CN113145155B - 一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法 - Google Patents

一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法 Download PDF

Info

Publication number
CN113145155B
CN113145155B CN202110256353.8A CN202110256353A CN113145155B CN 113145155 B CN113145155 B CN 113145155B CN 202110256353 A CN202110256353 A CN 202110256353A CN 113145155 B CN113145155 B CN 113145155B
Authority
CN
China
Prior art keywords
nitrogen
bioethanol
doped carbon
catalyst
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110256353.8A
Other languages
English (en)
Other versions
CN113145155A (zh
Inventor
王铁军
古桔文
仇松柏
张浅
吴小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202110256353.8A priority Critical patent/CN113145155B/zh
Publication of CN113145155A publication Critical patent/CN113145155A/zh
Priority to PCT/CN2021/127575 priority patent/WO2022188432A1/zh
Application granted granted Critical
Publication of CN113145155B publication Critical patent/CN113145155B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/32Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions without formation of -OH groups
    • C07C29/34Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions without formation of -OH groups by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法,所述制备方法包括如下步骤:S1.取可溶性镍盐和聚丙烯酰胺,加水搅拌,完全溶解后干燥,得到前驱体,可溶性镍盐和聚丙烯酰胺的摩尔比为1:(0.5~8);S2.将前驱体置于惰性气氛中于300~800℃下热解1~6h,所得即为氮掺杂碳包覆镍催化剂。本发明所述方法制备得到的催化剂具有高分散的活性相,能够高效组装小分子醇合成高级醇,同时具有较高的稳定性,在重复使用10次的情况下依旧能保持较高的转化率和有机相收率。

Description

一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化 剂及其制备方法
技术领域
本发明涉及催化剂技术领域,更具体地,涉及一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法。
背景技术
化石资源的过度消耗导致日益严重的环境问题,因而可再生资源的开发利用受到了人们的普遍关注,生物质是唯一的含碳可再生资源,将其转化为燃料、化学品和平台化合物对节能减排和可持续社会的建立都有重要意义。生物乙醇是最重要的大宗生物质化工产品之一,其可以由可大量获取的秸秆、枯草等生物质资源通过生物发酵或催化等方式转化得到,美国和巴西的汽油中已经添加了10%的乙醇(E10),中国也在逐步推广E10汽油。然而,乙醇属于短链低碳醇,容易吸水,这会导致发动机腐蚀和难以储存等一系列问题,且生物乙醇大多通过生物发酵获得,其存在含水量大,乙醇浓度低等问题。
高级醇是重要的化工平台分子,相比低碳醇,其疏水性好,在水中具有更低的溶解度、易于分离纯化,常在精细化工中作为萃取剂。同时相对于乙醇等低碳醇,其具有更高的能量密度,对发动机的腐蚀性更低,而分子骨架中带有支链的异构化高级醇还具有更高的辛烷值,有望成为一种新型的清洁能源。通过Guerbet反应可在水相中将生物乙醇拼接成富含支链的高级醇,生物乙醇通过Guerbet反应发生碳碳偶联形成高级醇的过程分为三个部分:(1)金属催化剂催化发生醇脱氢;(2)碱催化羟醛缩合;(3)金属催化剂对羟醛缩合产物进行加氢。整个反应体系通常为金属催化剂/碱催化剂,根据Guerbet机理,在大多数氧化物催化剂上,乙醇脱氢是低碳醇转化到高级醇的速率控制步骤,一般认为是由碱性中心催化乙醇的脱氢,而由Lewis酸或碱性中心催化中间体加氢,金属中心的加入能促进脱氢/加氢的进行,显著降低反应温度。目前常用的高效加氢-脱氢催化剂大多采用金属Ru、Ir配合物、Ir、Ru、Rh、Pd、Pt等过渡金属催化剂体系,但贵金属及其金属配合物存在价格贵,回收困难等问题,且金属配合物还存在水相中不稳定的问题。
过渡金属Ni作为一种具有良好的加氢/脱氢性能的催化剂而被广泛使用,且其储量十分丰富,有望成为贵金属催化剂的替代品。Jiang等人(Jiang D,Wu X,Mao J,etal.Continuous catalytic upgrading of ethanol to n-butanol over Cu–CeO2/ACcatalysts[J].Chemical Communications,2016,52:13749-13752)公开了一种用于小分子醇转化成高级醇的镍基催化剂Ni-CeO2/AC,但是由于Ni的金属性过强,该催化剂在催化小分子醇转化至高级醇的过程中存在过度脱氢使C-C键断裂导致甲烷化的情况,从而导致C4+高级醇形成效率低,生物乙醇利用效率低的情况。
发明内容
本发明的首要目的是克服现有的镍基催化剂用于水相小分子醇合成高级醇时,过度脱氢使C-C键断裂导致甲烷化,进而导致催化效率低的问题,提供一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂的制备方法。
本发明的另一目的是提供一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂。
本发明的进一步目的是提供上述一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂的应用。
本发明的上述目的通过以下技术方案实现:
一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂的制备方法,包括如下步骤:
S1.取可溶性镍盐和聚丙烯酰胺,加水搅拌,溶解后干燥,得到前驱体;可溶性镍盐与聚丙烯酰胺的摩尔比为1:(0.5~8);
S2.将前驱体置于惰性气氛中于300~800℃下热解1~6h,所得即为氮掺杂碳包覆镍催化剂。
本发明采用氮掺杂的形式对Ni进行改性,形成Ni3N和氮掺杂碳层,Ni与含氮碳层以键的形式结合,从而改变Ni的电子结构,同时生成的少量Ni3N活性相与氮掺杂碳包覆层协同作用,减弱了Ni的金属性,能够有效解决现有的镍基催化剂在水相小分子醇合成高级醇中甲烷化严重,催化效率低的技术问题。
优选地,可溶性镍盐和聚丙烯酰胺的摩尔比为1:(1~6)。更优选为1:(1~3)。
优选地,聚丙烯酰胺的平均分子量为200万~1400万。
本发明中,可溶性镍盐选择本领域常规镍盐即可。优选地,所述可溶性镍盐选自硝酸镍、甲酸镍、醋酸镍、氯化镍、硫酸镍中的一种或多种。
优选地,所述干燥为50~120℃下干燥12~100h。
优选地,所述热解为以1~30℃/min的升温速率升温至400~700℃,保温2~5h。
一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂,由上述方法制得。
本发明还保护上述应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂在小分子醇水相合成高级醇中的应用。
优选地,所述小分子醇为乙醇,所述高级醇为碳原子数为4~16个的异构醇。其中碳原子数为4~16个的异构醇可以为正丁醇、2-乙基-1-丁醇、正己醇、2-乙基-1-己醇、正辛醇、2-乙基辛醇、正癸醇、异构C10+醇等。本发明所述氮掺杂碳包覆镍催化剂用于催化乙醇合成碳原子数为4~16个的异构醇时均具有较高选择性。
本发明所提供的氮掺杂碳包覆镍催化剂高效组装生物乙醇合成高级醇的步骤如下:
将制备得到的氮掺杂碳包覆镍催化剂在60ml钢质高压浆态床反应釜中与均相碱协同催化剂生物乙醇偶联合成高级醇反应,其中催化剂:NaOH:乙醇:水质量比为0.06:0.17:2:2,反应温度180~250℃、其实压力为0.1MPa,反应时间为6~48h,液相产物离心分离后通过气相色谱进行检测分析。
与现有技术相比,本发明的有益效果是:
本发明以可溶性镍盐和聚丙烯酰胺作为原料制备前驱体,通过将前驱体置于惰性气氛下热解,制备得到了一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂。本发明所述催化剂具有高分散的活性相,能够高效组装生物乙醇合成高级醇,同时具有较高的稳定性,在重复使用10次的情况下依旧能保持较高的转化率和有机相收率。
附图说明
图1为本发明实施例1和对比例1制备得到的氮掺杂碳包覆镍催化剂的X射线粉末衍射(XRD)图。
图2为本发明实施例1制备得到的氮掺杂碳包覆镍催化剂的扫描电镜(SEM)图。
图3为本发明实施例1制备得到的氮掺杂碳包覆镍催化剂及其酸蚀后碳层的透射电镜(TEM)图。
图4为本发明实施例1制备得到的氮掺杂碳包覆镍催化剂的稳定性测试数据图。
具体实施方式
为了更清楚、完整的描述本发明的技术方案,以下通过具体实施例进一步详细说明本发明,应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明,可以在本发明权利限定的范围内进行各种改变。本发明所用聚丙烯酰胺购自aladdin和Macklin,牌号为P108471(分子量200万-1400万)P821239(分子量500万),P821240(分子量700万),P821241(分子量1200万)和P821242(分子量1400万)。
实施例1
一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂的制备方法,包括如下步骤:
S1.以1:2的摩尔比称量一定量的醋酸镍和聚丙烯酰胺(平均分子量200万~1400万),加水搅拌,100℃下加热至醋酸镍和聚丙烯酰胺完全溶解后,在70℃下干燥24小时,得到硬质的绿色络合物前驱体;
S2.将干燥后的前驱体在惰性气氛中于500℃下热解6小时,升温速率10℃/min,得到氮掺杂碳包覆镍催化剂,通过元素分析测得含氮量为6.86wt%。
实施例2
本实施例为本发明的第二实施例,与实施例1不同的是,本实施例中镍盐与聚丙烯酰胺的摩尔比为1:3。
实施例3
本实施例为本发明的第三实施例,与实施例1不同的是,本实施例中镍盐与聚丙烯酰胺的摩尔比为1:6。
实施例4
本实施例为本发明的第四实施例,与实施例1不同的是,本实施例中镍盐与聚丙烯酰胺的摩尔比为1:8。
实施例5
本实施例为本发明的第五实施例,与实施例1不同的是,本实施例中镍盐与聚丙烯酰胺的摩尔比为1:1。
实施例6
本实施例为本发明的第六实施例,与实施例1不同的是,本实施例中镍盐与聚丙烯酰胺的摩尔比为1:0.5。
实施例7
本实施例为本发明的第七实施例,与实施例1不同的是,本实施例中热解温度为700℃。
实施例8
本实施例为本发明的第八实施例,与实施例1不同的是,本实施例中热解温度为800℃。
实施例9
本实施例为本发明的第九实施例,与实施例1不同的是,本实施例中热解温度为400℃。
实施例10
本实施例为本发明的第十实施例,与实施例1不同的是,本实施例中热解温度为300℃。
实施例11
本实施例为本发明的第十一实施例,与实施例1不同的是,本实施例中镍盐为硝酸镍,热解升温速率为1℃/min。
实施例12
本实施例为本发明的第十二实施例,与实施例1不同的是,本实施例中镍盐为氯化镍,热解升温速率为10℃/min。
实施例13
本实施例为本发明的第十三实施例,与实施例1不同的是,本实施例中镍盐为甲酸镍,热解升温速率为20℃/min。
实施例14
本实施例为本发明的第十四实施例,与实施例1不同的是,本实施例中镍盐为硫酸镍,热解升温速率为30℃/min。
对比例1
本对比例为本发明的第一对比例,本对比例所述催化剂的制备方法如下:
以1:2的摩尔比称量一定量的硝酸镍和聚丙烯酸,加水搅拌,100℃下加热至硝酸镍和聚丙烯酸完全溶解后,在50℃下干燥100小时,得到硬质的绿色络合物前驱体,将干燥后的前驱体分别在惰性气氛中于500℃下热解2小时,升温速率30℃/min,得到催化剂。
对比例2
本对比例为本发明的第二对比例,本对比例所述催化剂为Ni-CeO2/AC。
对比例3
本对比例为本发明的第三对比例,与实施例1不同的是,本实施例中镍盐与聚丙烯酰胺的摩尔比为1:0.3。
对比例4
本对比例为本发明的第四对比例,与实施例1不同的是,本实施例中镍盐与聚丙烯酰胺的摩尔比为1:9。
对比例5
本对比例为本发明的第五对比例,与实施例1不同的是,本实施例中采用壳聚糖代替聚丙烯酰胺作为氮源。
表征测试
图1为本发明实施例1和对比例1制备得到的氮掺杂碳包覆镍催化剂的X射线粉末衍射(XRD)图。从图中看出,实施例1所述催化剂具有典型的金属Ni的衍射峰,并且伴随着少量Ni3N的晶相衍射峰,而对比例1所述催化剂仅有典型的金属Ni的衍射峰,实施例2~14所述催化剂的XRD图与实施例1基本一致。
图2为本发明实施例1制备得到的氮掺杂碳包覆镍催化剂的扫描电镜(SEM)图。从图中可以看到,氮掺杂碳包覆镍催化剂外观为镶嵌着Ni及Ni3N组分的纳米颗粒的片状氮掺杂碳层,纳米颗粒的大小均匀,分散在片状碳层上。实施例2~14所述催化剂的SEM图与实施例1基本一致。
图3为本发明实施例1制备得到的氮掺杂碳包覆镍催化剂及其酸蚀后碳层的透射电镜(TEM)图,图3中A和B表明,Ni纳米颗粒被均匀包覆在氮掺杂碳层内,主要粒径分布在40-60nm之间;图3中C中D显示出酸洗后残留的碳层,说明Ni纳米颗粒被酸溶解洗涤后消失,只留下纳米空穴,本发明所述方法制备的氮掺杂碳包覆镍催化剂活能够充分暴露其活性位点。实施例2~14所述催化剂的TEM图与实施例1基本一致。
图4为本发明实施例1制备得到的氮掺杂碳包覆镍催化剂的稳定性测试数据图。从图中可以看出,催化剂在重复使用10次的情况下依旧具有较高的转化率和有机相收率,表明该催化剂具有高的稳定性。
将实施例1~14及对比例1~5所述催化剂加入到60ml钢质高压浆态床反应釜中与均相碱协同催化剂乙醇偶联合成高级醇反应,其中催化剂:NaOH:乙醇:水质量比为0.06:0.17:2:2,反应温度230℃、其实压力为0.1MPa,反应时间为12h,待反应结束冷却至室温后,收集气相和液相产物,进行磁力分离即可分离催化剂和反应产物,液相产物静置后可自发分离得到水相和主要含C4+醇的油相,将液相产物分离后通过气相色谱进行检测分析。分析结果见表1。
表1
Figure BDA0002968416880000071
Figure BDA0002968416880000081
从表1实施例1~14的结果可知,不同比例和热解温度制备出的氮掺杂碳包覆镍催化剂均具有较好的高级醇选择性,其中镍盐和聚丙烯酰胺比例为1:2,焙烧温度为500℃的条件下制备的氮掺杂碳包覆镍催化剂具有最佳的催化剂活性。
对比例1所述催化剂没有掺杂氮只存在镍的相,甲烷化严重,合成高级醇效率低,有机相收率为18.45%,有机相C4+醇选择性只有54.41%。
对比例2所述催化剂为Ni-CeO2/AC,由于Ni的金属性过强,该催化剂在催化小分子醇转化至高级醇的过程中存在过度脱氢使C-C键断裂导致甲烷化的情况,C4+高级醇选择性只有61.21%,乙醇转化率只有56.71%。
对比例3和对比例4所述方案中聚丙烯酰胺用量较少或较多,乙醇转化率、有机相收率以及C4+醇选择性均较低。
对比例5采用壳聚糖代替聚丙烯酰胺作为氮源,乙醇转化率、有机相收率以及C4+醇选择性同样均较低,分别为40.52%、20.47%和76.22%。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

1.一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂的制备方法,其特征在于,包括如下步骤:
S1.取可溶性镍盐和聚丙烯酰胺,加水搅拌,溶解后干燥,得到前驱体;可溶性镍盐与聚丙烯酰胺的摩尔比为1:(0.5~8);
S2.将前驱体置于惰性气氛中于300~800℃下热解1~6h,所得即为氮掺杂碳包覆镍催化剂。
2.如权利要求1所述应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂的制备方法,其特征在于,可溶性镍盐和聚丙烯酰胺的摩尔比为1:(1~6)。
3.如权利要求1所述应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂的制备方法,其特征在于,可溶性镍盐和聚丙烯酰胺的摩尔比为1:(1~3)。
4.如权利要求1所述应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂的制备方法,其特征在于,聚丙烯酰胺的平均分子量为200万~1400万。
5.如权利要求1所述应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂的制备方法,其特征在于,可溶性镍盐选自硝酸镍、甲酸镍、醋酸镍、氯化镍、硫酸镍中的一种或多种。
6.如权利要求1所述应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂的制备方法,其特征在于,所述干燥为50~120℃下干燥12~100h。
7.如权利要求1所述应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂的制备方法,其特征在于,所述热解为以1~30℃/min的升温速率升温至400~700℃,保温2~5h。
8.一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂,其特征在于,由权利要求1~7任一所述方法制得。
9.权利要求8所述应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂在小分子醇水相合成高级醇中的应用。
10.如权利要求9所述应用,其特征在于,所述小分子醇为乙醇,所述高级醇为碳原子数为4~16个的异构醇。
CN202110256353.8A 2021-03-09 2021-03-09 一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法 Active CN113145155B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110256353.8A CN113145155B (zh) 2021-03-09 2021-03-09 一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法
PCT/CN2021/127575 WO2022188432A1 (zh) 2021-03-09 2021-10-29 一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110256353.8A CN113145155B (zh) 2021-03-09 2021-03-09 一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN113145155A CN113145155A (zh) 2021-07-23
CN113145155B true CN113145155B (zh) 2022-06-10

Family

ID=76886672

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110256353.8A Active CN113145155B (zh) 2021-03-09 2021-03-09 一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN113145155B (zh)
WO (1) WO2022188432A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113145155B (zh) * 2021-03-09 2022-06-10 广东工业大学 一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法
CN115770600A (zh) * 2021-09-07 2023-03-10 广东工业大学 一种氮掺杂碳包覆镍纳米催化剂及其制备方法和应用
CN114130395A (zh) * 2021-11-25 2022-03-04 西北民族大学 基于催化合成胺类化合物的磁性超疏水镍碳纳米复合催化材料的制备方法
CN115138377B (zh) * 2021-12-22 2023-08-15 广东工业大学 一种硫掺杂碳包覆镍催化剂及其制备方法与应用
CN115092909B (zh) * 2022-07-12 2023-06-09 中南大学 一种高浓度氟掺杂的碳点及其制备方法
CN115318296B (zh) * 2022-08-19 2024-03-19 广东工业大学 一种高分散薄膜状碳包镍催化剂及其制备方法和应用
CN115445630B (zh) * 2022-08-30 2023-11-17 广东工业大学 一种聚丙烯基锡掺杂碳包镍催化剂及其制备方法和应用
CN116212878A (zh) * 2022-12-09 2023-06-06 广东工业大学 一种嵌入式Ni基纳米催化剂及其制备方法和应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105712840A (zh) * 2014-12-02 2016-06-29 中国科学院大连化学物理研究所 一种乙醇催化转化制备高碳伯醇的方法
US9902673B2 (en) * 2015-07-16 2018-02-27 The University Of Rochester Methods for producing butanol
ES2647963B1 (es) * 2016-05-26 2018-10-03 Abengoa Bioenergía Nuevas Tecnologías, S.A. Procedimiento de obtención de 1-octanol
CN109896923B (zh) * 2017-12-07 2022-10-21 中国科学院大连化学物理研究所 一种双组分催化剂上乙醇转化制备高碳伯醇的方法
CN109003825B (zh) * 2018-07-27 2020-05-26 青岛科技大学 一种氮掺杂碳/镍/氧化镍纳米复合材料制备方法
CN111217673B (zh) * 2018-11-26 2022-03-22 中国科学院大连化学物理研究所 一种乙醇高能化利用的方法
CN110247070A (zh) * 2019-07-03 2019-09-17 北京氦舶科技有限责任公司 一种氮掺杂碳负载单原子金属复合催化剂及其制备方法和应用
CN113145155B (zh) * 2021-03-09 2022-06-10 广东工业大学 一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法

Also Published As

Publication number Publication date
WO2022188432A1 (zh) 2022-09-15
CN113145155A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
CN113145155B (zh) 一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法
CN108727148B (zh) 高分散的ZnO基催化剂及其制备方法与丙烷无氧脱氢方法
CN104998649B (zh) 核壳结构镍基甲烷干重整催化剂的制备方法
CN114405505B (zh) 一种铂修饰铟基氧化物催化剂及其制备方法和应用
CN113289632B (zh) 一种用于草酸二甲酯加氢制乙醇的催化剂及其制备方法和应用
CN114029070A (zh) 一种原位氢解芳醚键催化剂及其制备方法和应用
CN114768859B (zh) 适用于甲烷干重整的镍硅催化剂及其制备方法
CN108246313B (zh) 一种基于碳化处理方法的高分散重质烃费托合成催化剂及其制备方法
CN112191252B (zh) 一种纳米镍颗粒分散于二氧化铈修饰的管状四氧化三钴催化剂及其制备方法与应用
CN114984952B (zh) 一种碳包覆铜材料及其制备方法和应用
CN115318298B (zh) 一种用于二氧化碳加氢制甲醇的铜基三元催化剂及其制备方法和应用
CN115228479B (zh) 一种碱金属改性NiSn材料及其制备方法和应用
CN114160137B (zh) 一种用于合成气直接制取低碳醇的钴铜双金属催化剂及制备方法和使用方法
CN110560137A (zh) 一种合成气制低碳醇催化剂及其制备方法和应用
CN113559865B (zh) 一种高分散NiSn/MgAlO催化剂及其制备方法和应用
CN110773194B (zh) 一种co2加氢制甲烷催化剂及其制备方法
CN110026199B (zh) 碳酸氧镧改性的氧化铝负载的镍基催化剂及其制备方法
CN1631527A (zh) 一种合成气制低碳混合醇的催化剂及其制法
CN113083325A (zh) 一种氨硼烷水解制氢用催化剂Ru1-xCox/P25及其制备方法
CN113509940B (zh) 一种NiSn-MgAlO@C相转移催化剂及其制备方法和应用
CN115138377B (zh) 一种硫掺杂碳包覆镍催化剂及其制备方法与应用
CN114713236B (zh) Ni-ReOx/TiO2双金属催化剂及其制备方法、在生物质醛选择性加氢中的应用
CN114570423B (zh) 一种合成气制乙醇、丙醇的催化剂及其制备方法和应用
CN109806908A (zh) 一种生物质基合成气制液体燃料的催化剂及其制备和应用
CN113996279B (zh) In2O3-GO复合催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant