CN109303569A - 一种利用双能谱ct成像对脑部动态血肿增长成像的方法 - Google Patents

一种利用双能谱ct成像对脑部动态血肿增长成像的方法 Download PDF

Info

Publication number
CN109303569A
CN109303569A CN201811110779.7A CN201811110779A CN109303569A CN 109303569 A CN109303569 A CN 109303569A CN 201811110779 A CN201811110779 A CN 201811110779A CN 109303569 A CN109303569 A CN 109303569A
Authority
CN
China
Prior art keywords
hemotoncus
substratess
image data
density
brain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811110779.7A
Other languages
English (en)
Inventor
孙胜军
李莹莹
傅璠
刘丽萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Neurosurgical Institute
Original Assignee
Beijing Neurosurgical Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Neurosurgical Institute filed Critical Beijing Neurosurgical Institute
Priority to CN201811110779.7A priority Critical patent/CN109303569A/zh
Publication of CN109303569A publication Critical patent/CN109303569A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/504Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明公开了一种利用双能谱CT成像对脑部动态血肿增长成像的方法,选取脑部需要扫描的区域,脑部检测区域施加非离子点对比剂,对该区域进行CT平扫和CTA检查,确定脑部目标检测物区域。采用GSI扫描模式,获取上述区域高低能量的混合能量图像数据,将混合能量图像数据转变为基物质对的单能量图像数据;利用基物质分解模型对上述单能量图像数据进行重构;利用基物质分析软件对图像数据进行分析、显示,得到脑部目标检测物的位置、大小、形态、密度等信息。本发明采用能谱CT的基物质分离技术,实现了混合能量向单能量的转变,可以有效去除血肿密度对CTA原始图像“点征”观察的影响,解决CTA混合能量图预测血肿增长假阴性率过高的问题。

Description

一种利用双能谱CT成像对脑部动态血肿增长成像的方法
技术领域
本发明涉及一种利用双能谱CT对脑部动态血肿增长成像的方法。
背景技术
脑出血约占脑卒中病例的10%-30%,其致死率及致残率高。急性期脑出血形成血肿在发病之初是不稳定的,在凝血块未将出血部位阻塞之前,血肿会不断增长。理论上,只有对存在活动性出血的脑出血患者才需进行止血治疗,但由于目前检查技术的限制,无法早期筛选出活动性出血的患者,因而不能为临床选择性止血治疗提供依据。
预测急性脑出血血肿增长的影像学检查目前主要有CT平扫、单期相CTA、动态CTA、CTP的方法。CT平扫用于脑出血患者的诊断和筛查。研究发现,密度不均匀、形态不规则及出现液平线的血肿可初步预测血肿增长,近年来提出的“黑洞征”和“混杂征”提高了诊断的特异性,但其只能提供血肿扩大的倾向,在临床应用中缺乏可靠性。CTA原始图像中,血肿内非血管走行区点状强化灶被定义为“点征阳性”,其病理基础为血管局部破裂出血所致碘对比剂外渗,血肿内“点征”阳性是预测急性脑出血(发病6小时以内)血肿增长的重要影像学标志。单期相CTA的原始图像是最早观察血肿内“点征”的方法,已经证实CTA “点征”与脑内血肿增长进展具有相关性,具有 “点征”的病人大都临床预后差。但由于其图像为混合能量图,观察者对于等于或低于血肿密度的血肿内强化灶很难判断其是否有碘对比剂渗漏,造成假阴性率过高。为了观察“点征”的动态变化情况,近年来,动态CTA及CTP相继用于急性脑出血血肿内“点征”的研究。其优点为可动态观察“点征”的强化过程,预测能力高于单期相CTA。但是,动态CTA及CTP检查均增加患者X线辐射剂量,且仍存在对于等于或低于血肿密度的血肿内强化灶很难判断是否有碘对比剂渗漏的问题。同时,由于CTP扫描厚度为5-12mm,对小的强化灶仍然识别不清楚。因此,目前迫切需要提高预测急性期脑出血血肿增长的准确性。
双能谱CT于二十世纪七十年代被提出。随着X射线探测器和成像***的发展,双能CT得到了广泛的应用。近年来,随着探测器等相关技术的发展以及CT成像的进一步需求,使用双能或者多能(即,使用≥2个能谱的X射线穿过物体形成的信号进行成像,通常称为多个能窗或者能量通道的X光)的能谱CT得到广泛的关注,并在实际应用中繁荣。相比于传统的单能CT,能谱CT不仅没有谱硬化和对比度不足等缺点,而且能够区分材料,尤其是在某些能量下具有相同吸收系数的材料。这些优点使能谱CT有许多临床应用如腹部成像和肺疾病检测等。能谱CT相对于传统CT能够有效地降低金属伪影,提高图像的对比度,并能够提供物体成分信息。从而,能谱CT在临床医学诊断、无损检测以及安全检查等领域具有重要意义,并获得越来越广泛的应用。
发明内容
为解决现有技术中存在的上述缺陷,本发明的目的在于提供一种利用双能谱CT对脑部动态血肿增长成像的方法。该方法中,能谱成像实现了混合能量向单能量的转变,通过GSI(gemstone spectral image)扫描,可以提供常规混合能量图、碘基图和水基图。在碘基图中,碘对比剂表现为高密度,血肿和水表现为低密度,可以有效去除血肿密度对血肿内强化灶的掩盖及干扰,达到早期发现对比剂渗漏的技术效果,提高血肿增长图像显示的准确性。
本发明是通过下述技术方案来实现的。
一种利用双能谱CT对脑部动态血肿增长成像的方法,包括以下步骤:
步骤1,选取被测物(脑部)需要扫描的区域,对该区域施加非离子点对比剂,进行CT平扫和CTA检查,确定目标检测物区域;其中,CT平扫参数为幕上层厚9mm,幕下4.5mm,120kv,310mA,FOV 24cm,能谱CT为140KVp与80KVp在0.5ms内切换,管电流为600mA,转速0.6s/rot;
步骤2,采用GSI扫描模式,获取上述区域在低剂量射线下的能谱CT图像的低能量CT投影数据和高能量CT投影数据,形成混合能量图像数据并存储;
步骤3,对上述数据进行数据校正、去噪,根据能谱特性曲线及光谱的标准化响应,进行投影空间分解,用于产生选择性基物质图像或选择性能量图像,根据基物质的物质密度、线性衰减系数,将混合能量图像数据转变为基物质对的单能量图像数据;其中,基物质对可以是水-碘、水-铝等基物质对;
步骤4,基于物质衰减系数进行双能量物质分离,利用基物质分解模型对上述单能量图像数据进行重构;其中,对图像进行重构可以采用FBP、BFP等重构方法
步骤5,利用基物质分析软件对步骤4得到的图像数据进行分析、显示,对比剂表现为高密度,目标检测物表现为低密度,在基物质图中有对比剂渗出,在基物质图中都显示为高密度,从而得到目标检测物中有无对比剂渗出及其位置、大小、形态、密度、碘含量等信息。
本发明通过采用能谱CT的基物质分离技术,实现了混合能量向单能量的转变,混合能量的图像质量优于相同剂量条件下单能量数据产生的图像质量,而扫描剂量仅是单能量的一半。低能量能够突显碘的增强效果,但会增加图像噪声,高能量会减低碘的增强效果,但会减低图像噪声。通过高低能量的混合图像,会产生由于单纯高或低能量的图像质量。
本发明通过GSI(gemstone spectral image)扫描,在离体组织血肿的检测中,在碘基图中碘对比剂表现为高密度,血肿表现为低密度,可以有效去除血肿密度对CTA原始图像“点征”观察的影响,解决CTA混合能量图预测血肿增长假阴性率过高的问题,可以早期发现碘对比剂渗漏,即“碘征”提高预测急性期脑出血血肿增长的准确性。
附图说明
图1是利用双能谱CT对脑部动态血肿增长成像的方法的框架图。
具体实施方式
检测对象为脑部组织中的血肿。
包括以下步骤:
步骤1,选取被测物需要扫描的区域,对该区域施加含碘的非离子点对比剂,如碘海醇(300mgI/ml)等;使用美国GE公司Discovery 750宝石能谱CT检查机,对该区域进行CT平扫和CTA检查,确定目标检测物区域;CT平扫参数为幕上层厚9mm,幕下4.5mm,120kv,310mA,FOV (field of view)24cm,能谱CT为140KVp与80KVp在0.5ms内切换,管电流为600mA,转速0.6s/rot。
步骤2,采用GSI扫描模式,获取上述区域在低剂量射线下的能谱CT图像的低能量CT投影数据和高能量CT投影数据,形成混合能量图像数据,并存储;CT平扫参数为小脑幕上层厚9mm,幕下4.5mm,120kv,310mA,FOV (field of view)24cm。
步骤4,对上述双能数据进行数据校正、去噪,根据能谱特性曲线及光谱的标准化响应,进行投影空间分解,用于产生选择性基物质图像或选择性能量图像,根据基物质的物质密度、线性衰减系数,将混合能量图像数据转变为基物质对(水和碘)的单能量图像数据;
步骤5,基于物质衰减系数进行双能量物质分离,利用基物质分解模型对上述单能量图像数据利用FBP方法进行重构;
步骤6,利用基物质分析软件对步骤5得到的图像数据进行分析、显示,常规CT增强扫描所看到的图像是混合能量图像,因此血肿内强化灶的密度等于或小于血肿的CT值时,观察者很难判断是否有碘对比剂经破损的血管渗漏到血肿内;利用能谱CT中的基物质分析,由于血肿本身在物质分离图像中显示为低密度,在碘基图中只要血肿内有碘对比剂渗出,无论其密度是高于、等于、或低于血肿的密度,都可以在碘基图上显示为高密度,得到血肿在脑部组织中的位置、血肿大小、形态是否规则、密度是否均匀、周围是否有水肿等信息,使观察征象简单明了,易于准确发现脑部组织中的血肿情况。
由于宝石双能谱CT的基物质分离技术可将血肿与碘对比剂分离开,排除血肿对“点征”的影响,同时可对血肿内及“点征”内碘对比剂的渗漏量进行定量测定,从而推断急性脑出血血肿内有无进一步活动性出血,预测血肿有无有意义的血肿增长,因此,本发明定性分析CT平扫的血肿,形态是否规则、密度是否均匀、CT的特殊影像征象(“黑洞征”、“混杂征”等),初步判断血肿扩大的倾向。对CTA检查血肿内“点征”阳性的患者,定性分析其点征的位置、数量及强化形态,评价其与血肿增长的关联。利用能谱CT碘基图观察增强扫描后CTA原始图像中有无对比剂外渗,定量测定血肿内“点征”的碘含量及血肿内碘含量。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (1)

1.一种利用双能谱CT成像对脑部动态血肿增长成像的方法,其特征在于,该方法包括以下步骤:
步骤1,选取脑部需要扫描的区域,对该区域施加非离子点对比剂,进行CT平扫和CTA检查,确定目标检测物区域;其中,CT平扫参数为幕上层厚9mm,幕下4.5mm,120kv,310mA,FOV24cm,能谱CT为140KVp与80KVp在0.5ms内切换,管电流为600mA,转速0.6s/rot;
步骤2,采用GSI扫描模式,获取上述区域在低剂量射线下的能谱CT图像的低能量CT投影数据和高能量CT投影数据,形成混合能量图像数据并存储;
步骤3,对上述数据进行数据校正、去噪,根据能谱特性曲线及光谱的标准化响应,进行投影空间分解,用于产生选择性基物质图像或选择性能量图像,根据基物质的物质密度、线性衰减系数,将混合能量图像数据转变为基物质对的单能量图像数据;其中,基物质对可以是水-碘、水-铝等基物质对;
步骤4,基于物质衰减系数进行双能量物质分离,利用基物质分解模型对上述单能量图像数据进行重构;其中,对图像进行重构可以采用FBP、BFP等重构方法
步骤5,利用基物质分析软件对步骤4得到的图像数据进行分析、显示,对比剂表现为高密度,目标检测物表现为低密度,在基物质图中有对比剂渗出,在基物质图中都显示为高密度,从而得到目标检测物中有无对比剂渗出及其位置、大小、形态、密度、碘含量等信息。
CN201811110779.7A 2018-09-21 2018-09-21 一种利用双能谱ct成像对脑部动态血肿增长成像的方法 Pending CN109303569A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811110779.7A CN109303569A (zh) 2018-09-21 2018-09-21 一种利用双能谱ct成像对脑部动态血肿增长成像的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811110779.7A CN109303569A (zh) 2018-09-21 2018-09-21 一种利用双能谱ct成像对脑部动态血肿增长成像的方法

Publications (1)

Publication Number Publication Date
CN109303569A true CN109303569A (zh) 2019-02-05

Family

ID=65224966

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811110779.7A Pending CN109303569A (zh) 2018-09-21 2018-09-21 一种利用双能谱ct成像对脑部动态血肿增长成像的方法

Country Status (1)

Country Link
CN (1) CN109303569A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112205993A (zh) * 2019-07-09 2021-01-12 通用电气精准医疗有限责任公司 用于处理利用多能量计算机断层摄影成像获取的数据的***和方法
CN113100803A (zh) * 2021-04-20 2021-07-13 西门子数字医疗科技(上海)有限公司 用于显示静脉血栓的方法、装置、计算机设备和介质
CN113796878A (zh) * 2021-09-10 2021-12-17 高阳 基于虚拟解剖的能谱技术在溺死案件中的应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112205993A (zh) * 2019-07-09 2021-01-12 通用电气精准医疗有限责任公司 用于处理利用多能量计算机断层摄影成像获取的数据的***和方法
CN113100803A (zh) * 2021-04-20 2021-07-13 西门子数字医疗科技(上海)有限公司 用于显示静脉血栓的方法、装置、计算机设备和介质
CN113796878A (zh) * 2021-09-10 2021-12-17 高阳 基于虚拟解剖的能谱技术在溺死案件中的应用
CN113796878B (zh) * 2021-09-10 2024-04-19 高阳 基于虚拟解剖的能谱技术在溺死案件中的应用

Similar Documents

Publication Publication Date Title
Walsh et al. Imaging intact human organs with local resolution of cellular structures using hierarchical phase-contrast tomography
Koller et al. Implementation and benchmarking of a novel analytical framework to clinically evaluate tumor-specific fluorescent tracers
Saccomano et al. Synchrotron inline phase contrast µCT enables detailed virtual histology of embedded soft-tissue samples with and without staining
Schulz et al. High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast
Particelli et al. A comparison between micro‐CT and histology for the evaluation of cortical bone: effect of polymethylmethacrylate embedding on structural parameters
Schön et al. Imaging glioma biology: spatial comparison of amino acid PET, amide proton transfer, and perfusion-weighted MRI in newly diagnosed gliomas
Yang et al. Perfusion computed tomography evaluation of angiogenesis in liver cancer
US20140050378A1 (en) System and method for detecting materials or disease states using multi-energy computed tomography
Jain et al. Full-field optical coherence tomography for the analysis of fresh unstained human lobectomy specimens
JP2004174263A (ja) 気道測定のための方法及びシステム
Bickelhaupt et al. On a fractional order calculus model in diffusion weighted breast imaging to differentiate between malignant and benign breast lesions detected on X-ray screening mammography
Arfelli et al. A Gaussian extension for diffraction enhanced imaging
CN109303569A (zh) 一种利用双能谱ct成像对脑部动态血肿增长成像的方法
Wanek et al. Fundamentals of paleoimaging techniques: bridging the gap between physicists and paleopathologists
Bidola et al. A step towards valid detection and quantification of lung cancer volume in experimental mice with contrast agent-based X-ray microtomography
Kavkova et al. Contrast enhanced X-ray computed tomography imaging of amyloid plaques in Alzheimer disease rat model on lab based micro CT system
US20060173279A1 (en) Method for implementing a medical imaging examination procedure
CN110720940A (zh) 一种模体及其在ct检测***中的应用
Mannas et al. Stimulated Raman histology, a novel method to allow for rapid pathologic examination of unprocessed, fresh prostate biopsies
Zhang et al. Suppl 1: Micro Soft Tissues Visualization Based on X-Ray Phase-Contrast Imaging
CN109709127A (zh) 低散射x射线荧光ct成像方法
Connor et al. Diffraction enhanced imaging of a rat model of gastric acid aspiration pneumonitis
Jian et al. Visualization of microvasculature and thrombi by X-ray phase-contrast computed tomography in hepatocellular carcinoma
Tajbakhsh et al. 3D virtual histopathology by phase-contrast X-ray micro-CT for follicular thyroid neoplasms
CN109211948A (zh) 一种利用双能谱ct成像对目标检测物进行形态检测的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190205

RJ01 Rejection of invention patent application after publication