CN113151856A - 一种高熵合金磷化物纳米粒子催化剂的制备及其在电解水制氢中的应用 - Google Patents

一种高熵合金磷化物纳米粒子催化剂的制备及其在电解水制氢中的应用 Download PDF

Info

Publication number
CN113151856A
CN113151856A CN202110424556.3A CN202110424556A CN113151856A CN 113151856 A CN113151856 A CN 113151856A CN 202110424556 A CN202110424556 A CN 202110424556A CN 113151856 A CN113151856 A CN 113151856A
Authority
CN
China
Prior art keywords
entropy alloy
phosphide
metal
nanoparticle catalyst
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110424556.3A
Other languages
English (en)
Other versions
CN113151856B (zh
Inventor
赵明
王思懿
赵亮
曹景沛
韦宇檑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN202110424556.3A priority Critical patent/CN113151856B/zh
Publication of CN113151856A publication Critical patent/CN113151856A/zh
Application granted granted Critical
Publication of CN113151856B publication Critical patent/CN113151856B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明公开了一种高熵合金磷化物纳米粒子催化剂的制备及其在电解水制氢中的应用,先取四种或四种以上金属源,与磷源共同置于油胺中,金属源与磷源的摩尔比为1:2,加入缓冲试剂,将混合物搅拌均匀;在惰性气氛下,将混合物升温至150℃搅拌反应,反应结束后冷却、洗涤、离心,用正己烷溶解,得到高熵合金磷化物纳米粒子溶液;将纳米粒子溶液通过超声碳负载的方式负载在活性炭上,煅烧,得到碳负载的高熵合金磷化物纳米粒子催化剂。本发明的制备方法原料易得,反应温度低,后处理简单,不产生有毒的磷蒸汽等副产物,且制得的高熵合金磷化物催化剂在电解水制氢体系中表现出良好的催化性能。

Description

一种高熵合金磷化物纳米粒子催化剂的制备及其在电解水制 氢中的应用
技术领域
本发明涉及纳米材料和催化剂制备技术领域,具体涉及一种高熵合金磷化物纳米粒子催化剂的制备及其在电解水制氢中的应用。
背景技术
金属磷化物是指一类由非金属元素磷填充在金属原子晶格间所形成的填隙型化合物,该类化合物同时具有金属和半导体的性质,物理化学性质与碳化物、硼化物、氮化物相类似,具有良好的导热导电性和热稳定性。过渡金属磷化物的合成,尤其在纳米尺度下控制其形貌和结构,成为材料合成领域的一个热点。对于金属磷化物的制备方法,主要可以分为水热法、溶剂热法、程序升温法、磷酸盐热分解法、金属有机前驱体分解法等。其中,水热法和溶剂热法分别以水、有机溶剂为反应介质,在施加高压下使原料溶解于水/有机溶剂中,反应条件较为温和。无论是水热法还是溶剂热法,都具有操作简单、成本较低、反应条件易达成等优点,且合成的纳米材料分散性好、纯度高,故两者均为常用的制备金属纳米磷化物的方法。
高熵合金原指由五种或五种以上等摩尔比的元素组成的合金,随着研究的深入,元素组分的浓度不再受等比例的限制。目前,高熵合金的定义有基于成分的和基于熵的两种形式:对于基于成分的定义,高熵合金指由五种或五种以上元素组成的合金,每种元素的浓度在5~35%之间;基于熵的定义,高熵合金的混合构型熵可用下式来描述:
S=-R∑xiln(xi)
其中,R是摩尔气体常数,xi代表元素组分的摩尔分数。对于元素组分数≥5的合金,混合构型熵S≥1.5R的合金为高熵合金。
和单相合金相比,高熵合金具有以下优势:
A.混合构型熵高,形成了稳定的单相固溶体结构,催化效果更稳定持久。
B.金属原子在晶格中随机占据,形成了晶格畸变,从而使高熵合金硬度更高。
C.扩散效应缓慢,有利于纳米级粒子的形成。
D.元素之间协同效应更强,有利于催化性能的提高。
高熵的概念引入了开发具有独特性能的先进材料的新途径,高熵合金也是近年来材料学的研究热点。
发明内容
本发明的目的是提供一种高熵合金磷化物纳米粒子催化剂及其制备方法,反应条件温和、简单易行、安全环保。
本发明的另一目的是提供上述制备得到的高熵合金磷化物纳米粒子催化剂在电解水制氢中的应用。
为实现上述目的,本发明采用的技术方案如下:一种高熵合金磷化物纳米粒子催化剂的制备方法,包括以下步骤:
(1)等摩尔比取四种或四种以上金属源,与磷源共同置于油胺中,金属源与磷源的摩尔比为1:2,加入缓冲试剂,将混合物搅拌均匀;
(2)在惰性气氛下,将混合物升温至150℃搅拌反应,直至变成黑色溶液,反应结束后冷却,离心、洗涤,用正己烷溶解,得到高熵合金磷化物纳米粒子溶液;
(3)将纳米粒子溶液通过超声碳负载的方式负载在活性炭上,煅烧,得到碳负载的高熵合金磷化物纳米粒子催化剂。
优选的,步骤(1)中所述金属源选自金属钯、金属铂,以及金属钴、金属镍、金属铜三种金属中的至少两种;所述磷源为三苯基膦;所述缓冲试剂为四丁基溴化铵TBAB和三辛基氧化膦TOPO。
更优选的,步骤(1)中所述金属源为乙酰丙酮金属盐,较易购得,且在油相中溶解度较高,与同时作为还原剂和溶剂的油胺相性高。
优选的,步骤(2)中所述离心的步骤是:将反应溶液与无水乙醇混合离心。
优选的,步骤(2)中所述洗涤的步骤是:用无水乙醇洗涤离心后的固体。
优选的,步骤(3)中所述煅烧的温度为400℃,保温时间为2h。
本发明还提供由上述方法制得的高熵合金磷化物纳米粒子催化剂,催化剂为纳米结构。
本发明还提供上述高熵合金磷化物纳米粒子催化剂在酸性电解水制氢中的应用。
与现有技术相比,本发明具有如下有益效果:
本发明将金属源、磷源通过溶剂热合成法形成高熵合金纳米粒子,又用超声碳负载法将纳米粒子负载于活性炭上。与现有的制备方法相比,本发明提供的制备方法所需反应温度仅为150℃,远低于现有方法普遍200℃以上的反应温度,且不产生有毒的磷蒸汽等副产物;油胺、三苯基膦、乙酰丙酮盐等原料也为易购得且成本相对较低的原料。本发明制得的高熵合金磷化物催化剂在酸性电解水制氢体系中表现出良好的催化性能。
附图说明
图1为本发明实施例2制得的纳米粒子催化剂的能谱图。
图2为本发明实施例2制得的高熵合金磷化物的透射电镜图。
图3为本发明实施例2制得的纳米粒子催化剂的透射电镜图。
图4为本发明实施例1和2制得的纳米粒子在酸性电解水析氢反应中催化的电流密度与反应过电势的曲线图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
实施例1:高熵合金磷化物纳米粒子催化剂PdCoNiPtP的制备
(1)分别取0.1mmol乙酰丙酮钯、0.1mmol乙酰丙酮钴、0.1mmol乙酰丙酮镍、0.1mmol乙酰丙酮铂,加入耐压瓶中,按金属源:磷源=1:2的摩尔比加入0.8mmol三苯基膦,加入1mmol TBAB、3mmol TOPO作为缓冲试剂,倒入6mL油胺,将混合物搅拌均匀。
(2)在悬浮液中通入氮气,置换耐压瓶中的空气后,旋上瓶盖,在油浴锅中150℃下磁力搅拌四个小时,直至变成黑色溶液。反应结束后,将溶液与无水乙醇均匀混合、离心,将得到的固体再次用无水乙醇洗涤后,加入正己烷溶解,得到高熵合金磷化物溶液。通过超声碳负载将高熵合金磷化物负载于XC-72活性炭上,旋蒸,转移至管式炉中400℃煅烧,保温2h,得到粉末状的催化剂。
实施例2:高熵合金磷化物纳米粒子催化剂PdCoNiPtCuP的制备
(1)分别取0.1mmol乙酰丙酮钯、0.1mmol乙酰丙酮钴、0.1mmol乙酰丙酮镍、0.1mmol乙酰丙酮铂、0.1mmol乙酰丙酮铜,加入耐压瓶中,按金属源:磷源=1:2的摩尔比加入1mmol三苯基膦,加入1mmol TBAB、3mmol TOPO作为缓冲试剂,倒入6mL油胺,将混合物搅拌均匀。
(2)在悬浮液中通入氮气,置换耐压瓶中的空气后,旋上瓶盖,在油浴锅中150℃下磁力搅拌四个小时,直至变成黑色溶液。反应结束后,将溶液与无水乙醇均匀混合、离心,将得到的固体再次用无水乙醇洗涤后,加入正己烷溶解,得到高熵合金磷化物溶液。通过超声碳负载将高熵合金磷化物负载于XC-72活性炭上,旋蒸,转移至管式炉中400℃煅烧,保温2h,得到粉末状的催化剂。
图1为本实施例2制得的纳米粒子催化剂的能谱图;由图1可知,对纳米粒子进行EDS点分析,发现纳米粒子中存在Pd、Co、Ni、Pt、Cu、P六种元素。
图2为本实施例2制得的高熵合金磷化物的透射电镜图;图3为本实施例2制得的纳米粒子催化剂的透射电镜图;由图2、图3可知,灰色区域为碳负载,黑色圆球为所制催化剂,催化剂为纳米结构,直径约8nm。
实施例3:高熵合金磷化物纳米粒子催化剂在电解水制氢中的应用
将取适量催化剂溶于无水乙醇和去离子水的1:1混合溶液中,加入磺酸膜,制成催化剂墨水,并将催化剂墨水负载于玻碳电极上。此后,以玻碳电极为工作电极、石墨电极为对电极、甘汞电极为参比电极,测试催化剂在酸性HER中的性能。测试时参数设置如下:
Figure BDA0003028826770000041
测试完毕后,对数据进行处理,得到电流密度与反应过电势的曲线图。
对所制催化剂进行icp测试分析其元素含量,推算得出,PdCoNiPtCuP玻碳电极上Pt的负载量为0.627μg、Pd的负载量为1.047μg;PdCoNiPtP玻碳电极上Pt的负载量为0.539μg、Pd的负载量为1.019μg。
将酸性条件下的电解水制氢测试结果与常见的商业20%Pt/C催化剂(玻碳电极上Pt的负载量为6.000μg)、10%Pd/C催化剂(玻碳电极上Pd的负载量为3.000μg)作比较,所得结果如图4所示。对结果分析如下:
(1)所制样品的性能与10%Pd/C催化剂持平,PdCoNiPtCuP的性能甚至优于该对照。且整体曲线平滑,未出现副反应吸收峰。
(2)所制样品中,贵金属的总量远远小于对照组中贵金属的量,表明了所制样品在具备和对照商用催化剂持平的性能的同时,大大缩小了制备成本。

Claims (8)

1.一种高熵合金磷化物纳米粒子催化剂的制备方法,其特征在于,包括以下步骤:
(1)取四种或四种以上金属源,与磷源共同置于油胺中,金属源与磷源的摩尔比为1:2,加入缓冲试剂,将混合物搅拌均匀;
(2)在惰性气氛下,将混合物升温至150℃搅拌反应,直至变成黑色溶液,反应结束后冷却、洗涤、离心,用正己烷溶解,得到高熵合金磷化物纳米粒子溶液;
(3)将纳米粒子溶液通过超声碳负载的方式负载在活性炭上,煅烧,得到碳负载的高熵合金磷化物纳米粒子催化剂。
2.根据权利要求1所述的一种高熵合金磷化物纳米粒子催化剂的制备方法,其特征在于,步骤(1)中所述金属源选自金属钯、金属铂,以及金属钴、金属镍、金属铜三种金属中的至少两种;所述磷源为三苯基膦;所述缓冲试剂为四丁基溴化铵TBAB和三辛基氧化膦TOPO。
3.根据权利要求2所述的一种高熵合金磷化物纳米粒子催化剂的制备方法,其特征在于,步骤(1)中所述金属源为乙酰丙酮金属盐。
4.根据权利要求1所述的一种高熵合金磷化物纳米粒子催化剂的制备方法,其特征在于,步骤(2)中所述离心的步骤是:将反应溶液与无水乙醇混合离心。
5.根据权利要求4所述的一种高熵合金磷化物纳米粒子催化剂的制备方法,其特征在于,步骤(2)中所述洗涤的步骤是:用无水乙醇洗涤离心后的固体。
6.根据权利要求1所述的一种高熵合金磷化物纳米粒子催化剂的制备方法,其特征在于,步骤(3)中所述煅烧的温度为400℃,保温时间为2h。
7.权利要求1至6任一项所述的制备方法制得的高熵合金磷化物纳米粒子催化剂。
8.权利要求7所述的高熵合金磷化物纳米粒子催化剂在酸性电解水制氢中的应用。
CN202110424556.3A 2021-04-20 2021-04-20 一种高熵合金磷化物纳米粒子催化剂的制备及其在电解水制氢中的应用 Active CN113151856B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110424556.3A CN113151856B (zh) 2021-04-20 2021-04-20 一种高熵合金磷化物纳米粒子催化剂的制备及其在电解水制氢中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110424556.3A CN113151856B (zh) 2021-04-20 2021-04-20 一种高熵合金磷化物纳米粒子催化剂的制备及其在电解水制氢中的应用

Publications (2)

Publication Number Publication Date
CN113151856A true CN113151856A (zh) 2021-07-23
CN113151856B CN113151856B (zh) 2023-03-28

Family

ID=76869298

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110424556.3A Active CN113151856B (zh) 2021-04-20 2021-04-20 一种高熵合金磷化物纳米粒子催化剂的制备及其在电解水制氢中的应用

Country Status (1)

Country Link
CN (1) CN113151856B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113774422A (zh) * 2021-10-26 2021-12-10 山东理工大学 一种应用于电解水的PdCuFeCoNi高熵合金纳米颗粒催化剂的制备方法
CN114094129A (zh) * 2021-09-30 2022-02-25 南京大学 一种碳材料负载的高熵合金氧还原电催化剂的制备方法
CN114735667A (zh) * 2022-04-18 2022-07-12 齐鲁理工学院 一种高熵金属磷化物FeCoNiCrMnPx的制备方法
CN114920222A (zh) * 2022-04-11 2022-08-19 齐鲁理工学院 一种高熵金属磷化物FeCoNiCrMnPx的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101103144A (zh) * 2004-11-16 2008-01-09 海珀里昂催化国际有限公司 制备负载在碳纳米管网络上的催化剂的方法
CN107587158A (zh) * 2017-08-11 2018-01-16 天津工业大学 一种纳米多孔高熵合金电极及其制备方法和应用
CN110858653A (zh) * 2018-08-22 2020-03-03 中国石油天然气股份有限公司 一种碳负载钯镍二元合金纳米催化剂及其制备方法与应用
CN111185206A (zh) * 2020-01-21 2020-05-22 广东工业大学 一种过渡金属-磷化物催化剂及其制备方法与应用
CN111686758A (zh) * 2020-06-17 2020-09-22 青岛科技大学 RuFeCoNiCu高熵合金纳米粒子催化剂及其制备方法和应用
CN112077331A (zh) * 2020-09-10 2020-12-15 西北有色金属研究院 一种碳材料载纳米尺度多元合金的制备方法
CN112475315A (zh) * 2020-11-27 2021-03-12 电子科技大学 一种普适性制备高熵合金纳米颗粒的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101103144A (zh) * 2004-11-16 2008-01-09 海珀里昂催化国际有限公司 制备负载在碳纳米管网络上的催化剂的方法
CN107587158A (zh) * 2017-08-11 2018-01-16 天津工业大学 一种纳米多孔高熵合金电极及其制备方法和应用
CN110858653A (zh) * 2018-08-22 2020-03-03 中国石油天然气股份有限公司 一种碳负载钯镍二元合金纳米催化剂及其制备方法与应用
CN111185206A (zh) * 2020-01-21 2020-05-22 广东工业大学 一种过渡金属-磷化物催化剂及其制备方法与应用
CN111686758A (zh) * 2020-06-17 2020-09-22 青岛科技大学 RuFeCoNiCu高熵合金纳米粒子催化剂及其制备方法和应用
CN112077331A (zh) * 2020-09-10 2020-12-15 西北有色金属研究院 一种碳材料载纳米尺度多元合金的制备方法
CN112475315A (zh) * 2020-11-27 2021-03-12 电子科技大学 一种普适性制备高熵合金纳米颗粒的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DI CHEN等: "Enhancing Ethanol Oxidation Reaction Activity of P‑Doped CuPdNi Nanocatalyst by Optimizing Surface-Atom Distribution", 《ACS APPL. ENERGY MATER.》 *
MING ZHAO等: "Composition-Dependent Morphology of Bi- and Trimetallic Phosphides: Construction of Amorphous Pd−Cu−Ni−P Nanoparticles as a Selective and Versatile Catalyst", 《ACS APPL. MATER. INTERFACES》 *
孔丹旎等: "活性炭负载Pt-Ni双金属催化剂上甘油水溶液原位加氢反应性能", 《高等学校化学学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094129A (zh) * 2021-09-30 2022-02-25 南京大学 一种碳材料负载的高熵合金氧还原电催化剂的制备方法
CN113774422A (zh) * 2021-10-26 2021-12-10 山东理工大学 一种应用于电解水的PdCuFeCoNi高熵合金纳米颗粒催化剂的制备方法
CN114920222A (zh) * 2022-04-11 2022-08-19 齐鲁理工学院 一种高熵金属磷化物FeCoNiCrMnPx的制备方法
CN114920222B (zh) * 2022-04-11 2023-09-12 齐鲁理工学院 一种高熵金属磷化物FeCoNiCrMnPx的制备方法
CN114735667A (zh) * 2022-04-18 2022-07-12 齐鲁理工学院 一种高熵金属磷化物FeCoNiCrMnPx的制备方法
CN114735667B (zh) * 2022-04-18 2023-09-12 齐鲁理工学院 一种高熵金属磷化物FeCoNiCrMnPx的制备方法

Also Published As

Publication number Publication date
CN113151856B (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
CN113151856B (zh) 一种高熵合金磷化物纳米粒子催化剂的制备及其在电解水制氢中的应用
CN111905793B (zh) 一种氮掺杂碳载非贵金属单原子催化剂的制备方法
Song et al. Metal-organic framework derived Fe/Fe3C@ N-doped-carbon porous hierarchical polyhedrons as bifunctional electrocatalysts for hydrogen evolution and oxygen-reduction reactions
CN109908904A (zh) 一种过渡金属单原子催化剂及其制备方法和应用
US20100041544A1 (en) Electrode Catalyst of Carbon Nitride Nanotubes Supported by Platinum and Ruthenium Nanoparticles and Preparation Method Thereof
CN108837838B (zh) 一种超小碳化钒嵌入碳纳米管材料、制备方法及其在水裂解产氢方面的应用
Sahoo et al. Nitrogen and sulfur co-doped porous carbon–is an efficient electrocatalyst as platinum or a hoax for oxygen reduction reaction in acidic environment PEM fuel cell?
CN112517011B (zh) 一种碳基镍铁双金属析氧催化剂及其制备方法
CN111054418B (zh) 一种析氧/析氢二维一氧化钴@二硒化钴@氮掺杂碳纳米管/石墨烯双功能复合催化剂
CN109675595B (zh) 一种碳化钨/多孔碳复合材料及其制备方法和在电化学产氢中的应用
CN110581281B (zh) 一种应用于燃料电池领域的PdCu合金纳米催化剂及制备方法
CN111468150A (zh) 一种富勒烯纳米棒/过渡金属磷化物电催化剂及其制备方法
CN110302799B (zh) 电化学还原二氧化碳为一氧化碳的催化剂及其制备方法
CN112725819A (zh) 一种钨钼基氮碳化物纳米材料及其制备方法与应用
Jiang et al. 2D coordination polymer-derived CoSe 2–NiSe 2/CN nanosheets: the dual-phase synergistic effect and ultrathin structure to enhance the hydrogen evolution reaction
CN114471658A (zh) 一种温度调控双功能原子级分散金属的g-C3N4光催化剂的制备方法
CN114045522A (zh) NiMo6-S@HCS纳米复合材料、制备方法及电催化制氢中的应用
CN108393500B (zh) 一种Mo-Ni合金纳米粒子复合材料及其制备方法和应用
CN114645283B (zh) 一种高效氮化钒/碳化钼异质结产氢电催化剂及其制备方法与应用
CN112981446B (zh) 一种用于高效电解水析氢的多级催化结构复合材料及其制备方法
CN113751037B (zh) 一种结合有机金属框架的金属碳化物Fe3C/Mo2C的制备和应用
CN111394748B (zh) 一种用于co2电解的铁镍合金原位脱溶的层状钙钛矿阴极材料
CN114308061A (zh) NiAu双金属合金纳米催化剂及其合成与应用
CN110918090A (zh) 一种非晶Pt纳米催化剂及其制备方法和应用
CN115739094B (zh) 一种铜镍氧化物复合物纳米线薄膜的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant