CN113122865B - 多碳杂化的NiFe基高效碱性水氧化催化剂 - Google Patents

多碳杂化的NiFe基高效碱性水氧化催化剂 Download PDF

Info

Publication number
CN113122865B
CN113122865B CN202110258161.0A CN202110258161A CN113122865B CN 113122865 B CN113122865 B CN 113122865B CN 202110258161 A CN202110258161 A CN 202110258161A CN 113122865 B CN113122865 B CN 113122865B
Authority
CN
China
Prior art keywords
catalyst
cnts
cfp
carbon
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110258161.0A
Other languages
English (en)
Other versions
CN113122865A (zh
Inventor
章福祥
乔玉彦
范文俊
郭向阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN202110258161.0A priority Critical patent/CN113122865B/zh
Publication of CN113122865A publication Critical patent/CN113122865A/zh
Application granted granted Critical
Publication of CN113122865B publication Critical patent/CN113122865B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明公开了一种多碳杂化的NiFe基催化剂的制备与应用,以碳纤维纸负载的碳纳米管为载体,以过渡金属Ni、Fe为金属盐,葡萄糖为碳源,通过溶剂热的合成方法制得NiFeOx‑C/CNTs/CFP复合催化剂。本发明根据界面调控的策略实现催化剂和电解液界面、催化剂和载体界面以及催化剂颗粒之间界面的优化,在碳纤维纸负载的碳纳米管上制备了分散均匀、结构稳定的纳米复合催化剂。三维支撑结构提供了大量的表面活性位点,同时有利于电解液的传质和气体扩散,实现了催化剂电子结构和扩散过程的双重控制。研究表明,本发明公开的NiFeOx‑C/CNTs/CFP是一个高效碱性产氧催化剂。

Description

多碳杂化的NiFe基高效碱性水氧化催化剂
技术领域
本发明属于催化材料技术领域,具体涉及一种原位合成多碳杂化的NiFe基高效碱性水氧化催化剂。
背景技术
随着经济几十年的高速发展,我国已经成为世界第一大能源消耗国。而我国的能源结构以化石能源为主,其中以煤炭的消耗量所占比重最大,给环境保护带来了很大的压力。为了缓解能源危机,科研工作者致力于将可再生能源转化为化学能,其中的一个重要方向是利用半导体与电催化剂耦合将太阳能应用于水分解来制备氢气和氧气。然而,水分子的氧化反应是一个复杂的过程,该反应需要发生四个电子的转移,涉及到多个化学键的重新排布才能形成最终的O-O键。该反应在pH为0条件下的理论电位为1.23V(以标准氢电极为参比电极),这个半反应已经成为人工光合作用制造太阳能燃料的瓶颈之一。通过在吸光半导体表面担载水氧化催化剂组分,可以加速光(电)催化分解水的速率。因此开发高效、稳定、廉价的电催化水制氧的催化剂,从而降低过电势,进而提高能源利用效率,具有重要的现实意义。
IrO2和RuO2是OER反应中的优良电催化剂,但是它们的稀缺性和高成本促使研究人员转向非贵重材料,例如金属氧化物(或氢氧化物),硫族化物,磷化物,氮化物和其他非金属材料。在非贵金属成分中,NiFe基材料在碱性介质中具有较高的电催化活性,但是仍然存在导电性差和稳定性不足的技术问题。通常使用几种策略来改善NiFe基催化剂的水分解活性:(i)通过用纳米结构催化剂加载不同尺寸的基材来暴露更多的活性位点。(ii)通过用适当的方法调节催化剂的分布来提高催化剂的固有活性。但是上述策略存在催化剂合成困难,电极制备工艺复杂的不足,难以大规模复制和使用。
发明内容
针对以上技术问题,本发明着重于利用碳材料对催化剂的电子结构进行调控,主要从三个方面进行设计:(1)采用原位合成的方法制备碳纤维纸负载的碳纳米管作为载体来改善碳材料的表面性质;(2)采用原位合成的方法制备NiFe纳米复合物作为电极材料;(3)采用碳掺杂的方法改进金属颗粒间的电荷传输。采用多重碳复合的策略制备了CNTs/CFP负载的NiFeOx-C电催化剂。这种催化剂表现出优于其他NiFe基复合材料的活性和稳定性,三维的载体结构提高了电解液的传质和气体扩散,降低了界面阻力,同时碳掺杂增强了催化剂和载体之间的界面效应以及电荷传递。该材料在电解水领域具有很好的发展前景。
本发明提供的原位合成多碳杂化的NiFe基高效碱性水氧化催化剂,能够实现在低过电位条件下的水氧化反应。本发明实现了碳纳米管表面进行纳米复合材料的合成制备,具有典型的高分散特征。得益于多重界面效应的协同作用,催化剂的活性和稳定性大大提高。同时该催化剂的制备简单,可应用于其他催化剂的合成过程。
本发明的技术方案:以碳纤维纸负载的碳纳米管为载体,以硝酸镍、硝酸铁为金属源,以葡萄糖为碳源,采用溶剂热的方法原位合成含有NiFeOx-C复合材料的水氧化电催化剂NiFeOx-C/CNTs/CFP。其合成路线如图26所示。
所述金属盐为Ni(NO3)2·6H2O、Fe(NO3)3·9H2O。
所述制备方法具体包括以下步骤:
一、把碳纤维纸超声洗涤后放入硝酸中酸化,洗涤干燥后放入含有硝酸镍的乙醇/乙二醇混合溶液中浸渍0.5~1h,再放入管式炉,通入H2/Ar混合气,引入乙醇作为CNTs的碳源,升温至700~900℃,保温2~3h自然冷却,制备出CNTs/CFP载体。
二、配置N,N-二甲基甲酰胺和乙醇混合溶剂,加入定量的葡萄糖作为碳源加入步骤一制备的CNTs/CFP载体,溶剂热反应温度控制在120~160℃,时间控制在10~20h,关闭烘箱,自然冷却至室温,取出催化剂,真空干燥,制得目标材料NiFeOx-C/CNTs/CFP。
基于上述方案,优选地,步骤一中,碳纤维纸超声洗涤方式为:将碳纤维纸依次放入丙酮、乙醇和水中超声洗涤,洗涤时间均为10~30min。
基于上述方案,优选地,步骤一中,酸化时所用的硝酸浓度为65%-68%。酸化温度为100℃,酸化时间为3~5h。
基于上述方案,优选地,步骤一中,乙醇/乙二醇混合溶液中,乙醇与乙二醇摩尔比或体积比为1:1~1:2,硝酸镍的浓度为15~25g/L。
基于上述方案,优选地,步骤二中,N,N-二甲基甲酰胺和乙醇混合溶剂的体积比为1:2~4。
基于上述方案,优选地,步骤二中,硝酸铁和硝酸镍的摩尔比为1:2~5。
基于上述方案,优选地,步骤二中,葡萄糖用量为Ni、Fe总摩尔量的0.8~1.2倍。
本发明上述的制备方法制备的多碳杂化的NiFe复合电催化剂可用在电催化产氧方面。
本发明有益效果是:本发明以硝酸镍、硝酸铁为金属盐,以葡萄糖为碳源,通过溶剂热的方法原位合成CNTs/CFP载体支撑的NiFeOx-C复合材料,作为水氧化电催化剂。得益于合成过程中碳纳米管和金属离子以及葡萄糖之间的相互作用,制备的NiFeOx-C显示出均匀的高分散状态,使金属中心的电子结构发生变化,从而改变了水氧化反应过程的界面电荷传递和传质,这种多碳协同的策略可应用于其他材料的合成,具有普遍的实际意义。
与已有技术相比,本发明涉及的NiFeOx-C/CNTs/CFP水氧化催化剂具有合成简单、原料价格低廉的特点,同时化学性质稳定,具有优越的OER活性和稳定性,易于推广和应用。以碳纤维纸上原位生长的CNTs为载体合成催化剂能够降低催化剂和载体之间的界面电阻,另外,CNTs表面的大量官能团有利于金属离子的均匀分散和表面限域,这种多碳杂化的方法在合成电催化剂方面显示了广阔的应用前景。
附图说明:
图1是实施例1的材料NiFeOx-C/CNTs/CFP的SEM图。
图2是实施例1的材料NiFeOx-C/CNTs/CFP的TEM图。
图3是实施例1的材料NiFeOx-C/CNTs/CFP紫外拉曼特征图。
图4是实施例1的材料NiFeOx-C/CNTs/CFP的XRD特征谱图。
图5是实施例1的材料NiFeOx-C/CNTs/CFP的极化曲线图。
图6是实施例1的材料NiFeOx-C/CNTs/CFP在不同扫速条件下的循环伏安特征图。
图7是实施例1的电化学阻抗图(测试电压:1.48V vs.RHE)。
图8是实施例1的稳定性测试图(测试时间为72h)。
图9和图10是实施例2的材料NiFeOx-C/CNTs/CFP的X射线衍射图和极化曲线图。
图11和图12是实施例3的材料NiFeOx-C/CNTs/CFP的X射线衍射图和极化曲线图。
图13和图14是实施例4的材料NiFeOx-C/CNTs/CFP的X射线衍射图和极化曲线图。
图15和图16是实施例5的材料NiFeOx-C/CNTs/CFP的X射线衍射图和极化曲线图。
图17和图18是对比例1的材料NiFeOx/CNTs/CFP的扫描电镜图(SEM)和透射电镜图(TEM)。
图19、图20、图21分别对应对比例1的材料NiFeOx/CNTs/CFP的极化曲线、循环伏安曲线和电化学阻抗谱。
图22是对比例2的材料NiFeOx-C/CFP的扫描电镜图(SEM)。
图23、图24、图25分别对应对比例2的材料NiFeOx-C/CFP的极化曲线、循环伏安曲线和电化学阻抗谱。
图26是本发明催化剂的合成路线示意图。
具体实施方式:
为了进一步说明本发明,列举以下实施实例并结合附图对本发明进行详细说明,但它并不限制各附加权利要求所定义的发明范围。
实施例1
把碳纤维纸依次放入丙酮、乙醇和水中超声15min,再放入100℃浓硝酸(65%-68%)中酸化4h,洗涤干燥后放入含有20g/L硝酸镍的乙醇/乙二醇混合溶液中浸渍0.5h,再放入管式炉,通入H2/Ar混合气,引入乙醇作为CNTs的碳源,升温至700℃,保温2h自然冷却,制得CNTs/CFP载体。
配置总体积为16mL、体积比为1:3的N,N-二甲基甲酰胺和乙醇混合溶剂,加入1mmol葡萄糖,溶解完全后通入氮气,加入0.85mmol Ni(NO3)2·6H2O和0.15mmol Fe(NO3)3·9H2O,搅拌,得到透明均匀的混合溶液,再加入CNTs/CFP载体,控制溶剂热反应温度为140℃,反应时间12h,自然降温至室温,取出负载催化剂的碳载体,用去离子水洗涤,真空干燥,制得目标材料NiFeOx-C/CNTs/CFP。
目标材料的结构表征:由扫描电镜图(图1)和透射电镜图(图2)可以看出,NiFeOx-C复合材料在CNTs/CFP的表面负载均匀,呈网络交联结构。Raman特征见图3,图中379.8cm-1位置为Ni-OH的伸缩振动峰,碳的特征峰位置Id和Ig分别为1380cm-1和1590cm-1,证实了掺杂碳由石墨碳和无定形碳组成。粉末X-射线衍射XRD见图4,NiFeOx-C复合材料表现出无定形的特征。
NiFeOx-C/CNTs/CFP催化剂的电化学测试:电化学性能在CHI 660E电化学工作站上进行测试表征,电化学阻抗谱(EIS)在Solartron电化学工作站上进行测试。石墨棒用作对电极,Hg/HgO电极(KOH,1M)用作参比电极。根据能斯特方程,将本文测得的所有电位均校准为可逆氢电极(RHE),E(RHE)=0.098+E(Hg/HgO)+0.0592×pH。
在N2饱和的1M KOH电解质中以5mV/s的扫描速率记录极化曲线,以达到90%iR补偿的稳态。通过循环伏安法(CV)在不同的扫描速率下,在-0.05V~0.05V(vs.Hg/HgO)的电位范围内测量电化学双层电容。EIS测试条件:0.1HZ至100K Hz范围,测试电位为1.48V(vs.RHE)。稳定性测试条件:计时电流法,i=10mA·cm-2。所得的极化曲线、双电层电容图,EIS和稳定性测试如图5~8所示。极化曲线可以看出,在10mA cm-2电流密度条件下对应的过电位为197mV,优于同类材料,同时双电层电容Cdl为21.8mF·cm-2,体系欧姆阻值和电荷传递阻力分别为2.19Ω和2.24Ω,显示出较大的活性面积和较小的界面电荷传递阻力,稳定性测试结果表明,该催化剂在72h测试期内表现稳定,活性基本保持不变。
实施例2
CNTs/CFP载体制备同实施例1。
配置总体积为16mL、体积比为1:3的N,N-二甲基甲酰胺和乙醇混合溶剂,加入1mmol葡萄糖,溶解完全后通入氮气,加入0.9mmol Ni(NO3)2·6H2O和0.1mmol Fe(NO3)3·9H2O,搅拌,得到透明均匀的混合溶液,再加入CNTs/CFP载体,控制溶剂热反应温度为140℃,反应时间12h,自然降温至室温,取出负载催化剂的碳载体,去离子水洗涤,真空干燥,制得目标材料NiFeOx-C/CNTs/CFP。
目标材料的结构和性能表征:粉末X-射线衍射XRD见图9,催化剂为无定形特征。
电化学测试条件同实施例1,电化学测试性能见图10,在10mA cm-2电流密度条件下对应的过电位为243mV。
实施例3
CNTs/CFP载体制备同实施例1。
配置总体积为16mL、体积比为1:3的N,N-二甲基甲酰胺和乙醇混合溶剂,加入1mmol葡萄糖,溶解完全后通入氮气,加入0.8mmol Ni(NO3)2·6H2O和0.2mmol Fe(NO3)3·9H2O,搅拌,得到透明均匀的混合溶液,再加入CNTs/CFP载体,控制溶剂热反应温度为140℃,反应时间12h,自然降温至室温,取出负载催化剂的碳载体,去离子水洗涤,真空干燥,制得目标材料NiFeOx-C/CNTs/CFP。
目标材料的结构和性能表征:粉末X-射线衍射XRD见图11。催化剂为无定形特征。
电化学测试条件同实施例1,电化学测试性能见图12,对应10mA cm-2电流密度条件下对应的过电位为203mV。
实施例4
CNTs/CFP载体制备同实施例1。
配置总体积为16mL、体积比为1:3的N,N-二甲基甲酰胺和乙醇混合溶剂,加入1mmol葡萄糖,溶解完全后通入氮气,加入0.7mmol Ni(NO3)2·6H2O和0.3mmol Fe(NO3)3·9H2O,搅拌,得到透明均匀的混合溶液,再加入CNTs/CFP载体,控制溶剂热反应温度为140℃,反应时间12h,自然降温至室温,取出负载催化剂的碳载体,去离子水洗涤,真空干燥,制得目标材料NiFeOx-C/CNTs/CFP。
目标材料的结构和性能表征:粉末X-射线衍射XRD见图13。所得材料为无定型材料。
电化学测试条件同实施例1,电化学测试性能见图14,对应10mA cm-2电流密度条件下对应的过电位为234mV。
实施例5
CNTs/CFP载体制备同实施例1。
配置总体积为16mL、体积比为1:3的N,N-二甲基甲酰胺和乙醇混合溶剂,加入1mmol葡萄糖,溶解完全后通入氮气,加入0.6mmol Ni(NO3)2·6H2O和0.4mmol Fe(NO3)3·9H2O,搅拌,得到透明均匀的混合溶液,再加入CNTs/CFP载体,控制溶剂热反应温度为140℃,反应时间12h,自然降温至室温,取出负载催化剂的碳载体,去离子水洗涤,真空干燥,制得目标材料NiFeOx-C/CNTs/CFP。
目标材料的结构和性能表征:粉末X-射线衍射XRD见图15。为无定形材料。
电化学测试条件同实施例1,电化学测试性能见图16,10mA cm-2电流密度条件下对应的过电位为239mV。
对比例1
不引入碳掺杂的水氧化催化剂对照实验:NiFeOx/CNTs/CFP催化剂的制备。
步骤:
CNTs/CFP载体制备同实施例1。
配置总体积为16mL、体积比为1:3的N,N-二甲基甲酰胺和乙醇混合溶剂,通入氮气,加入0.85mmol Ni(NO3)2·6H2O和0.15mmol Fe(NO3)3·9H2O,搅拌,得到透明均匀的混合溶液,再加入CNTs/CFP载体,控制溶剂热反应温度为140℃,反应时间12h,自然降温至室温,取出负载催化剂的碳载体,真空干燥,制得目标材料NiFeOx/CNTs/CFP。样品的结构表征:SEM见图17,TEM见图18。可见样品表面催化剂呈团聚状态,分布不均匀。
不引入碳掺杂条件下的NiFeOx/CNTs/CFP催化剂的水氧化性能测试试验:在N2饱和的1M KOH电解质中以5mV/s的扫描速率记录极化曲线,以达到90%iR补偿的稳态。EIS测试条件:0.1Hz至100K Hz范围,测试电位为1.48V(vs.RHE)。NiFeOx/CNTs/CFP催化剂的极化曲线、双电层电容图、EIS如图19、20、21所示。10mA cm-2电流密度条件下对应的过电位为222mV,双电层电容为33.9mV,体系欧姆阻值和电荷传递阻力分别为2.55Ω和1.89Ω。对比实施例1,可以看出碳的掺杂降低了过电位以及体系的欧姆阻值,增强了电子转移,提高了催化剂的本征活性。
对比例2
载体为碳纤维纸的水氧化催化剂对照实验:NiFeOx-C/CFP催化剂的制备。
主要步骤:配置总体积为16mL、体积比为1:3的N,N-二甲基甲酰胺和乙醇混合溶剂,加入1mmol葡萄糖,通入氮气,加入0.85mmol Ni(NO3)2·6H2O和0.15mmol Fe(NO3)3·9H2O,搅拌,得到透明均匀的混合溶液,再加入CFP载体,控制溶剂热反应温度为140℃,反应时间12h,自然降温至室温,取出催化剂并洗涤,真空干燥,制得目标材料NiFeOx-C/CFP。样品的结构表征SEM见图22。可以看出NiFeOx-C/CFP催化剂分布不均匀,并且表面呈团聚状态。
载体为碳纤维纸条件下的NiFeOx-C/CFP催化剂的水氧化性能测试试验:在N2饱和的1M KOH电解质中以5mV/s的扫描速率记录极化曲线,以达到90%iR补偿的稳态。EIS测试条件:0.1Hz至100K Hz范围,测试电位为1.48V(vs.RHE)。NiFeOx-C/CFP催化剂的极化曲线、双电层电容图,EIS如图23、24、25所示。10mA cm-2电流密度条件下对应的过电位为264mV,双电层电容为5.0mF·cm-2,体系欧姆阻值和电荷传递阻力分别为1.70Ω和3.02Ω。对比实施例1可以看出,相对于CFP载体,CNTs/CFP能暴露更多的活性位点,同时降低催化剂和电解液之间的界面电阻,有利于提高NiFeOx-C复合催化剂的活性。

Claims (5)

1.一种多碳杂化的NiFe基催化剂的制备方法,其特征在于,所述制备方法包括以下步骤:
一、将碳纤维纸超声洗涤后放入硝酸中酸化,洗涤干燥后放入含有硝酸镍的乙醇/乙二醇混合溶液中浸渍0.5~1h,再放入管式炉,通入H2/Ar混合气,引入乙醇作为CNTs的碳源,升温至700~900℃,保温2~3h,自然冷却,得到CNTs/CFP载体,备用;
二、配置N,N-二甲基甲酰胺和乙醇混合溶剂,加入葡萄糖作为碳源,通入氮气,加入硝酸铁、硝酸镍,加入步骤一制备的CNTs/CFP载体,进行溶剂热反应,反应温度控制在120~160℃,时间控制在10~20h,自然冷却至室温,洗涤、干燥,制得目标材料NiFeOx-C/CNTs/CFP,其中,X为2~3;
其中,步骤一中,乙醇/乙二醇混合溶液中,乙醇与乙二醇摩尔比或体积比为1:1~1:2,硝酸镍的浓度为15~25g/L;
步骤二中,N,N-二甲基甲酰胺和乙醇的体积比为1:2~4;硝酸铁和硝酸镍的摩尔比为1:2~5;葡萄糖用量为Ni、Fe总摩尔量的0.8~1.2倍。
2.根据权利要求1所述的制备方法,其特征在于,步骤一中,碳纤维纸超声洗涤方式为:将碳纤维纸依次放入丙酮、乙醇和水中超声洗涤,洗涤时间均为10~30min。
3.根据权利要求1所述的制备方法,其特征在于,步骤一中,酸化时所用的硝酸浓度为65%-68%,酸化温度为100℃,酸化时间为3~5h。
4.一种权利要求1-3任一所述方法所制备的多碳杂化的NiFe基催化剂。
5.一种权利要求4所述的多碳杂化的NiFe基催化剂在电催化水氧化方面的应用。
CN202110258161.0A 2021-03-09 2021-03-09 多碳杂化的NiFe基高效碱性水氧化催化剂 Active CN113122865B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110258161.0A CN113122865B (zh) 2021-03-09 2021-03-09 多碳杂化的NiFe基高效碱性水氧化催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110258161.0A CN113122865B (zh) 2021-03-09 2021-03-09 多碳杂化的NiFe基高效碱性水氧化催化剂

Publications (2)

Publication Number Publication Date
CN113122865A CN113122865A (zh) 2021-07-16
CN113122865B true CN113122865B (zh) 2022-02-11

Family

ID=76773223

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110258161.0A Active CN113122865B (zh) 2021-03-09 2021-03-09 多碳杂化的NiFe基高效碱性水氧化催化剂

Country Status (1)

Country Link
CN (1) CN113122865B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9362568B2 (en) * 2011-02-18 2016-06-07 The Board Of Trustees Of The Leland Stanford Junior University Battery with hybrid electrocatalysts
WO2017091955A1 (en) * 2015-11-30 2017-06-08 South University Of Science And Technology Of China Bifunctional electrocatalyst for water splitting and preparation method thereof
CN108493461B (zh) * 2018-05-08 2021-01-19 大连理工大学 一种N掺杂多孔碳包覆Fe、Co双金属纳米粒子的催化剂及其制备方法
CN108906106B (zh) * 2018-07-04 2021-08-06 大连理工大学 一种FeNi/N-C高分散核壳结构催化剂及其制备方法
CN111450862A (zh) * 2020-03-24 2020-07-28 上海理工大学 制备CoFe合金/氧化石墨烯/碳纳米管复合材料的方法

Also Published As

Publication number Publication date
CN113122865A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
CN109252180B (zh) 一种三元mof纳米片阵列材料、制备方法及其应用
CN106807416A (zh) 一种电催化分解水制氢的自支撑磷化镍纳米片材料及其制备方法
CN113235104B (zh) 一种基于zif-67的镧掺杂氧化钴催化剂及其制备方法与应用
CN109989070B (zh) 三维分级FeP纳米片析氢电催化材料及其制备方法和应用
CN112647095B (zh) 原子级分散的双金属位点锚定的氮掺杂碳材料及其制备和应用
CN113249739B (zh) 金属磷化物负载的单原子催化剂及其制备方法和作为析氢反应电催化剂的应用
CN113816437B (zh) 一种二甲基咪唑钴联合镍铝层状双氢氧化物/氧化石墨烯的氧还原催化剂的制备方法
CN113881965B (zh) 一种以生物质碳源为模板负载金属纳米颗粒催化剂及其制备方法和应用
CN111653792A (zh) 一种同步制备多级孔钴和氮共掺杂纳米棒负载铂钴合金纳米氧还原电催化剂的方法
Zeng et al. Accelerated oxygen evolution enabled by encapsulating hybrid CoOx/RuO2 nanoparticle with nanoporous carbon
CN113512738B (zh) 三元铁镍钼基复合材料电解水催化剂、其制备方法和应用
CN109585861B (zh) 一种双功能的一氧化钴与氮掺杂碳原位复合电极的制备方法
Wang et al. Self-standing 2D/2D Co 3 O 4@ FeOOH nanosheet arrays as promising catalysts for the oxygen evolution reaction
CN115261915B (zh) 一种含钴和镍的复合电催化剂及其制备方法和应用
CN113122865B (zh) 多碳杂化的NiFe基高效碱性水氧化催化剂
CN115125547B (zh) Mo/Nb双掺杂Co中空介孔碳纳米盒催化剂的制备及应用
CN116200773A (zh) 富含孪晶结构的过渡族金属电催化剂及其制备方法和应用
CN113174609B (zh) 一种超高性能析氢电解水催化剂的制备方法及应用
CN114752962A (zh) 一种蛛巢状复合碳纳米材料@钌纳米颗粒的制备与应用
CN114497583A (zh) 一种燃料电池用PtRu/CN催化剂的制备方法
CN113186558A (zh) 一种海绵镍/八硫化九镍复合材料及其制备方法和应用
CN115747875B (zh) 一种柠檬酸掺杂的镍铁催化剂及其制备方法及在电解水制氢中的应用
CN113604832B (zh) 一种(Ru-P)@Pt单原子合金材料及其制备方法与应用
CN114318362B (zh) 一种钌纳米团簇析氢电催化剂及其超组装方法
CN115020718A (zh) 用于甲醇氧化反应的非贵金属纳米催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant