一种实施方式中,第一缝隙31内可填充空气,也即第一缝隙31未填充任何绝缘材料。
此外,第二金属段1233与电路板30之间设置有第二缝隙32。第二缝隙32连通第一缝隙31。第二缝隙32的设置方式可参阅第一缝隙31的设置方式。这里不再赘述。
此外,第三金属段1235与电路板30之间设置有第三缝隙33。第三缝隙33连通第一缝隙31与第二缝隙32。第三缝隙33的设置方式可参阅第一缝隙31的设置方式。这里不再赘述。
这样,第一部分1与第一接地部分2形成第二辐射体102。第二部分3与第一接地部分2形成第三辐射体103。第二辐射体102与第三辐射体103形成第一线天线71的辐射体。
此外,第一金属段1231形成第一辐射体101。第三金属段1235形成第四辐射体104。第一辐射体101与第四辐射体104形成第二线天线72的辐射体。
其次,本实施例的第一线天线71的馈电方式可参阅第一个实施例的槽天线40的馈电方式。这里不再赘述。
此外,本实施例的第二线天线72的馈电方式可参阅第一个实施例的线天线50的馈电方式。这里不再赘述。
可以理解的是,本实施例可通过一种两个线天线组成的天线结构激励出多种谐振模式,从而实现天线可覆盖多个频段。
第五种实施例与第一种实施例及第二种实施例相同的技术内容不再赘述:通过设置一种环天线和槽天线组成的天线结构,并利用两种馈电方式,以使天线结构激励出多种谐振模式,从而实现天线可覆盖多个频段。
请参阅图25a及图25b,图25a是图7所示的电子设备在B处的另一种实施方式的放大示意图。图25b是图25a所示的电子设备的天线结构的示意图。本实施例的天线结构的辐射体是第一短边框123的一部分为例进行说明。在其他实施例中,天线结构的辐射体也可以是第一长边框121的一部分、第二长边框122的一部分或者第二短边框124的一部分。
电子设备100的天线包括环天线81及槽天线82。
在X轴方向上,第一短边框123包括依次连接的第一金属段1231、第一绝缘段1232、第二金属段1233、第二绝缘段1234及第三金属段1235。换言之,第一绝缘段1232位于第一金属段1231与第二金属段1233之间。第二绝缘段1234位于第二金属段1233与第三金属段1235之间。可以理解的是,第一金属段1231与第二金属段1233之间形成第四缝隙。第一绝缘段1232可以通过在第四缝隙内填充绝缘材料所形成,例如绝缘材料可以为聚合物、玻璃、陶瓷等材料或者这些材料的组合。在其他实施例中,第四缝隙内可填充空气,也即第四缝隙未填充任何绝缘材料。第二绝缘段1234的设置方式可参阅第一绝缘段1232的设置方式。
此外,第一金属段1231远离第一绝缘段1232的端部接地。第三金属段1235远离第二绝缘段1234的端部接地。第一金属段1231与第三金属段1235的接地方式可参阅第一种实施例的第一接地部分2的接地方式,这里不再赘述。
此外,第二金属段1233连接第一绝缘段1232的端部接地。第二金属段1233连接第二绝缘段1234的端部接地。
具体的,天线结构还包括第三导电段41及第四导电段42。第三导电段41及第四导电段42位于边框12的内侧。第三导电段41的一端连接于第二金属段1233连接第一绝缘段1232的端部。另一端接地。第四导电段42的一端连接于第二金属段1233连接第二绝缘段1234的端部,另一端接地。换言之,第二金属段1233连接第一绝缘段1232的端部通过第三导电段41接地。第二金属段1233连接第二绝缘段1234的端部通过第四导电段42接地。
第三导电段41接地方式以及第四导电段42的接地方式可参阅第一种实施例的第一接地部分2的接地方式。这里不再赘述。
此外,第二金属段1233与电路板30之间设置有第一缝隙31。第一缝隙31连通一种实施方式中,第一缝隙31内可填充绝缘材料,例如第一缝隙31内可填充聚合物、玻璃、陶瓷等材料或者这些材料的组合。该绝缘材料连接于第一绝缘段1233。另一种实施方式中,第一缝隙31内可填充空气,也即第一缝隙31未填充任何绝缘材料。
此外,第一金属段1231与电路板30之间设置有第二缝隙32。第二缝隙32连通第一缝隙31。第二缝隙32的设置方式可参阅第一缝隙31的设置方式。这里不再赘述。
此外,第三金属段1235与电路板30之间设置有第三缝隙33。第三缝隙33连通第一缝隙31与第二缝隙32。第三缝隙33的设置方式可参阅第一缝隙31的设置方式。这里不再赘述。
这样,第一金属段1231形成第一辐射体101。第二金属段1233形成第二辐射体102。第三金属段1235形成第三辐射体103。第二辐射体102为环天线81的辐射体。第一辐射体101与第三辐射体103为槽天线82的辐射体。
其次,下文将结合相关附图具体描述一下环天线81的馈电方式。
环天线81还包括第一馈电电路83。第一馈电电路83的负极电接地。第一馈电电路83的正极电连接于第二辐射体102。
此外,本实施例的槽天线82的馈电方式可参阅第一个实施例的线天线50的馈电方式。这里不再赘述。
可以理解的是,本实施例可通过一种环天线81和槽天线82组成的天线结构激励出四种天线模式,从而实现天线可覆盖多个频段。
在本申请中,通过结合相关附图介绍了五种实施例的天线结构,以及两种馈电方式,以使天线结构能够产生多种谐振模式,从而使得天线能够覆盖较多的频段。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

1.一种电子设备,其特征在于,包括电路板及天线结构,所述天线结构包括第一金属段、第二金属段、第一导电段、第二导电段、第一馈电电路以及第二馈电电路,所述第一金属段与所述电路板的侧面之间形成第一缝隙,所述第二金属段与所述电路板的侧面之间形成第二缝隙,所述第二缝隙连通所述第一缝隙;
在第一方向上,所述第一金属段包括依次连接的第一部分、第一接地部分和第二部分,所述第二金属段包括依次连接的第三部分、第二接地部分和第四部分,所述第二部分与所述第三部分形成第三缝隙,所述第三缝隙连通所述第一缝隙与所述第二缝隙,所述第一部分背向所述第一接地部分的端部为未接地的开放端,所述第四部分背向所述第二接地部分的端部为未接地的开放端;
所述第一馈电电路的负极接地,所述第一馈电电路的正极连接所述第一金属段的所述第二部分,并且连接所述第二金属段的所述第三部分;
所述第一导电段包括第一端及第二端,所述第一端接地,所述第二端连接所述第一金属段的所述第一部分,所述第二导电段包括第三端及第四端,所述第三端接地,所述第四端连接所述第二金属段的所述第四部分,所述第二馈电电路的负极电连接于所述第一端与所述第二端之间,所述第二馈电电路的正极电连接于所述第三端与所述第四端之间。
2.根据权利要求1所述的电子设备,其特征在于,所述天线结构还包括第一绝缘段及第二绝缘段,在所述第一方向上,所述第一绝缘段连接于所述第一部分的开放端,所述第二绝缘段连接于所述第四部分的开放端。
3.根据权利要求2所述的电子设备,其特征在于,所述电子设备包括边框,所述电路板、所述第一馈电电路与所述第二馈电电路均位于所述边框所围的区域内,所述第一金属段、所述第二金属段、所述第一绝缘段及所述第二绝缘段均为所述边框的一部分,所述边框还包括填充于所述第三缝隙的第三绝缘段。
4.根据权利要求1至3中任一项所述的电子设备,其特征在于,所述天线结构用于产生五个谐振模式,以扩宽所述天线结构辐射或者接收信号的频段。
5.根据权利要求1至3中任一项所述的电子设备,其特征在于,所述天线结构还包括桥结构,所述桥结构的材质为导电材料,所述桥结构的一端连接所述第一金属段的所述第二部分,所述桥结构的另一端连接所述第二金属段的所述第三部分,所述第一馈电电路的正极连接于所述桥结构的中部。
6.根据权利要求5所述的电子设备,其特征在于,所述天线结构还包括第三导电段、第四导电段、第一匹配电路及第二匹配电路;
所述第一导电段的所述第二端依次连接所述第一匹配电路、所述第三导电段及所述第一部分;
所述第二导电段的所述第四端依次连接所述第二匹配电路、所述第四导电段及所述第四部分。
7.根据权利要求6所述的电子设备,其特征在于,所述第一导电段与所述第二导电段为从所述电路板中地板延伸出来的两条对称的平行导线。
8.根据权利要求6所述的电子设备,其特征在于,所述电子设备的宽度方向为X方向,所述电子设备的长度方向为Y方向,所述电子设备的厚度方向为Z方向,在Z方向上,所述第一导电段及所述第二导电段与所述第三导电段及所述第四导电段存在高度差。
9.一种电子设备,其特征在于,包括电路板及天线结构,所述天线结构包括第一金属段、第二金属段、第三金属段、第一导电段、第二导电段、第一馈电电路以及第二馈电电路,所述第一金属段与所述电路板的侧面之间形成第一缝隙,所述第二金属段与所述电路板的侧面之间形成第二缝隙,所述第三金属段与所述电路板的侧面之间形成第三缝隙,所述第一缝隙、所述第二缝隙及所述第三缝隙相互连通;
在第一方向上,所述第二金属段包括依次连接的第一部分、第一接地部分和第二部分,所述第一金属段的一端与所述第一部分形成第四缝隙,另一端接地,所述第三金属段的一端与所述第二部分形成第五缝隙,另一端接地,所述第四缝隙与所述第五缝隙连通所述第一缝隙、所述第二缝隙及所述第三缝隙;
所述第一馈电电路的负极接地,所述第一馈电电路的正极连接所述第二金属段的所述第一部分以及所述第二部分;
所述第一导电段包括第一端及第二端,所述第一端接地,所述第二端连接所述第一金属段,所述第二导电段包括第三端及第四端,所述第三端接地,所述第四端连接所述第三金属段,所述第二馈电电路的负极电连接于所述第一端与所述第二端之间,所述第二馈电电路的正极电连接于所述第三端与所述第四端之间。
10.根据权利要求9所述的电子设备,其特征在于,所述天线结构用于产生六个谐振模式,以扩宽所述天线结构辐射或者接收信号的频段。
11.根据权利要求9所述的电子设备,其特征在于,所述电子设备包括边框,所述电路板、所述第一馈电电路与所述第二馈电电路均位于所述边框所围的区域内,所述第一金属段、所述第二金属段及所述第三金属段均为所述边框的一部分,所述边框还包括填充于所述第四缝隙的第一绝缘段,以及填充于所述第五缝隙的第二绝缘段。
12.根据权利要求9至11中任一项所述的电子设备,其特征在于,所述天线结构还包括桥结构,所述桥结构的材质为导电材料,所述桥结构的一端连接所述第二金属段的所述第一部分,所述桥结构的另一端连接所述第二金属段的所述第二部分,所述第一馈电电路的正极连接于所述桥结构的中部。
13.根据权利要求12所述的电子设备,其特征在于,所述天线结构还包括第三导电段、第四导电段、第一匹配电路及第二匹配电路;
所述第一导电段的所述第二端依次连接所述第一匹配电路、所述第三导电段及所述第一金属段;
所述第二导电段的所述第四端依次连接所述第二匹配电路、所述第四导电段及所述第三金属段。
14.根据权利要求13所述的电子设备,其特征在于,所述第一导电段与所述第二导电段为从所述电路板中地板延伸出来的两条对称的平行导线。
15.根据权利要求13所述的电子设备,其特征在于,所述电子设备的宽度方向为X方向,所述电子设备的长度方向为Y方向,所述电子设备的厚度方向为Z方向,在Z方向上,所述第一导电段及所述第二导电段与所述第三导电段及所述第四导电段存在高度差。
CN202010132991.4A 2020-02-29 2020-02-29 电子设备 Active CN113328233B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202010132991.4A CN113328233B (zh) 2020-02-29 2020-02-29 电子设备
PCT/CN2021/073626 WO2021169700A1 (zh) 2020-02-29 2021-01-25 电子设备
EP21760008.9A EP4099504A4 (en) 2020-02-29 2021-01-25 ELECTRONIC DEVICE
US17/802,900 US20230146114A1 (en) 2020-02-29 2021-01-25 Electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010132991.4A CN113328233B (zh) 2020-02-29 2020-02-29 电子设备

Publications (2)

Publication Number Publication Date
CN113328233A CN113328233A (zh) 2021-08-31
CN113328233B true CN113328233B (zh) 2022-11-08

Family

ID=77412977

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010132991.4A Active CN113328233B (zh) 2020-02-29 2020-02-29 电子设备

Country Status (4)

Country Link
US (1) US20230146114A1 (zh)
EP (1) EP4099504A4 (zh)
CN (1) CN113328233B (zh)
WO (1) WO2021169700A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540758B (zh) * 2020-04-22 2022-10-25 华为技术有限公司 天线单元和电子设备
CN113839204B (zh) * 2021-09-18 2023-01-31 荣耀终端有限公司 移动终端及高隔离天线对
CN114361784B (zh) * 2022-01-12 2022-10-28 西安电子科技大学 一种基于共模差模的宽频带紧凑型圆极化天线
WO2023142750A1 (zh) * 2022-01-28 2023-08-03 华为技术有限公司 天线和电子设备
US20230387584A1 (en) * 2022-05-31 2023-11-30 Apple Inc. Electronic Devices with Interconnected Ground Structures

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2410607A1 (en) * 2010-07-23 2012-01-25 Research In Motion Limited Mobile wireless device with multi-band loop antenna with arms defining a slotted opening and related methods
US8686918B1 (en) * 2012-02-29 2014-04-01 General Atomics Multi-function magnetic pseudo-conductor antennas
CN105742812A (zh) * 2016-03-23 2016-07-06 深圳市万普拉斯科技有限公司 移动终端及其天线结构
CN106134002A (zh) * 2014-01-17 2016-11-16 斯坦陵布什大学 多模复合天线
CN107394365A (zh) * 2017-07-18 2017-11-24 西安电子科技大学 陷波可重构的超宽带差分天线
CN107453056A (zh) * 2017-06-22 2017-12-08 瑞声科技(新加坡)有限公司 天线***以及通讯设备
CN108470979A (zh) * 2018-03-30 2018-08-31 清华大学 一种奇偶模工作的小型宽带圆极化天线
CN108713277A (zh) * 2017-03-20 2018-10-26 华为技术有限公司 一种移动终端的天线及移动终端
US10158384B1 (en) * 2017-09-08 2018-12-18 Apple Inc. Electronic devices with indirectly-fed adjustable slot elements

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867736B2 (en) * 2002-11-08 2005-03-15 Motorola, Inc. Multi-band antennas
US7403161B2 (en) * 2005-10-14 2008-07-22 Motorola, Inc. Multiband antenna in a communication device
US7911387B2 (en) * 2007-06-21 2011-03-22 Apple Inc. Handheld electronic device antennas
TWI347709B (en) * 2007-11-16 2011-08-21 Lite On Technology Corp Dipole antenna device and dipole antenna system
US20100231461A1 (en) * 2009-03-13 2010-09-16 Qualcomm Incorporated Frequency selective multi-band antenna for wireless communication devices
US8164537B2 (en) * 2009-05-07 2012-04-24 Mororola Mobility, Inc. Multiband folded dipole transmission line antenna
US8638262B2 (en) * 2009-06-30 2014-01-28 Nokia Corporation Apparatus for wireless communication comprising a loop like antenna
US9166279B2 (en) * 2011-03-07 2015-10-20 Apple Inc. Tunable antenna system with receiver diversity
US20140002320A1 (en) * 2011-03-16 2014-01-02 Kenichi Asanuma Antenna apparatus operable in dualbands with small size
CN102760949A (zh) * 2011-04-27 2012-10-31 鸿富锦精密工业(深圳)有限公司 多输入输出天线
WO2012160413A1 (en) * 2011-05-23 2012-11-29 Nokia Corporation Apparatus and methods for wireless communication
US9673520B2 (en) * 2011-09-28 2017-06-06 Sony Corporation Multi-band wireless terminals with multiple antennas along an end portion, and related multi-band antenna systems
CN104577304B (zh) * 2013-10-18 2019-07-23 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
US20150123871A1 (en) * 2013-11-06 2015-05-07 Acer Incorporated Mobile device and antenna structure with conductive frame
GB2529885B (en) * 2014-09-05 2017-10-04 Smart Antenna Tech Ltd Multiple antenna system arranged in the periphery of a device casing
US20160111772A1 (en) * 2014-10-16 2016-04-21 Microsoft Corporation Loop antenna with a parasitic element inside
DE102014016851B3 (de) * 2014-11-13 2015-12-10 Kathrein-Werke Kg MIMO Schlitzantenne für Kraftfahrzeuge
PL3748772T3 (pl) * 2015-01-15 2022-02-14 Commscope Technologies Llc Rezonansowy, wielopasmowy szyk promieniujący o niskim trybie wspólnym
GB201610113D0 (en) * 2016-06-09 2016-07-27 Smart Antenna Tech Ltd An antenna system for a portable device
KR101827275B1 (ko) * 2015-11-27 2018-02-08 엘지전자 주식회사 이동 단말기
US10079922B2 (en) * 2016-03-11 2018-09-18 Microsoft Technology Licensing, Llc Conductive structural members acting as NFC antenna
TWI630753B (zh) * 2016-09-01 2018-07-21 群邁通訊股份有限公司 天線結構及具有該天線結構之無線通訊裝置
TWI732931B (zh) * 2016-09-29 2021-07-11 仁寶電腦工業股份有限公司 天線結構
CN106450744B (zh) * 2016-10-18 2023-09-05 上海德门电子科技有限公司 一种基于金属壳体结构的nfc和射频二合一天线及通讯设备
US11038257B2 (en) * 2017-01-16 2021-06-15 Huawei Technologies Co., Ltd. Antenna structure and communications terminal
TWI641185B (zh) * 2017-06-27 2018-11-11 華碩電腦股份有限公司 通訊裝置及其天線組件
US10886607B2 (en) * 2017-07-21 2021-01-05 Apple Inc. Multiple-input and multiple-output antenna structures
CN107369891A (zh) * 2017-08-29 2017-11-21 努比亚技术有限公司 天线***及金属框移动终端
US10658749B2 (en) * 2017-09-07 2020-05-19 Apple Inc. Electronic device slot antennas
CN107483675A (zh) * 2017-09-14 2017-12-15 厦门美图移动科技有限公司 一种移动终端的金属背壳及移动终端
CN109560386B (zh) * 2017-09-27 2022-02-11 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
KR20190041231A (ko) * 2017-10-12 2019-04-22 엘지전자 주식회사 이동 단말기
CN108232421B (zh) * 2017-12-29 2021-04-02 瑞声精密制造科技(常州)有限公司 天线***及移动终端
US10916832B2 (en) * 2018-02-20 2021-02-09 Apple Inc. Electronic device slot antennas
US10193597B1 (en) * 2018-02-20 2019-01-29 Apple Inc. Electronic device having slots for handling near-field communications and non-near-field communications
TWI675507B (zh) * 2018-05-30 2019-10-21 啟碁科技股份有限公司 天線結構
US10396438B1 (en) * 2018-05-31 2019-08-27 Motorola Mobility Llc Antenna system and electronic device including one or more conductive elements for use with a differential and an alternative signal source
CN110556620B (zh) * 2018-06-01 2021-07-09 华为技术有限公司 天线及移动终端
CN110556619B (zh) * 2018-06-01 2021-10-19 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
US11205834B2 (en) * 2018-06-26 2021-12-21 Apple Inc. Electronic device antennas having switchable feed terminals
CN109149086B (zh) * 2018-08-03 2020-07-07 瑞声科技(南京)有限公司 天线***及移动终端
CN109149115B (zh) * 2018-08-03 2021-01-12 瑞声科技(南京)有限公司 天线***及移动终端
CN109103576B (zh) * 2018-08-03 2020-03-17 瑞声精密制造科技(常州)有限公司 天线***及移动终端
CN109149071B (zh) * 2018-08-20 2021-05-07 瑞声光电科技(常州)有限公司 天线模组及移动终端
CN109149072B (zh) * 2018-08-20 2020-11-17 瑞声科技(新加坡)有限公司 天线模组及移动终端
US10992045B2 (en) * 2018-10-23 2021-04-27 Neptune Technology Group Inc. Multi-band planar antenna
CA3057782C (en) * 2018-10-23 2022-03-22 Neptune Technology Group Inc. Compact folded dipole antenna with multiple frequency bands
US11114748B2 (en) * 2019-09-06 2021-09-07 Apple Inc. Flexible printed circuit structures for electronic device antennas
CN112803158B (zh) * 2019-11-14 2022-06-28 华为技术有限公司 一种电子设备
KR20210101711A (ko) * 2020-02-10 2021-08-19 삼성전자주식회사 안테나 및 이를 구비한 전자 장치
US11515648B2 (en) * 2021-02-04 2022-11-29 Iq Group Sdn. Bhd. Dipole antenna

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2410607A1 (en) * 2010-07-23 2012-01-25 Research In Motion Limited Mobile wireless device with multi-band loop antenna with arms defining a slotted opening and related methods
US8686918B1 (en) * 2012-02-29 2014-04-01 General Atomics Multi-function magnetic pseudo-conductor antennas
CN106134002A (zh) * 2014-01-17 2016-11-16 斯坦陵布什大学 多模复合天线
CN105742812A (zh) * 2016-03-23 2016-07-06 深圳市万普拉斯科技有限公司 移动终端及其天线结构
CN108713277A (zh) * 2017-03-20 2018-10-26 华为技术有限公司 一种移动终端的天线及移动终端
CN107453056A (zh) * 2017-06-22 2017-12-08 瑞声科技(新加坡)有限公司 天线***以及通讯设备
CN107394365A (zh) * 2017-07-18 2017-11-24 西安电子科技大学 陷波可重构的超宽带差分天线
US10158384B1 (en) * 2017-09-08 2018-12-18 Apple Inc. Electronic devices with indirectly-fed adjustable slot elements
CN108470979A (zh) * 2018-03-30 2018-08-31 清华大学 一种奇偶模工作的小型宽带圆极化天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
差分双频滤波天线设计;耿彦峰;《测试技术学报》;20170830;全文 *

Also Published As

Publication number Publication date
WO2021169700A1 (zh) 2021-09-02
EP4099504A1 (en) 2022-12-07
EP4099504A4 (en) 2023-07-12
US20230146114A1 (en) 2023-05-11
CN113328233A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
CN113328233B (zh) 电子设备
US7755545B2 (en) Antenna and method of manufacturing the same, and portable wireless terminal using the same
EP0829110B1 (en) Printed monopole antenna
US8963794B2 (en) Distributed loop antennas
US20180331415A1 (en) Electronic device and antenna structure thereof
CN114122712B (zh) 一种天线结构及电子设备
CN112448162A (zh) 天线组件及电子设备
CN113224503B (zh) 一种天线及终端设备
WO2022042306A1 (zh) 天线单元和电子设备
CN114824749B (zh) 一种电子设备
CN113517557B (zh) 一种电子设备
CN113471665B (zh) 一种天线及终端
US20240088541A1 (en) Electronic Device
CN113809517B (zh) 天线装置与电子设备
US20230048914A1 (en) Antenna Apparatus and Electronic Device
CN112864583B (zh) 天线装置及电子设备
CN115036674B (zh) 天线组件及电子设备
CN114389005B (zh) 一种电子设备
WO2023273604A1 (zh) 天线模组及电子设备
CN117438780A (zh) 天线装置及电子设备
CN117335126A (zh) 一种电子设备
CN117578071A (zh) 电子设备
CN116345153A (zh) 一种电子设备
CN116780161A (zh) 天线装置及电子设备
CN117438778A (zh) 天线装置及电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant