CN113100803A - 用于显示静脉血栓的方法、装置、计算机设备和介质 - Google Patents

用于显示静脉血栓的方法、装置、计算机设备和介质 Download PDF

Info

Publication number
CN113100803A
CN113100803A CN202110426162.1A CN202110426162A CN113100803A CN 113100803 A CN113100803 A CN 113100803A CN 202110426162 A CN202110426162 A CN 202110426162A CN 113100803 A CN113100803 A CN 113100803A
Authority
CN
China
Prior art keywords
voxel
base material
energy
dual
voxels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110426162.1A
Other languages
English (en)
Inventor
赵喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Digital Medical Technology Shanghai Co Ltd
Original Assignee
Siemens Digital Medical Technology Shanghai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Digital Medical Technology Shanghai Co Ltd filed Critical Siemens Digital Medical Technology Shanghai Co Ltd
Priority to CN202110426162.1A priority Critical patent/CN113100803A/zh
Publication of CN113100803A publication Critical patent/CN113100803A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/504Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Pulmonology (AREA)
  • Vascular Medicine (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Quality & Reliability (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本公开提供了一种用于显示静脉血栓的方法、装置、计算机设备、可读存储介质和计算机程序产品。本公开的用于显示静脉血栓的方法包括:获取被测对象的双能量CT平扫数据,该被测对象包括多个体素;基于三物质分解算法,将双能量CT平扫数据变换到基于第一基物质和第二基物质构造的标尺上,得到增强数据,其中,根据增强数据度量的两个体素的差异度大于根据双能量CT平扫数据度量的两个体素的差异度;根据增强数据,确定被测对象的各个体素与第一基物质的差异度;以及根据各个体素与第一基物质的差异度,生成用于标识被测对象的静脉血栓区域的。

Description

用于显示静脉血栓的方法、装置、计算机设备和介质
技术领域
本公开涉及医学成像及医学图像处理技术领域,特别涉及一种用于显示静脉血栓的方法、装置、计算机设备、可读存储介质和计算机程序产品。
背景技术
静脉血栓(Venous Thrombosis,VT),又称静脉血栓形成,指的是由静脉血流阻滞、凝血亢进、血管内膜损伤等引起的血栓性静脉炎和继发性血栓形成。
目前,通常采用含造影剂(又称对比剂,Contrast Medium)的计算机断层扫描(Computer Tomography,CT),即增强CT,来进行血管成像,以识别静脉血栓。含碘造影剂是目前最常用的造影剂。尽管其安全系数较高,但仍可能对人体造成损伤,例如造成过敏或肾功能损伤等。此外,根据造影剂显影的不同时段,通常需要对患者进行多次CT扫描,使得患者承受较大的辐射剂量,危害患者的身体健康。
发明内容
有鉴于此,本公开提出了一种用于显示静脉血栓的方法、装置、计算机设备、可读存储介质和计算机程序产品。
根据本公开的第一方面,提供一种用于显示静脉血栓的方法,包括:获取被测对象的双能量CT平扫数据,被测对象包括多个体素;基于三物质分解算法,将双能量CT平扫数据变换到基于第一基物质和第二基物质构造的标尺上,得到增强数据,其中,根据增强数据度量的两个体素的差异度大于根据双能量CT平扫数据度量的两个体素的差异度;根据增强数据,确定被测对象的各个体素与第一基物质的差异度;以及根据各个体素与第一基物质的差异度,生成用于标识被测对象的静脉血栓区域的图像。
根据本公开的第二方面,提供一种用于显示静脉血栓的装置,包括:断层扫描单元,被配置为采集被测对象的双能量CT平扫数据,被测对象包括多个体素;计算单元,被配置为:获取采集的双能量CT平扫数据;基于三物质分解算法,将双能量CT平扫数据变换到基于第一基物质和第二基物质构造的标尺上,得到增强数据,其中,根据增强数据度量的两个体素的差异度大于根据双能量CT平扫数据度量的两个体素的差异度;根据增强数据,确定被测对象的各个体素与第一基物质的差异度;根据各个体素与第一基物质的差异度,生成用于标识被测对象的静脉血栓区域的图像;以及显示单元,被配置为显示上述图像。
根据本公开的第三方面,提供一种计算机设备,包括:存储器、处理器以及存储在上述存储器上的计算机程序。该处理器被配置为执行上述计算机程序以实现上述用于显示静脉血栓的方法的步骤。
根据本公开的第四方面,提供一种非暂态计算机可读存储介质,其上存储有计算机程序。该计算机程序被处理器执行时实现上述用于显示静脉血栓的方法的步骤。
根据本公开的第五方面,提供一种计算机程序产品,包括计算机程序。该计算机程序被处理器执行时实现上述用于显示静脉血栓的方法的步骤。
根据本公开的一个或多个实施例,基于三物质分解算法来将双能量CT平扫数据变换到基于第一基物质和第二基物质构造的标尺上,得到增强数据;根据增强数据,确定被测对象的各个体素与第一基物质的差异度;根据各个体素与第一基物质的差异度,生成用于标识静脉血栓区域的图像。本公开的实施例通过将双能量CT平扫数据变换为位于标尺上的增强数据,增大了不同体素之间的差异度,从而增大了对应于静脉血栓的体素与对应于正常血液的体素的差异度,使得所生成的图像中静脉血栓区域与正常血液区域的对比更加明显,能够准确标识出静脉血栓区域。本公开的实施例仅需获取被测对象的双能量CT平扫数据即可准确标识出静脉血栓区域,无需使用造影剂,从而避免了患者因使用造影剂而产生的不良反应;无需对患者进行多次扫描,从而减少了对患者的辐射伤害。
应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。
附图说明
下面将通过参照附图详细描述本公开的实施例,使本领域的普通技术人员更清楚本公开的上述及其它特征和优点,附图中:
图1为根据本公开实施例的用于显示静脉血栓的方法的流程图;
图2为根据本公开实施例的双能量CT平扫数据的示意图;
图3示出了根据本公开实施例的不同物质的CT值的示意图;
图4为根据本公开实施例的示例性衰减特征图的示意图;
图5A至5C分别示出了单能量CT平扫、根据本公开实施例的双能量CT平扫、单能量CT增强三者对于静脉血栓区域的显示效果的示意图;
图6示出了根据本公开实施例的用于显示静脉血栓的装置的示意图;以及
图7示出了能够用于实现本公开实施例的示例性计算机设备的结构框图。
具体实施方式
为了对本公开的技术特征、目的和效果有更加清楚的理解,现对照附图说明本公开的具体实施方式,在各图中相同的标号表示相同的部分。
在本文中,“示意性”表示“充当实例、例子或说明”,不应将在本文中被描述为“示意性”的任何图示、实施方式解释为一种更优选的或更具优点的技术方案。
为使图面简洁,各图中只示意性地表示出了与本公开相关的部分,它们并不代表其作为产品的实际结构。另外,以使图面简洁便于理解,在有些图中具有相同结构或功能的部件,仅示意性地绘示了其中的一个,或仅标出了其中的一个。
在本文中,“一个”不仅表示“仅此一个”,也可以表示“多于一个”的情形。在本文中,“第一”、“第二”等仅用于彼此的区分,而非表示它们的重要程度及顺序、以及互为存在的前提等。
下面结合附图详细描述本公开的示例性实施例。
图1示出了根据本公开实施例的用于显示静脉血栓的方法的流程图。该方法例如可以由计算机设备来执行,计算机设备包括但不限于台式计算机、笔记本电脑、移动设备、智能可穿戴设备等。如图1所示,该方法包括:
步骤S2、获取被测对象的双能量CT平扫数据,被测对象包括多个体素;
步骤S4、基于三物质分解算法,将双能量CT平扫数据变换到基于第一基物质和第二基物质构造的标尺上,得到增强数据,其中,根据增强数据度量的两个体素的差异度大于根据双能量CT平扫数据度量的两个体素的差异度;
步骤S6、根据增强数据,确定被测对象的各个体素与第一基物质的差异度;
步骤S8、根据各个体素与第一基物质的差异度,生成用于标识被测对象的静脉血栓区域的图像。
根据本公开的实施例,基于三物质分解算法来将双能量CT平扫数据变换到基于第一基物质和第二基物质构造的标尺上,得到增强数据;根据增强数据,确定被测对象的各个体素与第一基物质的差异度;根据各个体素与第一基物质的差异度,生成用于标识静脉血栓区域的图像。本公开的实施例通过将双能量CT平扫数据变换为位于标尺上的增强数据,增大了不同体素之间的差异度,从而增大了对应于静脉血栓的体素与对应于正常血液的体素的差异度,使得所生成的图像中静脉血栓区域与正常血液区域的对比更加明显,能够准确标识出静脉血栓区域。本公开的实施例仅需获取被测对象的双能量CT平扫数据即可准确标识出静脉血栓区域,无需使用造影剂,从而避免了患者因使用造影剂而产生的不良反应;无需对患者进行多次扫描,从而减少了对患者的辐射伤害。
下文详细描述图1所示的用于显示静脉血栓的方法的各个步骤。
在步骤S2中,获取被测对象的双能量CT平扫数据。
双能量CT(Dual-Energy CT,DECT)平扫指的是在不使用造影剂的前提下,利用两种不同能量的X射线对物体进行扫描成像。双能量CT平扫数据例如可以由计算机断层扫描设备(即CT设备)来采集,然后传输至用于执行图1所示的方法的计算机设备。相应地,计算机设备获取被测对象的双能量CT平扫数据。
根据一些实施例,步骤S2中获取到的双能量CT平扫数据包括被测对象的各个体素在第一射线能量、第二射线能量下的CT值。
被测对象例如可以是患者的头部、胸部、肝、脾、胰腺等部位。人体各种组织(包括正常和异常组织)对X射线的吸收不等,具有不同的衰减系数μ。CT即利用这一特性,将被测对象沿某一选定层面划分为许多立方体小块,这些立方体小块被称为体素。即,被测对象包括多个体素。CT设备的X射线球管发出X射线,X射线穿过被测对象时,沿射线方向的各个体素均在一定程度上吸收一部分射线,使X射线衰减。穿过被测对象后的射线被位于X射线球管对面的探测器接收。CT设备通过分析探测器接收到的X射线能量,可以得出各个体素的X射线衰减系数,进而得到各个体素的CT值。
临床上,将物质M的CT值CTM定义为该物质的衰减系数μM与水的衰减系数μ之差与水的衰减系数μ的比值乘以1000,即:
Figure BDA0003029610300000041
CT值的单位为HU。一些常见的人体组织的CT值如下:
CT=0HU
CT空气=﹣1000HU
CT=1000HU
在双能量CT扫描中,第一射线能量与第二射线能量不同。通常地,二者之中一个为高能量,一个为低能量。在一些实施例中,第一射线能量例如可以是140kVp(kilovoltpeak,峰值电压),第二射线能量例如可以是80kVp。应当理解,在其他实施例中,第一射线能量、第二射线能量也可以是其他数值。并且,第一射线能量可以小于第二射线能量。
如前所述,双能量CT平扫数据包括被测对象的各个体素在第一射线能量、第二射线能量下的CT值。若以第一射线能量下的CT值作为横轴(x轴),以第二射线能量下的CT值作为纵轴(y轴),则可以将双能量CT平扫数据呈现在一个二维图中。被测对象的每个体素对应于二维图中的一个体素点,体素i对应的体素点的坐标为(xi,yi),其中,xi为体素i在第一射线能量下的CT值,yi为体素i在第二射线能量下的CT值。
例如,被测对象包括两个体素,体素1和体素2。第一射线能量为140kVp,第二射线能量为80kVp。相应地,步骤S2获取到的双能量CT平扫数据包括体素1在140kVp射线能量下的CT值x1、在80kVp射线能量下的CT值y1,以及体素2在140kVp射线能量下的CT值x2、在80kVp射线能量下的CT值y2。图2示出了该双能量CT平扫数据对应的二维图的示意图。如图2所示,横轴为140kVp射线能量下的CT值,纵轴为80kVp射线能量下的CT值,体素1对应于图2中的点A,其坐标为(x1,y1);体素2对应于图2中的点B,其坐标为(x2,y2)。
应当理解,图2仅作为一个示例,旨在通过一种简化的情形(被测对象包括两个体素)来举例说明双能量CT平扫数据在二维图中的呈现方式。在实际情况中,被测对象所包括的体素的数量通常远大于2。
应当理解,一些常见的物质在第一射线能量、第二射线能量下的CT值也可以以二维图的形式呈现。图3示出了空气、脂肪、水、血液、碘、钙在第一射线能量、第二射线能量下的CT值的二维图。每一种物质对应于图3中的一个点。其中,空气和水对应的CT值被校准为0HU和-1000HU(与射线能量无关),二者对应的点的连线为一致线(Identity Line)。
在通过步骤S2获取到被测对象的双能量CT平扫数据后,执行步骤S4。
在步骤S4中,基于三物质分解算法,将双能量CT平扫数据变换到基于第一基物质和第二基物质构造的标尺上,得到增强数据。其中,根据增强数据度量的两个体素的差异度大于根据双能量CT平扫数据度量的两个体素的差异度。
可以理解,三物质包括第一基物质、第二基物质和第三基物质。第一基物质、第二基物质、第三基物质可以由本领域技术人员根据实际情况来灵活选择。优选地,第一基物质、第二基物质可以是射线吸收特性距离空气-水一致线(参见图3)较近的两种不同的物质。例如,第一基物质可以是软组织、血液等;第二基物质可以是脂肪、水等。第三基物质可以是射线吸收特性远离空气-水一致线(参见图3)的物质,例如碘、钙等。
根据一些实施例,基于选用的三物质,步骤S4进一步包括下述步骤S42和S44:
在步骤S42中、根据步骤S2获取到的双能量CT平扫数据,生成被测对象的衰减特征图,该衰减特征图包括分别对应于每一个体素的体素点、对应于第一基物质的第一基物质点、对应于第二基物质的第二基物质点和对应于第三基物质的第三基物质点,其中,标尺为第一基物质点与第二基物质点的连线;
在步骤S44中,根据第三基物质点,将各个体素点投影至标尺上,得到增强数据。
具体地,步骤S42中生成的衰减特征图的横轴表示第一射线能量下的CT值,纵轴表示第二射线能量下的CT值。在该衰减特征图中,每一个体素对应于一个体素点。体素i对应的体素点的坐标为(xi,yi),其中,xi为体素i在第一射线能量下的CT值,yi为体素i在第二射线能量下的CT值。
类似地,在衰减特征图中,第一基物质、第二基物质、第三基物质分别对应于第一基物质点、第二基物质点、第三基物质点。第j(j=1,2,3)基物质对应的第j基物质点的坐标为(xj,yj),其中,xj为第j基物质在第一射线能量下的CT值,yj为第j基物质在第二射线能量下的CT值。各基物质在第一射线能量、第二射线能量下的CT值可以预先测得。
例如,被测对象包括两个体素,体素1和体素2。第一射线能量为140kVp,第二射线能量为80kVp。第一基物质为软组织,第二基物质为脂肪,第三基物质为碘。图4示出了该被测对象对应的衰减特征图。如图4所示,该衰减特征图的横轴为140kVp射线能量下的CT值,纵轴为80kVp射线能量下的CT值。该衰减特征图包括体素1、体素2分别对应的体素点A、体素点B,以及软组织、脂肪、碘分别对应的软组织点M1、脂肪点M2、碘点M3
在通过步骤S42生成被测对象的衰减特征图后,执行步骤S44。
在步骤S44中,根据第三基物质点,将各个体素点投影至标尺上,得到增强数据。
在衰减特征图中,所有体素点的集合对应于步骤S2中获取到的原始的双能量CT平扫数据;在通过步骤S44将各体素点投影至标尺上后,各体素点在标尺上的投影的集合对应于增强数据。
在本发明的实施例中,根据增强数据度量的两个体素的差异度大于根据双能量CT平扫数据度量的两个体素的差异度。根据增强数据度量的两个体素的差异度与根据原始双能量CT平扫数据度量的两个体素的差异度的大小关系可以在衰减特征图中得到体现。
例如,在一些实施例中,根据双能量CT平扫数据度量的两个体素的差异度为衰减特征图中的相应体素点之间的距离;根据增强数据度量的两个体素的差异度为衰减特征图中的相应体素点在标尺上的投影之间的距离。由于两个体素点均是根据第三基物质点被投影至标尺上,该投影过程相当于从第三基物质点发出两条射线,一条射线经过一个体素点后与标尺相交,得到一个投影;另一条射线经过另一个体素点后与标尺相交,得到另一个投影。可以理解,随着射线的发散,两条射线上的相应的点之间的距离会越来越大,相应地,两个体素点在标尺上的两个投影之间的距离将大于两个体素点之间的距离,即,根据增强数据度量的两个体素的差异度大于根据双能量CT平扫数据度量的两个体素的差异度。通过将各体素点投影至标尺上,增大了不同体素之间的差异度,从而增大了对应于静脉血栓的体素与对应于正常血液的体素的差异度,使得所生成的图像中静脉血栓区域与正常血液区域的对比更加明显,能够准确标识出静脉血栓区域。
例如,仍参考图4,在图4中,标尺为软组织点M1与脂肪点M2的连线M1M2。根据碘点M3,将体素点A投影至标尺M1M2上,即,将碘点M3与体素点A相连并延长至与标尺M1M2相交,交点A’即为体素点A在标尺M1M2上的投影。类似地,将体素点B投影至标尺M1M2上,体素点B在标尺M1M2上的投影为点B’。如图4所示,基于原始的双能量CT平扫数据(即体素点A和体素点B)度量的体素1和体素2之间的差异度为相应的体素点A与体素点B之间的距离d1,基于增强数据度量(即投影A’和投影B’)的体素1与体素2的差异度为相应的投影A’与投影B’之间的距离d1’。如图4所示,距离d1’大于距离d1,可见通过将各体素点投影到标尺上,增大了不同体素之间的差异度。
在通过步骤S44将双能量CT平扫数据变换到基于第一基物质和第二基物质构造的标尺上,得到增强数据后,执行步骤S6。
在步骤S6中,根据增强数据,确定被测对象的各个体素与第一基物质的差异度。
根据一些实施例,在步骤S6中,分别计算各个体素点在标尺上的投影到第一基物质点的距离;将该距离作为相应体素与第一基物质的差异度。
例如,仍然参考图4,点A’到软组织点M1的距离A’M1即为相应的体素1与软组织的差异度。
体素点在标尺上的投影到第一基物质点的距离越小,相应体素与第一基物质的差异度越小。在第一基物质被选定为射线吸收特性与静脉血栓类似的物质(例如第一基物质为软组织等)、且体素不是该第一基物质的前提下,体素与第一基物质的差异度越小,该体素越可能是静脉血栓;体素与第一基物质的差异度越大,该体素越可能是正常血液。
在第一基物质被选定为射线吸收特性与正常血液类似的物质(例如第一基物质为血液等)的前提下,体素与第一基物质的差异度越大,该体素越可能是静脉血栓;体素与第一基物质的差异度越小,该体素越可能是正常血液。
在通过步骤S6确定出被测对象的各个体素与第一基物质的差异度后,执行步骤S8。
在步骤S8中,根据各个体素与第一基物质的差异度,生成用于表示被测对象的静脉血栓区域的图像。
根据一些实施例,步骤S8进一步包括:确定各个体素与第一基物质的最大差异度;对于每一个体素,根据该体素与第一基物质的差异度、上述最大差异度和预设的最大灰度值来确定该体素对应的灰度值;根据各个体素对应的灰度值,生成用于标识被测对象的静脉血栓区域的图像,其中,每个体素对应于该图像中的一个像素,静脉血栓区域为该图像中的灰度值属于预设范围的区域。
例如,被测物体包括256个体素,各体素与第一基物质的差异度分别为d1,d2,…,d256。相应地,各个体素与第一基物质的最大差异度为dmax=max(d1,d2,…,d256)。预设的最大灰度值可以由本领域技术人员根据实际情况来设置,例如,可以将最大灰度值gmax设置为127。体素i对应的灰度值gi例如可以按照下式计算:
Figure BDA0003029610300000081
根据各个体素对应的灰度值,可以生成用于表示被测图像的静脉血栓区域的图像。其中,每个体素对应于该图像中的一个像素。静脉血栓区域为图像中的灰度值属于预设范围的区域。预设范围可以通过灰度值下限和/或灰度值上限来表示,即,静脉血栓区域为图像中的灰度值大于等于灰度值下限和/或小于等于灰度值上限的像素所组成的区域。
当第一基物质被选定为射线吸收特性与静脉血栓类似的物质(例如第一基物质为软组织等)时,体素对应的灰度值越小,该体素越可能是静脉血栓。相应地,可以设置灰度值上限,静脉血栓区域为图像中的灰度值小于灰度值上限的区域。或者,也可以同时设置灰度值上限和灰度值下限,静脉血栓区域为图像中的灰度值大于灰度值下限且小于灰度值上限的区域,这种情况下,若某体素对应的灰度值小于等于灰度值下限,可以认为该体素即为第一基物质;若某体素对应的灰度值大于等于灰度值上限,可以认为该体素对应于正常血液区域。
当第一基物质被选定为射线吸收特性与正常血液类似的物质(例如第一基物质被选定为血液等)时,体素对应的灰度值越大,该体素越可能是静脉血栓。相应地,可以设置灰度值下限,静脉血栓区域为图像中的灰度值大于灰度值下限的区域。这种情况下,若某体素的灰度值小于等于灰度值下限,可以认为该体素对应于正常血液区域。
预设范围(灰度值下限和/或灰度值上限)可以由本领域技术人员参考实际情况来设置,本公开不限制其取值。
根据一些实施例,为了提高静脉血栓的显示效果,可以进一步将上述实施例中生成的灰度的图像转化为彩色图像,即:根据各个体素对应的灰度值,确定各个体素对应的颜色值;根据各个体素对应的颜色值,生成用于标识被测对象的静脉血栓区域的彩色图像,其中,每个体素对应于彩色图像中的一个像素,静脉血栓区域为彩色图像中的具有预设颜色的区域。
灰度值与颜色值之间的转化关系可以由本领域技术人员参考实际情况来进行设置。例如,可以分别设置灰度值与R、G、B三个颜色通道的颜色值的转化公式,按照相应的转化公式来计算灰度值对应的R、G、B颜色值,然后将三者叠加,得到相应的RGB彩色像素。各体素对应的彩色像素组合生成用于标识被测对象的静脉血栓区域的彩色图像。静脉血栓区域为彩色图像中的具有预设颜色的区域。预设颜色由灰度值与颜色值之间的转化关系来确定,例如,当第一基物质被选定为射线吸收特性与静脉血栓类似的物质(例如第一基物质为软组织等)时,可以将灰度值与颜色值之间的转化关系设置为灰度值越小,B通道颜色值越大,R、G通道颜色值越小,相应地,静脉血栓区域可以为彩色图像中的蓝色区域。
根据本公开的实施例,通过将双能量CT平扫数据变换为位于标尺上的增强数据,增大了不同体素之间的差异度,从而增大了对应于静脉血栓的体素与对应于正常血液的体素的差异度,使得所生成的图像中静脉血栓区域与正常血液区域的对比更加明显,能够准确标识出静脉血栓区域。本公开的实施例仅需获取被测对象的双能量CT平扫数据即可准确标识出静脉血栓区域,无需使用造影剂,从而避免了患者因使用造影剂而产生的不良反应;无需对患者进行多次扫描,从而减少了对患者的辐射伤害。
图5A至5C分别示出了单能量CT平扫(120kVp)、根据本公开实施例的双能量CT平扫(80kVp-140kVp)、单能量CT增强扫描(120kVp,注射了含碘造影剂)三者对于静脉血栓区域的显示效果的示意图。如图5A所示,在单能量CT平扫图像中,静脉血栓区域E与正常血液区域F呈现为相似的灰度,差异度很小,无法将二者进行区分。如图5B所示,在通过本公开实施例的方法对双能量CT平扫数据进行处理所生成的图像中,静脉血栓区域E的灰度值较小、呈现为暗区,而正常血液区域F的灰度值较大、呈现为亮区,静脉血栓区域E与正常血液区域F差异度较大,对比明显,边界清晰。如图5C所示,在单能量CT增强扫描图像中,静脉血栓区域E较正常血液区域F更暗,可以将二者区别开。图5C中标识的静脉血栓区域与图5B中的一致,但静脉血栓区域E与正常血液区域F的对比不如图5B明显。由此可见,本公开的实施例通过对双能量CT平扫数据进行处理,能够准确标识出静脉血栓区域,对于静脉血栓区域的标识效果甚至优于含造影剂的CT增强扫描。
可以理解,上述实施例的用于显示静脉血栓的方法也可以类推适用于显示其他目标组织。例如,可以将第一基物质设置为脂肪,以便显示脂肪肝。与上述实施例的用于显示静脉血栓的方法类似地,用于显示脂肪肝的方法可以包括:获取被测对象的双能量CT平扫数据;基于三物质分解算法,将上述双能量CT平扫数据变换到基于脂肪和其他基物质(例如软组织等)构造的标尺上,得到增强数据;根据增强数据,确定被测对象的各个体素与脂肪的差异度;根据各个体素与脂肪的差异度,生成用于标识被测对象的脂肪肝区域的图像。
图6示出了根据本公开实施例的用于显示静脉血栓的装置600的示意图。如图6所示,装置600包括断层扫描单元610、计算单元620和显示单元630:
断层扫描单元610可以被配置为采集被测对象的双能量CT平扫数据,被测对象包括多个体素;
计算单元620可以被配置为:获取采集的上述双能量CT平扫数据;基于三物质分解算法,将双能量CT平扫数据变换到基于第一基物质和第二基物质构造的标尺上,得到增强数据,其中,根据增强数据度量的两个体素的差异度大于根据双能量CT平扫数据度量的两个体素的差异度;根据增强数据,确定被测对象的各个体素与第一基物质的差异度;根据各个体素与第一基物质的差异度,生成用于标识被测对象的静脉血栓区域的图像;
显示单元630可以被配置为显示上述图像。
根据本公开的实施例,计算单元610能够获取断层扫描单元610采集到的双能量CT平扫数据,并基于三物质分解算法对双能量CT平扫数据进行处理,将双能量CT平扫数据变换到基于第一基物质和第二基物质构造的标尺上,得到增强数据,根据增强数据确定被测对象的各个体素与第一基物质的差异度;根据各个体素与第一基物质的差异度,生成用于标识被测对象的静脉血栓区域的图像,并由显示单元630进行显示。本公开的实施例通过将双能量CT平扫数据变换为位于标尺上的增强数据,增大了不同体素之间的差异度,从而增大了对应于静脉血栓的体素与对应于正常血液的体素的差异度,使得所生成的图像中静脉血栓区域与正常血液区域的对比更加明显,能够准确标识出静脉血栓区域。本公开的实施例仅需获取被测对象的双能量CT平扫数据即可准确标识出静脉血栓区域,无需使用造影剂,从而避免了患者因使用造影剂而产生的不良反应;无需对患者进行多次扫描,从而减少了对患者的辐射伤害。
具体地,断层扫描单元610可以是任意型号的计算机断层扫描设备(CT设备),例如双源(即包括两个X射线球管)双能CT设备、单源双能CT设备、能够快速切换射线能量的单源单能CT设备,等等。断层扫描单元610用于采集被测对象的双能量CT平扫数据,包括被测对象的各个体素在第一射线能量、第二射线能量下的CT值。
双能量CT平扫数据的细节可以参见上文对于步骤S2的相关描述,此处不再赘述。
断层扫描单元610可以通过有线或无线的方式与计算单元620通信连接,将采集到的双能量CT平扫数据发送至计算单元620。
计算单元620获取断层扫描单元610采集的双能量CT平扫数据基于三物质分解算法对双能量CT平扫数据进行处理,将双能量CT平扫数据变换到基于第一基物质和第二基物质构造的标尺上,得到增强数据,其中,根据增强数据度量的两个体素的差异度大于根据双能量CT平扫数据度量的两个体素的差异度;根据增强数据,确定被测对象的各个体素与第一基物质的差异度;根据各个体素与第一基物质的差异度,生成用于标识被测对象的静脉血栓区域的图像。
具体地,三物质包括第一基物质、第二基物质和第三基物质。第一基物质、第二基物质、第三基物质可以由本领域技术人员根据实际情况来灵活选择。优选地,第一基物质、第二基物质可以是射线吸收特性距离空气-水一致线(参见图3)较近的两种不同的物质。例如,第一基物质可以是软组织、血液等;第二基物质可以是脂肪、水等。第三基物质可以是射线吸收特性远离空气-水一致线(参见图3)的物质,例如碘、钙等。
根据一些实施例,计算单元620进一步被配置为通过以下步骤来将双能量CT平扫数据变换到基于第一基物质和第二基物质构造的标尺上:根据双能量CT平扫数据,生成被测对象的衰减特征图,衰减特征图包括分别对应于每一个体素的体素点、对应于第一基物质的第一基物质点、对应于第二基物质的第二基物质点和对应于第三基物质的第三基物质点,其中,标尺为第一基物质点与第二基物质点的连线;根据第三基物质点,将各个体素点投影至标尺上,得到增强数据。衰减特征图的横轴表示第一射线能量下的CT值,纵轴表示第二射线能量下的CT值。
根据一些实施例,根据双能量CT平扫数据度量的两个体素的差异度为衰减特征图中的相应体素点之间的距离;根据增强数据度量的两个体素的差异度为衰减特征图中的相应体素点述标尺上的投影之间的距离。
根据一些实施例,计算单元620进一步被配置为通过以下步骤来确定各个体素与第一基物质的差异度:分别计算各个体素点在标尺上的投影到第一基物质点的距离;将该距离作为相应体素与第一基物质的差异度。
根据一些实施例,计算单元620进一步被配置为通过以下步骤来生成用于标识被测对象的静脉血栓区域的图像:确定各个体素与第一基物质的最大差异度;对于每一个体素,根据该体素与第一基物质的差异度、上述最大差异度和预设的最大灰度值来确定该体素对应的灰度值;根据各个体素对应的灰度值,生成用于标识被测对象的静脉血栓区域的图像,其中,每个体素对应于该图像中的一个像素,静脉血栓区域为图像中的灰度值属于预设范围的区域。
根据一种实施例,计算单元620进一步被配置为通过以下步骤来生成用于标识被测对象的静脉血栓区域的图像:根据各个体素对应的灰度值,确定各个体素对应的颜色值;根据各个体素对应的颜色值,生成用于标识被测对象的静脉血栓区域的彩色图像,其中,每个体素对应于彩色图像中的一个像素,静脉血栓区域为彩色图像中的具有预设颜色的区域。
显示单元630可以通过有线或无线的方式与计算单元通信连接,用于显示计算单元620所生成的用于标识被测对象的静脉血栓区域的图像。
应当理解,图6中所示计算单元620被配置为执行参考图1描述的方法中的各个步骤。由此,上面针对图1方法描述的操作、特征和优点同样适用于计算单元620以及装置600。为了简洁起见,某些操作、特征和优点在此不再赘述。
根据本公开的一方面,提供了一种计算机设备,其包括存储器、处理器以及存储在存储器上的计算机程序。该处理器被配置为执行计算机程序以实现上文描述的任一方法实施例的步骤。
根据本公开的一方面,提供了一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上文描述的任一方法实施例的步骤。
根据本公开的一方面,提供了一种计算机程序产品,其包括计算机程序,该计算机程序被处理器执行时实现上文描述的任一方法实施例的步骤。
在下文中,结合图7描述这样的计算机设备、非暂态计算机可读存储介质和计算机程序产品的说明性示例。
图7示出了可以被用来实施本文所描述的方法的计算机设备700的示例配置。举例来说,图6中所示的计算单元620可以包括类似于计算机设备700的架构。上述用于显示静脉血栓的方法也可以全部或至少部分地由计算机设备700或类似设备或***实现。
计算机设备700可以是各种不同类型的设备,例如服务提供商的服务器、与客户端(例如,客户端设备)相关联的设备、片上***、和/或任何其它合适的计算机设备或计算***。计算机设备700的示例包括但不限于:台式计算机、服务器计算机、笔记本电脑或上网本计算机、移动设备(例如,平板电脑、蜂窝或其他无线电话(例如,智能电话)、记事本计算机、移动台)、可穿戴设备(例如,眼镜、手表)、娱乐设备(例如,娱乐器具、通信地耦合到显示设备的机顶盒、游戏机)、电视或其他显示设备、汽车计算机等等。因此,计算机设备700的范围可以从具有大量存储器和处理器资源的全资源设备(例如,个人计算机、游戏控制台)到具有有限的存储器和/或处理资源的低资源设备(例如,传统的机顶盒、手持游戏控制台)。
计算机设备700可以包括能够诸如通过***总线714或其他适当的连接彼此通信的至少一个处理器702、存储器704、(多个)通信接口706、显示设备708、其他输入/输出(I/O)设备710以及一个或更多大容量存储设备712。
处理器702可以是单个处理单元或多个处理单元,所有处理单元可以包括单个或多个计算单元或者多个核心。处理器702可以被实施成一个或更多微处理器、微型计算机、微控制器、数字信号处理器、中央处理单元、状态机、逻辑电路和/或基于操作指令来操纵信号的任何设备。除了其他能力之外,处理器702可以被配置成获取并且执行存储在存储器704、大容量存储设备712或者其他计算机可读介质中的计算机可读指令,诸如操作***716的程序代码、应用程序718的程序代码、其他程序720的程序代码等。
存储器704和大容量存储设备712是用于存储指令的计算机可读存储介质的示例,所述指令由处理器702执行来实施前面所描述的各种功能。举例来说,存储器704一般可以包括易失性存储器和非易失性存储器二者(例如RAM、ROM等等)。此外,大容量存储设备712一般可以包括硬盘驱动器、固态驱动器、可移除介质、包括外部和可移除驱动器、存储器卡、闪存、软盘、光盘(例如CD、DVD)、存储阵列、网络附属存储、存储区域网等等。存储器704和大容量存储设备712在本文中都可以被统称为存储器或计算机可读存储介质,并且可以是能够把计算机可读、处理器可执行程序指令存储为计算机程序代码的非暂态介质,所述计算机程序代码可以由处理器702作为被配置成实施在本文的示例中所描述的操作和功能的特定机器来执行。
多个程序模块可以存储在大容量存储设备712上。这些程序包括操作***716、一个或多个应用程序718、其他程序720和程序数据722,并且它们可以被加载到存储器704以供执行。这样的应用程序或程序模块的示例可以包括例如用于实现本公开实施例的用于显示静脉血栓的方法的计算机程序逻辑(例如,计算机程序代码或指令)。
虽然在图7中被图示成存储在计算机设备700的存储器704中,但是模块716、718、720和722或者其部分可以使用可由计算机设备700访问的任何形式的计算机可读介质来实施。如本文所使用的,“计算机可读介质”至少包括两种类型的计算机可读介质,也就是计算机存储介质和通信介质。
计算机存储介质包括通过用于存储信息的任何方法或技术实施的易失性和非易失性、可移除和不可移除介质,所述信息诸如是计算机可读指令、数据结构、程序模块或者其他数据。计算机存储介质包括而不限于RAM、ROM、EEPROM、闪存或其他存储器技术,CD-ROM、数字通用盘(DVD)、或其他光学存储装置,磁盒、磁带、磁盘存储装置或其他磁性存储设备,或者可以被用来存储信息以供计算机设备访问的任何其他非传送介质。
与此相对,通信介质可以在诸如载波或其他传送机制之类的已调数据信号中具体实现计算机可读指令、数据结构、程序模块或其他数据。本文所定义的计算机存储介质不包括通信介质。
计算机设备700还可以包括一个或更多通信接口706,以用于诸如通过网络、直接连接等等与其他设备交换数据,正如前面所讨论的那样。这样的通信接口可以是以下各项中的一个或多个:任何类型的网络接口(例如,网络接口卡(NIC))、有线或无线(诸如IEEE802.11无线LAN(WLAN))无线接口、全球微波接入互操作(Wi-MAX)接口、以太网接口、通用串行总线(USB)接口、蜂窝网络接口、BluetoothTM接口、近场通信(NFC)接口等。通信接口706可以促进在多种网络和协议类型内的通信,其中包括有线网络(例如LAN、电缆等等)和无线网络(例如WLAN、蜂窝、卫星等等)、因特网等等。通信接口706还可以提供与诸如存储阵列、网络附属存储、存储区域网等等中的外部存储装置(未示出)的通信。
在一些示例中,可以包括诸如监视器之类的显示设备708,以用于向用户显示信息和图像。其他I/O设备710可以是接收来自用户的各种输入并且向用户提供各种输出的设备,并且可以包括触摸输入设备、手势输入设备、摄影机、键盘、遥控器、鼠标、打印机、音频输入/输出设备等等。
以上所述仅为本公开的实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (21)

1.一种用于显示静脉血栓的方法,包括:
获取被测对象的双能量CT平扫数据,所述被测对象包括多个体素;
基于三物质分解算法,将所述双能量CT平扫数据变换到基于第一基物质和第二基物质构造的标尺上,得到增强数据,其中,根据所述增强数据度量的两个体素的差异度大于根据所述双能量CT平扫数据度量的两个体素的差异度;
根据所述增强数据,确定所述被测对象的各个体素与第一基物质的差异度;以及
根据各个体素与第一基物质的差异度,生成用于标识所述被测对象的静脉血栓区域的图像。
2.根据权利要求1所述的方法,其中,所述双能量CT平扫数据包括所述被测对象的各个体素在第一射线能量、第二射线能量下的CT值。
3.根据权利要求1所述的方法,其中,所述三物质包括所述第一基物质、所述第二基物质、以及第三基物质;
所述将所述双能量CT平扫数据变换到基于第一基物质和第二基物质构造的标尺上包括:
根据所述双能量CT平扫数据,生成被测对象的衰减特征图,所述衰减特征图包括分别对应于每一个体素的体素点、对应于第一基物质的第一基物质点、对应于第二基物质的第二基物质点和对应于第三基物质的第三基物质点,其中,所述标尺为所述第一基物质点与所述第二基物质点的连线;以及
根据所述第三基物质点,将各个体素点投影至所述标尺上,以得到所述增强数据。
4.根据权利要求3所述的方法,其中,所述第一基物质包括软组织、血液中的任一种,所述第二基物质包括脂肪、水中的任一种,所述第三基物质包括碘、钙中的任一种。
5.根据权利要求3所述的方法,其中,所述衰减特征图的横轴表示第一射线能量下的CT值,纵轴表示第二射线能量下的CT值。
6.根据权利要求3至5中任一项所述的方法,其中,
根据所述双能量CT平扫数据度量的两个体素的差异度为所述衰减特征图中的相应体素点之间的距离;
根据所述增强数据度量的两个体素的差异度为所述衰减特征图中的相应体素点在所述标尺上的投影之间的距离。
7.根据权利要求3至5中任一项所述的方法,其中,所述根据所述增强数据,确定所述被测对象的各个体素与第一基物质的差异度包括:
分别计算各个体素点在所述标尺上的投影到所述第一基物质点的距离;以及
将所述距离作为相应体素与所述第一基物质的差异度。
8.根据权利要求1所述的方法,其中,所述根据各个体素与第一基物质的差异度,生成用于标识所述被测对象的静脉血栓区域的图像包括:
确定所述各个体素与所述第一基物质的最大差异度;
对于每一个体素,根据该体素与所述第一基物质的差异度、所述最大差异度和预设的最大灰度值来确定该体素对应的灰度值;以及
根据各个体素对应的灰度值,生成用于标识所述被测对象的静脉血栓区域的图像,其中,每个体素对应于所述图像中的一个像素,所述静脉血栓区域为所述图像中的灰度值属于预设范围的区域。
9.根据权利要求8所述的方法,其中,所述根据各个体素对应的灰度值,生成用于标识所述被测对象的静脉血栓区域的图像包括:
根据各个体素对应的灰度值,确定各个体素对应的颜色值;以及
根据各个体素对应的颜色值,生成用于标识所述被测对象的静脉血栓区域的彩色图像,其中,每个体素对应于所述彩色图像中的一个像素,所述静脉血栓区域为所述彩色图像中的具有预设颜色的区域。
10.一种用于显示静脉血栓的装置,包括:
断层扫描单元,被配置为采集被测对象的双能量CT平扫数据,所述被测对象包括多个体素;
计算单元,被配置为:获取采集的所述双能量CT平扫数据;基于三物质分解算法,将所述双能量CT平扫数据变换到基于第一基物质和第二基物质构造的标尺上,得到增强数据,其中,根据所述增强数据度量的两个体素的差异度大于根据所述双能量CT平扫数据度量的两个体素的差异度;根据所述增强数据,确定所述被测对象的各个体素与第一基物质的差异度;根据各个体素与第一基物质的差异度,生成用于标识所述被测对象的静脉血栓区域的图像;以及
显示单元,被配置为显示所述图像。
11.根据权利要求10所述的装置,其中,所述双能量CT平扫数据包括所述被测对象的各个体素在第一射线能量、第二射线能量下的CT值。
12.根据权利要求10所述的装置,其中,所述三物质包括所述第一基物质、所述第二基物质、以及第三基物质;
所述计算单元进一步被配置为:
根据所述双能量CT平扫数据,生成被测对象的衰减特征图,所述衰减特征图包括分别对应于每一个体素的体素点、对应于第一基物质的第一基物质点、对应于第二基物质的第二基物质点和对应于第三基物质的第三基物质点其中,所述标尺为所述第一基物质点与所述第二基物质点的连线;以及
根据所述第三基物质点,将各个体素点投影至所述标尺上,以得到所述增强数据。
13.根据权利要求12所述的装置,其中,所述第一基物质包括软组织、血液中的任一种,所述第二基物质包括脂肪、水中的任一种,所述第三基物质包括碘、钙中的任一种。
14.根据权利要求12所述的装置,其中,所述衰减特征图的横轴表示第一射线能量下的CT值,纵轴表示第二射线能量下的CT值。
15.根据权利要求12至14中任一项所述的装置,其中,
根据所述双能量CT平扫数据度量的两个体素的差异度为所述衰减特征图中的相应体素点之间的距离;
根据所述增强数据度量的两个体素的差异度为所述衰减特征图中的相应体素点在所述标尺上的投影之间的距离。
16.根据权利要求12至14中任一项所述的装置,其中,所述计算单元进一步被配置为:
分别计算各个体素点在所述标尺上的投影到所述第一基物质点的距离;以及
将所述距离作为相应体素与所述第一基物质的差异度。
17.根据权利要求10所述的装置,其中,所述计算单元进一步被配置为:
确定所述各个体素与所述第一基物质的最大差异度;
对于每一个体素,根据该体素与所述第一基物质的差异度、所述最大差异度和预设的最大灰度值来确定该体素对应的灰度值;以及
根据各个体素对应的灰度值,生成用于标识所述被测对象的静脉血栓区域的图像,其中,每个体素对应于所述图像中的一个像素,所述静脉血栓区域为所述图像中的灰度值属于预设范围的区域。
18.根据权利要求17所述的装置,其中,所述计算单元进一步被配置为:
根据各个体素对应的灰度值,确定各个体素对应的颜色值;以及
根据各个体素对应的颜色值,生成用于标识所述被测对象的静脉血栓区域的彩色图像,其中,每个体素对应于所述彩色图像中的一个像素,所述静脉血栓区域为所述彩色图像中的具有预设颜色的区域。
19.一种计算机设备,包括:
存储器、处理器以及存储在所述存储器上的计算机程序,
其中,所述处理器被配置为执行所述计算机程序以实现权利要求1至9中任一项所述方法的步骤。
20.一种非暂态计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至9中任一项所述方法的步骤。
21.一种计算机程序产品,包括计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至9中任一项所述方法的步骤。
CN202110426162.1A 2021-04-20 2021-04-20 用于显示静脉血栓的方法、装置、计算机设备和介质 Pending CN113100803A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110426162.1A CN113100803A (zh) 2021-04-20 2021-04-20 用于显示静脉血栓的方法、装置、计算机设备和介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110426162.1A CN113100803A (zh) 2021-04-20 2021-04-20 用于显示静脉血栓的方法、装置、计算机设备和介质

Publications (1)

Publication Number Publication Date
CN113100803A true CN113100803A (zh) 2021-07-13

Family

ID=76718854

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110426162.1A Pending CN113100803A (zh) 2021-04-20 2021-04-20 用于显示静脉血栓的方法、装置、计算机设备和介质

Country Status (1)

Country Link
CN (1) CN113100803A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113610800A (zh) * 2021-08-05 2021-11-05 西门子数字医疗科技(上海)有限公司 用于评估侧支循环的装置、非诊断方法及电子设备

Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165217A (ja) * 2000-11-28 2002-06-07 Kddi Corp 3次元画像の階層符号化伝送方法および階層復号方法
US20070189443A1 (en) * 2004-11-19 2007-08-16 Walter Deborah J Detection of thrombi in ct using energy discrimination
CN101023875A (zh) * 2005-10-17 2007-08-29 西门子公司 在x射线计算机断层造影中产生断层造影显示的方法
CN101028199A (zh) * 2006-02-28 2007-09-05 西门子公司 借助多能量计算机断层造影确定体内物质浓度的方法和装置
US20080253508A1 (en) * 2007-04-12 2008-10-16 Bernhard Krauss Method for distinguishing between four materials in tomographic records of a dual-energy CT system
CN101601585A (zh) * 2009-07-02 2009-12-16 厦门强本科技有限公司 基于ct增强扫描技术的肝脏分段体积测量方法
DE102008045633A1 (de) * 2008-09-03 2010-03-04 Siemens Aktiengesellschaft Verfahren zur verbesserten Darstellung von Mehr-Energie-CT-Aufnahmen
JP2010068832A (ja) * 2008-09-16 2010-04-02 Hitachi Medical Corp X線ct装置
JP2010075443A (ja) * 2008-09-26 2010-04-08 Ge Medical Systems Global Technology Co Llc 断層像処理装置、x線ct装置およびプログラム
US20100135453A1 (en) * 2008-11-28 2010-06-03 Mendonca Paulo Ricardo Dos Santos Multi-material decomposition using dual energy computed tomography
US20100244830A1 (en) * 2009-03-26 2010-09-30 Christian Geppert Magnetic resonance method and device to differentiate among pixels representing a silicon-dominated substance, water-dominated tissue and fat-dominated tissue
JP2011244875A (ja) * 2010-05-24 2011-12-08 Ge Medical Systems Global Technology Co Llc 画像処理装置、画像表示装置およびプログラム並びにx線ct装置
WO2012083350A1 (en) * 2010-12-24 2012-06-28 Otton James Maxwell Coronary calcium measurement
JP2014138911A (ja) * 2014-05-09 2014-07-31 Asahi Roentgen Kogyo Kk X線ct撮影装置及びx線ct画像の表示方法
US20140236488A1 (en) * 2013-02-19 2014-08-21 Mindways Software, Inc. Computed Tomography Calibration Systems and Methods
CN104637061A (zh) * 2015-01-30 2015-05-20 中国科学院自动化研究所 一种二维三维医学图像配准方法
CN104700390A (zh) * 2013-12-09 2015-06-10 通用电气公司 双能ct造影剂增强扫描图像中的钙化部分识别方法
US20150279034A1 (en) * 2014-03-27 2015-10-01 Riverain Technologies Llc Suppression of vascular structures in images
US20160081643A1 (en) * 2013-05-24 2016-03-24 Hitachi Medical Corporation X-ray ct device and processing method
US20160100760A1 (en) * 2014-10-13 2016-04-14 Samsung Electronics Co., Ltd. Medical imaging apparatus and method of controlling the same
US20160180525A1 (en) * 2014-12-19 2016-06-23 Kabushiki Kaisha Toshiba Medical image data processing system and method
US20160242720A1 (en) * 2015-02-23 2016-08-25 Kabushiki Kaisha Toshiba X-ray ct apparatus and image processing device
CN106056644A (zh) * 2016-05-24 2016-10-26 深圳先进技术研究院 Ct扫描的数据处理方法及装置
CN106156506A (zh) * 2016-07-05 2016-11-23 青岛海信医疗设备股份有限公司 二维医学图像的组织器官伪彩显示方法及装置
CN106815813A (zh) * 2015-11-27 2017-06-09 西门子医疗有限公司 用于处理多能量计算机断层扫描图像数据集的方法和图像数据处理设备
CN107427276A (zh) * 2015-03-30 2017-12-01 株式会社日立制作所 图像生成装置、图像生成方法以及x射线ct装置
DE202016106070U1 (de) * 2016-10-28 2018-01-31 Carl Zeiss X-ray Microscopy, Inc. Röntgen-CT-System und Computerprogramm für die Bildrekonstruktion in einem solchen
CN107680078A (zh) * 2017-09-01 2018-02-09 沈阳东软医疗***有限公司 一种图像处理方法和装置
CN108460753A (zh) * 2018-01-03 2018-08-28 沈阳东软医疗***有限公司 双能量ct图像处理方法、装置以及设备
CN109298685A (zh) * 2017-07-25 2019-02-01 西门子(中国)有限公司 数字化工厂实现方法、数字化工厂实现***和数字化工厂
CN109303569A (zh) * 2018-09-21 2019-02-05 北京市神经外科研究所 一种利用双能谱ct成像对脑部动态血肿增长成像的方法
US20190192090A1 (en) * 2017-12-26 2019-06-27 Tsinghua University Decomposition method and apparatus based on basis material combination
CN110097607A (zh) * 2018-01-29 2019-08-06 西门子医疗保健有限责任公司 提供医学图像的方法、计算机断层扫描设备和程序产品
CN110428370A (zh) * 2019-07-01 2019-11-08 北京理工大学 一种利用偏心旋转提高锥形束spect成像分辨率的方法
CN110731788A (zh) * 2019-07-18 2020-01-31 天津大学 一种基于双能ct扫描仪对基物质进行快速分解的方法
US20200051246A1 (en) * 2016-10-28 2020-02-13 Koninklijke Philips N.V. Automatic ct detection and visualization of active bleeding and blood extravasation
CN112313666A (zh) * 2019-03-21 2021-02-02 因美纳有限公司 用于基于人工智能的测序的训练数据生成
US20210106292A1 (en) * 2019-10-11 2021-04-15 Hitachi, Ltd. Material decomposition apparatus, pcct apparatus, and material decomposition method

Patent Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165217A (ja) * 2000-11-28 2002-06-07 Kddi Corp 3次元画像の階層符号化伝送方法および階層復号方法
US20070189443A1 (en) * 2004-11-19 2007-08-16 Walter Deborah J Detection of thrombi in ct using energy discrimination
CN101023875A (zh) * 2005-10-17 2007-08-29 西门子公司 在x射线计算机断层造影中产生断层造影显示的方法
CN101028199A (zh) * 2006-02-28 2007-09-05 西门子公司 借助多能量计算机断层造影确定体内物质浓度的方法和装置
US20070217570A1 (en) * 2006-02-28 2007-09-20 Michael Grasruck Method and apparatus for determining the concentration of a substance in a body material by means of multi-energy computed tomography
US20080253508A1 (en) * 2007-04-12 2008-10-16 Bernhard Krauss Method for distinguishing between four materials in tomographic records of a dual-energy CT system
DE102008045633A1 (de) * 2008-09-03 2010-03-04 Siemens Aktiengesellschaft Verfahren zur verbesserten Darstellung von Mehr-Energie-CT-Aufnahmen
JP2010068832A (ja) * 2008-09-16 2010-04-02 Hitachi Medical Corp X線ct装置
JP2010075443A (ja) * 2008-09-26 2010-04-08 Ge Medical Systems Global Technology Co Llc 断層像処理装置、x線ct装置およびプログラム
US20100135453A1 (en) * 2008-11-28 2010-06-03 Mendonca Paulo Ricardo Dos Santos Multi-material decomposition using dual energy computed tomography
US20100244830A1 (en) * 2009-03-26 2010-09-30 Christian Geppert Magnetic resonance method and device to differentiate among pixels representing a silicon-dominated substance, water-dominated tissue and fat-dominated tissue
CN101601585A (zh) * 2009-07-02 2009-12-16 厦门强本科技有限公司 基于ct增强扫描技术的肝脏分段体积测量方法
JP2011244875A (ja) * 2010-05-24 2011-12-08 Ge Medical Systems Global Technology Co Llc 画像処理装置、画像表示装置およびプログラム並びにx線ct装置
WO2012083350A1 (en) * 2010-12-24 2012-06-28 Otton James Maxwell Coronary calcium measurement
US20140236488A1 (en) * 2013-02-19 2014-08-21 Mindways Software, Inc. Computed Tomography Calibration Systems and Methods
US20160081643A1 (en) * 2013-05-24 2016-03-24 Hitachi Medical Corporation X-ray ct device and processing method
CN104700390A (zh) * 2013-12-09 2015-06-10 通用电气公司 双能ct造影剂增强扫描图像中的钙化部分识别方法
US20150279034A1 (en) * 2014-03-27 2015-10-01 Riverain Technologies Llc Suppression of vascular structures in images
JP2014138911A (ja) * 2014-05-09 2014-07-31 Asahi Roentgen Kogyo Kk X線ct撮影装置及びx線ct画像の表示方法
US20160100760A1 (en) * 2014-10-13 2016-04-14 Samsung Electronics Co., Ltd. Medical imaging apparatus and method of controlling the same
US20160180525A1 (en) * 2014-12-19 2016-06-23 Kabushiki Kaisha Toshiba Medical image data processing system and method
CN104637061A (zh) * 2015-01-30 2015-05-20 中国科学院自动化研究所 一种二维三维医学图像配准方法
US20160242720A1 (en) * 2015-02-23 2016-08-25 Kabushiki Kaisha Toshiba X-ray ct apparatus and image processing device
CN107427276A (zh) * 2015-03-30 2017-12-01 株式会社日立制作所 图像生成装置、图像生成方法以及x射线ct装置
CN106815813A (zh) * 2015-11-27 2017-06-09 西门子医疗有限公司 用于处理多能量计算机断层扫描图像数据集的方法和图像数据处理设备
CN106056644A (zh) * 2016-05-24 2016-10-26 深圳先进技术研究院 Ct扫描的数据处理方法及装置
CN106156506A (zh) * 2016-07-05 2016-11-23 青岛海信医疗设备股份有限公司 二维医学图像的组织器官伪彩显示方法及装置
DE202016106070U1 (de) * 2016-10-28 2018-01-31 Carl Zeiss X-ray Microscopy, Inc. Röntgen-CT-System und Computerprogramm für die Bildrekonstruktion in einem solchen
US20200051246A1 (en) * 2016-10-28 2020-02-13 Koninklijke Philips N.V. Automatic ct detection and visualization of active bleeding and blood extravasation
CN109298685A (zh) * 2017-07-25 2019-02-01 西门子(中国)有限公司 数字化工厂实现方法、数字化工厂实现***和数字化工厂
CN107680078A (zh) * 2017-09-01 2018-02-09 沈阳东软医疗***有限公司 一种图像处理方法和装置
US20190192090A1 (en) * 2017-12-26 2019-06-27 Tsinghua University Decomposition method and apparatus based on basis material combination
CN108460753A (zh) * 2018-01-03 2018-08-28 沈阳东软医疗***有限公司 双能量ct图像处理方法、装置以及设备
CN110097607A (zh) * 2018-01-29 2019-08-06 西门子医疗保健有限责任公司 提供医学图像的方法、计算机断层扫描设备和程序产品
CN109303569A (zh) * 2018-09-21 2019-02-05 北京市神经外科研究所 一种利用双能谱ct成像对脑部动态血肿增长成像的方法
CN112313666A (zh) * 2019-03-21 2021-02-02 因美纳有限公司 用于基于人工智能的测序的训练数据生成
CN110428370A (zh) * 2019-07-01 2019-11-08 北京理工大学 一种利用偏心旋转提高锥形束spect成像分辨率的方法
CN110731788A (zh) * 2019-07-18 2020-01-31 天津大学 一种基于双能ct扫描仪对基物质进行快速分解的方法
US20210106292A1 (en) * 2019-10-11 2021-04-15 Hitachi, Ltd. Material decomposition apparatus, pcct apparatus, and material decomposition method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MENDONÇA PAULO R. S. 等: "Multi-material decomposition of spectral CT images", 《MEDICAL IMAGING 2010: PHYSICS OF MEDICAL IMAGING. SPIE》, vol. 7622, 22 March 2010 (2010-03-22), pages 633 - 641 *
杨帆 等: "CT双能量扫描模式在腹部应用的研究进展", 《放射学实践》, vol. 30, no. 4, 20 April 2015 (2015-04-20), pages 94 - 97 *
王俊 等: "双源CT虚拟平扫在小肠病变中的应用", 《中国临床医学影像杂志》, vol. 28, no. 4, 20 April 2017 (2017-04-20), pages 42 - 45 *
邓东 等: "采用双源CT双能量成像技术评价孤立性肺肿块的可行性分析", 《广西医科大学学报》, vol. 33, no. 1, 15 February 2016 (2016-02-15), pages 44 - 48 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113610800A (zh) * 2021-08-05 2021-11-05 西门子数字医疗科技(上海)有限公司 用于评估侧支循环的装置、非诊断方法及电子设备

Similar Documents

Publication Publication Date Title
US11620773B2 (en) Apparatus and method for visualizing digital breast tomosynthesis and other volumetric images
US9418451B2 (en) X-ray CT apparatus, substance identifying method, and image processing apparatus
US11257261B2 (en) Computed tomography visualization adjustment
US11615270B2 (en) Medical image processing apparatus, learning method, X-ray diagnostic apparatus, and medical image processing method
CN111598989B (zh) 一种图像渲染参数设置方法、装置、电子设备及存储介质
JP6746676B2 (ja) 画像処理装置、画像処理方法、及びプログラム
US9734574B2 (en) Image processor, treatment system, and image processing method
EP3203914B1 (en) Radiation dose applied to different anatomical stages
EP3082105B1 (en) Image processing apparatus, image processing system, image processing method, and program
JP7470770B2 (ja) デジタル胸部トモシンセシスおよび匿名化表示データ・エクスポートを可視化するための装置および方法
JP2016214857A (ja) 医用画像処理装置及び医用画像処理方法
JP4122314B2 (ja) 投影画像処理方法、投影画像処理プログラム、投影画像処理装置
Lau et al. Towards visual-search model observers for mass detection in breast tomosynthesis
US10433796B2 (en) Selecting transfer functions for displaying medical images
CN113100803A (zh) 用于显示静脉血栓的方法、装置、计算机设备和介质
Pelc et al. Volume Rendering of Tendon—Bone Relationships Using Unenhanced CT
Baum et al. Evaluation of novel genetic algorithm generated schemes for positron emission tomography (PET)/magnetic resonance imaging (MRI) image fusion
Imai et al. Analysis of streak artefacts on CT images using statistics of extremes
CN112365959B (zh) 修改三维图像的标注的方法及装置
CN113764072B (zh) 医疗影像的重建方法、装置、设备及存储介质
JP2006230904A (ja) 画像処理装置及び画像処理方法
CN113361632A (zh) 图像中确定生物组织类别方法、装置、计算机设备和介质
US20240221248A1 (en) Methods and systems for spectral imaging
US11576643B2 (en) Imaging planning apparatus and imaging planning method
CN113764072A (zh) 医疗影像的重建方法、装置、设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination