CN113135824B - 硝基苯乙烯高选择性加氢制备氨基苯乙烯的催化剂工艺 - Google Patents

硝基苯乙烯高选择性加氢制备氨基苯乙烯的催化剂工艺 Download PDF

Info

Publication number
CN113135824B
CN113135824B CN202110245802.9A CN202110245802A CN113135824B CN 113135824 B CN113135824 B CN 113135824B CN 202110245802 A CN202110245802 A CN 202110245802A CN 113135824 B CN113135824 B CN 113135824B
Authority
CN
China
Prior art keywords
catalyst
preparing
nitrostyrene
litao
aminostyrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110245802.9A
Other languages
English (en)
Other versions
CN113135824A (zh
Inventor
王晓晶
马玉煊
和丹
胡敬韬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia University
Original Assignee
Inner Mongolia University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia University filed Critical Inner Mongolia University
Priority to CN202110245802.9A priority Critical patent/CN113135824B/zh
Publication of CN113135824A publication Critical patent/CN113135824A/zh
Application granted granted Critical
Publication of CN113135824B publication Critical patent/CN113135824B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8476Tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明属于在多种还原基团共存时选择性催化还原技术领域,具体涉及硝基芳香烯催化加氢制备相应氨基芳香烯的催化剂开发和反应工艺。通过简易的机械混合法制备氧化亚铜与钽酸盐M2Ta2O6(M=H,Li,Na,K)复合材料,通过钽酸盐基底的酸碱性差异控制硝基芳烃化合物的不同还原产物,催化剂成本低,工艺易实施、简单安全。使用本发明制备的催化剂系列可有效控制从3‑硝基苯乙烯还原生成3‑氨基苯乙烯以及3‑乙基苯胺的选择性,使用本发明制备的Cu2O/K2Ta2O6催化剂,可在在常温常压乙醇作为溶剂时,将3‑硝基苯乙烯100%转化为3‑氨基苯乙烯。此外,该类催化材料具有优异的循环稳定性,可多次回收再利用,有潜力成为选择性催化加氢的高效催化材料。

Description

硝基苯乙烯高选择性加氢制备氨基苯乙烯的催化剂工艺
技术领域
本发明属于在易还原基团共存时选择性催化还原技术领域,具体涉及在常温常压及清洁绿色的乙醇溶剂中,通过将氧化亚铜与同主族不同酸碱性的钽酸盐基底进行复合,对3-硝基苯乙烯还原产物可进行有效调控。
背景技术
由芳香族硝基化合物还原生成的功能化胺是多功能分子例如药物,染料和农用化学品生产中的重要平台,硝基芳烃的催化加氢是苯胺生产的工业上重要的方法。一直以来,选择性是多相催化面临的主要问题,高选择性意味着减少浪费,分离单元更简单便宜,这对于现代社会的可持续性越来越重要。当一种分子中同时存在多种易还原基团时,能将硝基芳烃高选择性的转化生成氨基化合物是十分具有挑战性的。
选择性加氢反应普遍需要高于373 K的温度,高的压力氢以及过长的反应时间才能完成。另外,该反应通常会以甲苯,甲醇,四氢呋喃,三乙胺溶剂中进行,溶剂自身的毒性较大,对环境有严重危害,对空气、水环境及水源可造成污染。 因此,在常温常压,安全绿色溶剂中实现高选择性以及高转化率已经成为设计催化剂的主要考虑因素。
目前,贵金属负载型催化剂(Au, Ag, Pt, Ru, Pd)广泛被用于选择性还原反应,但这些方法很大程度上受其价格昂贵,本身稀缺并存在在反应体系中易失活等缺点所影响。因此非贵金属催化剂在选择性还原方面开始了广泛的研究,在这些过渡金属中,铜在地球上的丰富含量及其低廉的价格吸引了大量的关注,并使其有潜力成为贵金属催化剂的替代品。
我们发展了一系列Cu2O/M2Ta2O6(M=H, Li, Na, K)复合型催化剂,通过改变氧化亚铜与不同酸碱性的钽酸盐基底进行复合,从而达到对3-硝基苯乙烯还原产物的选择性进行调控,该催化材料均价格低廉、无污染,方法工艺简便,能耗少,且具有优异的循环稳定性,可多次回收再利用,因此有潜力用作为贵金属催化剂的替代物,作为选择性加氢反应的高效催化剂。
发明内容
本发明旨在提供一种经济环保条件下催化3-硝基苯乙烯选择性加氢还原生成3-氨基苯乙烯的方法,具体包括以下步骤:
将催化剂(Cu2O/K2Ta2O6)5 mg,乙醇溶剂11 mL,3-硝基苯乙烯溶液20 mM 5 mL依次加入25 mL玻璃比色管中,在常温常压下向反应溶液中通入高纯氮以排出溶液中的氧气,向反应器中加入硼氢化钠60 mM 5 mL作为还原剂,开启搅拌,反应2.5 h可以获得高纯3-氨基苯乙烯。
上述提到的Cu2O/K2Ta2O6催化剂制备方案,按照下述步骤进行:
步骤1、水热法制备H2Ta2O6催化剂:
准确称取9.81 g氢氧化钾分散于40 mL二次水中,搅拌分散均匀,向其中加入2.50g五氧化二钽粉末,超声20 min分散均匀,将混合溶液密封装入不锈钢高压釜中,加热至200℃保持2 h,反应结束后自然冷却至室温,洗涤并烘干后加入60 mL的1 mol/L HCl溶液,搅拌24 h后收集沉淀洗涤烘干得到H2Ta2O6催化剂。
步骤2、浸渍法制备LiTaO3催化剂:
将2.5 g 五氧化二钽粉末浸渍在0.7 g氢氧化锂的水溶液中。将所得材料干燥并在600 ℃下煅烧2 h得到LiTaO3催化剂。
步骤3、水热法制备Na2Ta2O6催化剂:
称取1.33 g氢氧化钽和0.20 g氢氧化钠溶于20 mL二次水中,混合溶液密封装入不锈钢高压釜中,加热至200 ℃保持12 h,反应结束后自然冷却至室温,洗涤并烘干得到Na2Ta2O6催化剂。
步骤4、水热法制备K2Ta2O6催化剂;
准确称取9.81 g氢氧化钾分散于40 mL二次水中,搅拌分散均匀,向其中加入2.50g五氧化二钽粉末,超声20 min分散均匀,将混合溶液密封装入不锈钢高压反应釜中,加热至200 ℃保持2 h,反应结束后自然冷却至室温,洗涤并烘干得到K2Ta2O6催化剂。
步骤5、机械混合法制备Cu2O/M2Ta2O6 (M=H, Li, Na, K)复合催化剂;
将0.34 g二水合氯化铜分散于10 mL二次水中,得到分散液A;1 g氢氧化钠溶于5mL二次水中,得到分散液B;在不断搅拌过程中,将分散液B逐滴滴加于分散液A中,得到深蓝色悬浊液C,将1.4 g盐酸羟胺溶于10 mL水后逐滴滴加入悬浊液C中,搅拌30 min后,向其中加入0.725 g步骤1,2,3,4制备的M2Ta2O6(M=H, Li, Na, K)粉末,反应2 h后洗涤,真空干燥2 h得到Cu2O/M2Ta2O6(M=H, Li, Na, K)复合催化剂。
本发明的有益效果为:
(1)本发明通过简易的机械混合法将氧化亚铜与同一主族不同酸碱性的钽酸盐基底进行复合,从而达到对3-硝基苯乙烯还原产物的选择性进行调控,能够得到生成3-氨基苯乙烯的最高转化率和选择性。
(2)催化剂无需改性,合成方法简单,所用原料不含贵金属,无毒且成本低廉,在选择性还原领域具有广阔的推广前景。
(3)反应使用环境友好的乙醇作为溶剂,避免甲苯,甲醇,四氢呋喃,三乙胺等易挥发性有机溶剂对环境造成的危害。
(4)反应条件温和,不需要苛刻的反应条件,反应可以在常温常压下进行。
(5)反应过程中没有亚硝基化合物,偶氮化合物等有害中间体累积。
附图说明
图1为所制备样品的扫描电镜图,A为Cu2O/H2Ta2O6, B为Cu2O/LiTaO3,C为Cu2O/Na2Ta2O6, D为Cu2O/K2Ta2O6
图2为所制备的样品的XRD图谱。
图3 为Cu2O与M2Ta2O6(M=H, Li, Na, K)基底复合还原3-硝基苯乙烯的选择性和转化率;通过性质图可知当Cu2O与钽酸盐基底复合时,3-硝基苯乙烯还原生成3-氨基苯乙烯的选择性从H2Ta2O6 到 K2Ta2O6不断增加,而生成的3-乙基苯胺的选择性逐渐减少。在四种氧化亚铜复合催化剂中,Cu2O/K2Ta2O6表现出生成3-氨基苯乙烯最高的活性和选择性(100%)。
图4 为Cu2O/M2Ta2O6(M=H, Li, Na, K)吸附3-硝基苯乙烯的傅立叶变换红外谱图(FTIR);在Cu2O/K2Ta2O6催化剂中,可以观察到在1350 cm-1处存在NO2基团的对称伸缩振动的特征峰,在1620 cm-1和1450 cm-1处的特征吸收峰归属于芳环的-C=C-拉伸振动。此外,在3100 cm-1处的特征峰是= C-H的拉伸振动。并且发现Cu2O/M2Ta2O6的这些峰的强度从M =H到K有明显增加。显然,Cu2O/M2Ta2O6可以很好地吸附3-硝基苯乙烯中的–NO2或–C = C-,并且吸附能力随着H <Li <Na <K的顺序增强。
图5为K2Ta2O6样品吸附3-硝基苯乙烯的原位红外谱图(DRIFTS);随着在3-硝基苯乙烯环境下暴露时间的延长,特征吸收峰不断升高。在吸附60s时,在谱图中出现1524cm-1和1346cm-1的特征吸收峰,主要归属于NO2基团的对称伸缩振动。在吸附120s时检测到1620cm-1和1450 cm-1处的特征吸收峰,归属于芳环的C = C拉伸振动。该实验结果证明K2Ta2O6能够优先吸附3-硝基苯乙烯中的NO2基团,进而达到在-NO2与C=C共存时,优先选择性还原-NO2的目的。
图6为M2Ta2O6 (M=H, Li, Na, K) 基底的CO2-TPD谱图。由图可以判断出不同基底的碱性,其中K2Ta2O6具有最强的碱度,其峰值位置在412 °C,其次是Na2Ta2O6基底,其峰值位置分别在312 °C和120 °C。而LiTaO3和H2Ta2O6的碱度最弱。由于其最强的碱性,K2Ta2O6作为载体表现出最高的活性。
图7为Cu2O/M2Ta2O6(M=H, Li, Na, K)的Zeta电势图。由图可知,Cu2O/H2Ta2O6,Cu2O/LiTaO3电势分别为+24.14 mV,+7.78 mV,证明其表面带有正电荷。Cu2O/Na2Ta2O6和Cu2O/K2Ta2O6的表面带有–26.72 mV和–30.40 mV的负电荷。而反应物3-硝基苯乙烯自身的电势值为+6.43 mV,表明反应物易与带负电的表面接触反应。因此,在性质上存在一定的差异,使得Cu2O/K2Ta2O6催化剂在还原3-硝基苯乙烯中显示出最高的选择性和转化率。
图8为Cu2O/K2Ta2O6样品对3-硝基苯乙烯的循环稳定性研究。催化剂的循环稳定性通过对其进行离心水洗烘干后测试,结果显示催化剂在经历8次循环后,选择性及转化率并没有下降,表明该催化剂可多次回收使用,具有优异的循环稳定性。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
实施例1:
在25 mL玻璃比色管中加入乙醇溶剂11 mL,3-硝基苯乙烯溶液20 mM 5 mL和5 mgCu2O/H2Ta2O6催化剂,在常温常压下向反应溶液中通入高纯氮以排出溶液中的氧气,向反应器中加入硼氢化钠60 mM 5 mL作为还原剂,开启搅拌,反应2.5 h后反应产物用气相色谱进行分析。硝基苯乙烯转化率为100%,生成氨基苯乙烯选择性为76.75%,生成乙基苯胺的选择性23.35%。
实施例2:
在25 mL玻璃比色管中加入乙醇溶剂11 mL,3-硝基苯乙烯溶液20 mM 5 mL和5 mgCu2O/LiTaO3催化剂,在常温常压下向反应溶液中通入高纯氮以排出溶液中的氧气,向反应器中加入硼氢化钠60 mM 5 mL作为还原剂,开启搅拌,反应2.5 h后反应产物用气相色谱进行分析。硝基苯乙烯转化率为100%,生成氨基苯乙烯选择性为79.32%,生成乙基苯胺的选择性20.68%。
实施例3:
在25 mL玻璃比色管中加入乙醇溶剂11 mL,3-硝基苯乙烯溶液20 mM 5 mL和5 mgCu2O/Na2Ta2O6催化剂。在常温常压下向反应溶液中通入高纯氮以排出溶液中的氧气,向反应器中加入硼氢化钠60 mM 5 mL作为还原剂,开启搅拌,反应2.5 h后反应产物用气相色谱进行分析。硝基苯乙烯转化率为100%,生成氨基苯乙烯选择性为89.83%,生成乙基苯胺的选择性10.17%。
实施例4:
在25 mL玻璃比色管中加入乙醇溶剂11 mL,3-硝基苯乙烯溶液20 mM 5 mL和5 mgCu2O/K2Ta2O6催化剂。在常温常压下向反应溶液中通入高纯氮以排出溶液中的氧气,向反应器中加入硼氢化钠60 mM 5 mL作为还原剂,开启搅拌,反应2.5 h后反应产物用气相色谱进行分析。硝基苯乙烯转化率为100%,生成氨基苯乙烯选择性为100%。

Claims (7)

1.一种硝基苯乙烯高选择性加氢制备氨基苯乙烯的催化剂制备方法,其特征在于,按照以下步骤进行:
步骤1、水热法制备H2Ta2O6催化剂:
将氢氧化钾,五氧化二钽依次混合均匀分散于水溶液中,超声后于高压釜中加热冷却洗涤烘干研磨后加入盐酸溶液,反应后收集沉淀洗涤烘干得到H2Ta2O6催化剂,保存备用;
步骤2、浸渍法制备LiTaO3催化剂:
将五氧化二钽浸渍在氢氧化锂的水溶液中,将所得材料干燥置于管式炉进行煅烧,待锻烧结束降至室温后取出产物并研细,得到LiTaO3催化剂,保存备用;
步骤3、水热法制备Na2Ta2O6催化剂:
将氢氧化钠,氢氧化钽依次混合均匀分散于水溶液中,超声后于高压釜中加热反应结束后自然冷却至室温,洗涤并烘干得到Na2Ta2O6催化剂;
步骤4、水热法制备K2Ta2O6催化剂:
将氢氧化钾,五氧化二钽依次混合均匀分散于水溶液中,超声后于高压釜中加热冷却洗涤烘干研磨得到K2Ta2O6催化剂;
步骤5、机械混合法制备Cu2O/M2Ta2O6或Cu2O/LiTaO3复合催化剂,M为H,Na,K:
将氢氧化钠水溶液不断搅拌过程中,逐滴滴加于二水合氯化铜水溶液中,随后依次向其中滴加盐酸羟胺水溶液,加入步骤1,2,3,4制备的M2Ta2O6或LiTaO3粉末中的一种,M为H,Na,K,反应后洗涤并真空干燥得到相应的Cu2O/M2Ta2O6或Cu2O/LiTaO3复合催化剂,M为H,Na,K。
2.根据权利要求1中所述的催化剂的制备方法,其特征在于,步骤1和步骤4中,水热条件为在200℃下恒温保持2h。
3.根据权利要求1中所述的催化剂的制备方法,其特征在于,步骤2中煅烧温度600℃,升温速率5℃/min,保持时间2h。
4.根据权利要求1中所述的催化剂的制备方法,其特征在于,步骤3中水热条件为200℃下保持12h。
5.根据权利要求1中所述的催化剂的制备方法,其特征在于,步骤5中加入Cu2O与M2Ta2O6或LiTaO3的质量比为1:5,M为H,Na,K。
6.根据权利要求1-5任一项所述制备方法制得的Cu2O/M2Ta2O6或Cu2O/LiTaO3复合催化剂的用途,其特征在于,常温常压乙醇溶剂下,以3-硝基苯乙烯为原料高效高选择性还原3-硝基苯乙烯为3-氨基苯乙烯。
7.根据权利要求6所述的复合催化剂的用途,其特征在于,将催化剂Cu2O/M2Ta2O6或Cu2O/LiTaO3 5mg,M为H,Na,K,乙醇溶剂11mL,3-硝基苯乙烯溶液20mM 5mL依次加入25mL玻璃比色管中,在常温常压下向反应溶液中通入高纯氮以排出溶液中的氧气,向反应器中加入硼氢化钠60mM 5mL作为还原剂,开启搅拌,反应2.5h以获得3-氨基苯乙烯;反应产物通过气相色谱分析检测。
CN202110245802.9A 2021-03-05 2021-03-05 硝基苯乙烯高选择性加氢制备氨基苯乙烯的催化剂工艺 Active CN113135824B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110245802.9A CN113135824B (zh) 2021-03-05 2021-03-05 硝基苯乙烯高选择性加氢制备氨基苯乙烯的催化剂工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110245802.9A CN113135824B (zh) 2021-03-05 2021-03-05 硝基苯乙烯高选择性加氢制备氨基苯乙烯的催化剂工艺

Publications (2)

Publication Number Publication Date
CN113135824A CN113135824A (zh) 2021-07-20
CN113135824B true CN113135824B (zh) 2023-11-17

Family

ID=76810863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110245802.9A Active CN113135824B (zh) 2021-03-05 2021-03-05 硝基苯乙烯高选择性加氢制备氨基苯乙烯的催化剂工艺

Country Status (1)

Country Link
CN (1) CN113135824B (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102698734B (zh) * 2012-06-01 2014-05-14 福州大学 一种降解苯系污染物的无定形钽酸光催化剂及其制备方法
CN104974047B (zh) * 2014-04-03 2017-02-15 长春工业大学 硝基苯乙烯催化加氢制备氨基苯乙烯的方法

Also Published As

Publication number Publication date
CN113135824A (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
CN106925349B (zh) 一种固载型金属卟啉催化剂及其在制备马来酸方面的应用
CN109675602B (zh) 一种负载型钴-氮掺杂碳催化剂及其制备方法和应用
CN105294447B (zh) 一种催化硝基苯加氢制备苯胺的方法
CN102001951A (zh) 高纯度对苯二胺制备方法
CN107670697B (zh) 可见光催化环己烷选择性氧化的催化剂及其制备方法
CN111659392B (zh) 一种由氧化钨-金属表面等离子共振激元-铬酸钆组成的桥式异质催化剂的制备及应用
CN110194730B (zh) DUT-67(Zr)在光催化氧化甲基苯基硫醚制备甲基苯基亚砜中的应用
CN113101964B (zh) 一种介孔氧化铈光催化剂及其制备方法和应用
CN107824221A (zh) 一种降解氮氧化物光催化剂的制备方法
CN113828345A (zh) 一种氯化钠辅助合成氮化碳光催化剂的制备方法与应用
CN111420693A (zh) 一种N掺杂Cu修饰镍基活性炭催化剂的制备方法及其在硝基环己烷加氢反应中的应用
He et al. Facile synthesis of Bi2O3 nanocrystals for photocatalytic NO oxidation and its conversion pathway via in situ DRIFTS
CN114409898B (zh) 一种氨基修饰的共价三嗪基骨架及其制备方法与应用
CN111185214A (zh) 氧化铝生物质炭复合材料、其制备方法与应用
CN113135824B (zh) 硝基苯乙烯高选择性加氢制备氨基苯乙烯的催化剂工艺
CN109759109B (zh) 氮修饰炭载贵金属加氢催化剂的制备和在硝基苯类化合物加氢反应中的应用
Molinari et al. Photocatalytic selective reduction by TiO 2 of 5-nitrosalicylic acid ethyl ester: A mild route to mesalazine
CN114984977B (zh) 一种类水滑石化合物负载PtM催化剂及其制备方法和应用
CN113600201B (zh) 一种硝基苯液相加氢制备苯胺催化剂的制备方法及其应用
CN107619374A (zh) 一种对苯二胺的连续合成方法
CN114042456B (zh) 以生物质为原料制备Fe基催化剂的方法及Fe基催化剂的应用
CN113522273B (zh) 一种富含氧空位三氧化钨的制备方法及其在光催化反应中的应用
CN109225294B (zh) 一种绿色催化合成安息香的方法
CN112457199B (zh) 一种间氯苯胺的制备方法
CN109529906B (zh) 一种合成1,1,2,3,3,3-六氟丙基甲醚的催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant