CN112951929B - 太阳能电池电极及其制备方法、太阳能电池 - Google Patents

太阳能电池电极及其制备方法、太阳能电池 Download PDF

Info

Publication number
CN112951929B
CN112951929B CN202110097502.0A CN202110097502A CN112951929B CN 112951929 B CN112951929 B CN 112951929B CN 202110097502 A CN202110097502 A CN 202110097502A CN 112951929 B CN112951929 B CN 112951929B
Authority
CN
China
Prior art keywords
solar cell
dimensional material
electrode
cell electrode
material solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110097502.0A
Other languages
English (en)
Other versions
CN112951929A (zh
Inventor
吴志涵
王永谦
林纲正
陈刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Aiko Solar Energy Technology Co Ltd
Guangdong Aiko Technology Co Ltd
Tianjin Aiko Solar Energy Technology Co Ltd
Original Assignee
Zhejiang Aiko Solar Energy Technology Co Ltd
Guangdong Aiko Technology Co Ltd
Tianjin Aiko Solar Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Aiko Solar Energy Technology Co Ltd, Guangdong Aiko Technology Co Ltd, Tianjin Aiko Solar Energy Technology Co Ltd filed Critical Zhejiang Aiko Solar Energy Technology Co Ltd
Priority to CN202110097502.0A priority Critical patent/CN112951929B/zh
Publication of CN112951929A publication Critical patent/CN112951929A/zh
Application granted granted Critical
Publication of CN112951929B publication Critical patent/CN112951929B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic System, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

本发明公开了一种太阳能电池电极的制备方法,其包括:在硅片上待形成电极的区域施加Ca2N二维材料溶液,然后固化,即得到太阳能电池电极;其中,所述Ca2N二维材料溶液为Ca2N二维材料与有机溶剂的混合溶液,所述Ca2N二维材料由Ca3N2经高温处理制得,或所述Ca2N二维材料由Ca3N2和Ca的混合物经高温处理制得。相应的,本发明还公开了一种太阳能电池电极和一种太阳能电池。实施本发明,可减少太阳能电池电极遮光面积,提升太阳能电池转换效率。

Description

太阳能电池电极及其制备方法、太阳能电池
技术领域
本发明涉及晶体硅太阳能电池技术领域,尤其涉及一种太阳能电池电极的制备方法、太阳能电极及太阳能电池。
背景技术
太阳能电池电极主要起到收集电流的作用,电极材料本身的电阻率等性质对太阳能电池的光生电的引出有很大的影响。同时,由于电极印刷在受光面上,会减少太阳能电池受光面;因此,太阳能电池电极是决定太阳能电池转换效率的重要因素之一。
现有的电极材料多是银电极浆料,其经丝网印刷,烧结后得到太阳能电池电极。然而,由于其烧结温度高,限制了其在一些先进电池(如HJT电池)中的应用。现有的解决方法一般有三种:一种是降低银浆的烧结温度,仍然采用丝网印刷,烧结的工艺制备;另一种是将带电极图形研磨的电极模具覆盖在硅片上,然后真空蒸镀铜金属,得到电极;还有一种是采用含有铜金属的盐溶液在电池片上进行选择性沉积铜电极。这些方法要么难以有效降低烧成对太阳能电池结构造成的损伤,要么制备工艺复杂,成本偏高。此外,上述电极均不透明,会降低太阳能电池表面受光面积,降低太阳能电池转换效率。
发明内容
本发明所要解决的技术问题在于,提供一种太阳能电池电极的制备方法,其制备成本低,且制备得到的太阳能电池电极为透明状,可有效提升太阳能电池的转换效率。
本发明还要解决的技术问题在于,提供一种太阳能电池电极。
本发明还要解决的技术问题在于,提供一种太阳能电池。
为了解决上述技术问题,本发明提供了一种太阳能电池电极的制备方法,其包括:在硅片上待形成电极的区域施加Ca2N二维材料溶液,然后固化,即得到太阳能电池电极;
其中,所述Ca2N二维材料溶液为Ca2N二维材料与有机溶剂的混合溶液;
所述Ca2N二维材料由Ca3N2经高温处理制得,或
所述Ca2N二维材料由Ca3N2和Ca的混合物经高温处理制得。
作为上述技术方案的改进,包括:
(1)将模具加载至硅片上,所述模具包括密封板和镂空区,所述镂空区与所述硅片上待形成电极的区域对应;
(2)将Ca2N二维材料溶液注入所述镂空区中;
(3)将步骤(2)得到的硅片冷冻干燥,然后去除模具,即得到太阳能电池电极成品。
作为上述技术方案的改进,所述有机溶剂为碳酸二甲酯或碳酸丙烯酯,所述Ca2N二维材料溶液中Ca2N的浓度为0.1~5g/L。
作为上述技术方案的改进,所述Ca2N二维材料溶液的制备方法为:
(1)将Ca3N2粉和钙粉按照摩尔比为1:(1~1.5)混合均匀,得到混合物;
(2)将所述混合物采用0.5~0.7GPa的压力压制;
(3)将压制后的混合物封装在真空容器中,并进行热处理,即得到Ca2N二维材料;
(4)将Ca2N二维材料分散至有机溶剂中,即得到Ca2N二维材料溶液成品;
其中,热处理温度为1050~1200℃;热处理时间为30~50h。
作为上述技术方案的改进,步骤(3)中,先将压制后的混合物卷入钼箔中,并置入真空的安瓿中,然后在管式炉中进行高温处理。
作为上述技术方案的改进,步骤(4)中,将Ca2N二维材料与碳酸二甲酯混合,并超声处理80~100min,即得到Ca2N二维材料溶液成品。
作为上述技术方案的改进,所述模具由聚偏氟乙烯、聚四氟乙烯或ABS制成。
相应的,本发明还公开了一种太阳能电池电极,其由上述的太阳能电池电极的制备方法制备而得。
相应的,本发明还公开了一种太阳能电池,其包括上述的太阳能电池电极。
作为上述技术方案的改进,所述太阳能电池为HJT电池。
实施本发明,具有如下有益效果:
1.本发明中的太阳能电池电极的制备方法,采用Ca2N二维材料溶液固化得到电极,由于Ca2N二维材料透明,不遮挡受光面,提升了太阳能电池的转换效率。同时Ca2N二维材料具有良好的导电性能,可有效降低光生电的传输损耗,进一步提升转换效率。
2.本发明中的太阳能电池电极的制备方法,采用冷冻干燥工艺制备而得,其操作温度低,对太阳能电池电极结构不会造成损伤。同时其整体工艺简单,容易操作,经济环保,适合大范围生产。
3.本发明中的太阳能电池应用与HJT电池时,不仅可有效降低高温对非晶硅薄膜造成的损伤,同时由于对硅片的强度要求低,故可采用更薄的硅片,降低了生产成本,提升了HJT电池的转换效率。
附图说明
图1是本发明一实施例中太阳能电池电极制备方法的流程图;
图2是本发明一实施例中模具的俯视图;
图3是本发明一实施例中模具的主视图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
本发明提供一种太阳能电池电极的制备方法,其包括:在硅片上待形成电极的区域施加Ca2N二维材料溶液,然后固化,即得到太阳能电池电极;
具体的,参见图1,其包括:
S1:将模具加载至硅片上;
其中,可根据太阳能电池的类型,在硅片表面形成相应的钝化膜\异质结膜层和/或减反膜,然后将模具加载至相应的膜层上。示例性的,当太阳能电池为PERC电池时,应在硅片正面形成SiNx减反膜,在硅片背面形成AlOx膜、SiOx膜和SiNx膜;当太阳能电池为HJT电池时,应在硅片正面形成i型非晶硅膜、p型非晶硅膜、TCO膜,在硅片背面形成i型非晶硅膜、n型非晶硅膜、TCO膜。
参见图2、图3,模具1包括密封板11和镂空区12,其中,镂空区12与硅片上待形成电极的区域相对应。镂空区12的高度为0.5~2mm,示例性的如0.5mm、0.8mm、1mm、1.5mm,但不限于此。镂空区12的宽度、长度可根据太阳能电池电极的形状而定,示例性的如20~200μm,但不限于此。
具体的,模具1的形状与硅片的形状相同,其材质为聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)或ABS,但不限于此。优选的,其材质为PVDF。
S2:将Ca2N二维材料溶液注入镂空区中;
其中,Ca2N二维材料可通过Ca3N2高温处理制得;也可通过Ca3N2和钙的混合物高温处理制得。优选的,采用Ca3N2和钙粉为原料制备Ca2N二维材料,这种方法转化率高,且二维材料的稳定性更高,片层堆垛结构更优,有利于提升太阳能电池的转换效率。
具体的,Ca2N二维材料溶液的制备方法包括:
(1)将Ca3N2粉和钙粉按照摩尔比为1:(1~1.5)混合均匀,得到混合物;
其中,Ca3N2与Ca的摩尔比为1:(1~1.5),示例性的为1:1,1:1.2,1:1.3,但不限于此。优选的,Ca3N2与Ca的摩尔比为1:(1~1.5),通过控制钙粉少量过量,可使得制备得到的产品中残留少量Ca,进而有效阻止Ca2N二维材料的水解,提升其稳定性。Ca3N2粉和钙粉的粒径≤50μm,以实现两者的充分混合,提升Ca2N的得率。
(2)将所述混合物采用0.5~0.7GPa的压力压制;
具体的,采用液压机将混合物压制,压制压力为0.5~0.7GPa,示例性的为0.52GPa、0.55GPa、0.63GPa、0.68GPa,但不限于此。优选的,压制压力为0.55~0.6GPa。
(3)将压制后的混合物封装在真空容器中,并进行热处理,即得到Ca2N二维材料;
具体的,先将压制后的混合物卷入钼箔、金箔、铂箔或铌箔中,然后置入真空的安瓿中;然后在管式炉(惰性气体气氛保护)中进行高温热处理,热处理后冷却至室温,即得到块状Ca2N材料。
其中,热处理的温度为1050~1200℃,当热处理温度<1050℃时,得到的Ca2N二维材料纯度低,导电性能差。优选的,热处理温度为1050~1120℃,示例性的为1080℃、1100℃、1110℃,但不限于此。
(4)将Ca2N二维材料分散至有机溶剂中,即得到Ca2N二维材料溶液成品;
其中,有机溶剂可为碳酸丙烯酯、碳酸二甲酯、甲苯,但不限于此。优选的,有机溶剂选用碳酸二甲酯,其熔点较高,且绿色环保。
具体的,将Ca2N二维材料与碳酸二甲酯混合,并超声处理80~100min,即得到Ca2N二维材料溶液成品。
具体的,Ca2N二维材料溶液中Ca2N的浓度为0.1~5g/L,示例性的为0.2g/L、0.5g/L、1g/L、1.5g/L、2.2g/L、3.5g/L、4.5g/L,但不限于此。优选的,其浓度为0.2~1g/L。
S3:将步骤S2得到的硅片冷冻干燥,然后去除模具,即得到太阳能电池电极成品。
相应的,本发明还公开了一种太阳能电池电极,其采用上述的制备方法制备而得。
相应的,本发明还公开了一种太阳能电池,其采用上述的太阳能电池电极。具体的,本发明中的太阳能电池电极可应用在各种类型的太阳能电池上,如PERC电池、IBC电池、HJT电池、Topcon电池,但不限于此。优选的,本发明中的太阳能电池电极应用在HJT电池上,其可有效减薄HJT电池硅片的厚度,且由于操作温度较低,减少对于非晶硅膜层的损伤,提升转换效率。
下面以具体实施例对本发明进行说明:
实施例1Ca2N二维材料溶液的制备
本实施例提供一种Ca2N二维材料溶液的制备方法,具体包括:
(1)将Ca3N2粉(D99=20μm)和钙粉(D99=15μm)按照摩尔比为1:1.3混合均匀,得到混合物;
(2)将所述混合物采用0.56GPa的压力压制;
(3)将压制后的混合物封装在铂箔中,然后在1150℃热处理30h,即得到Ca2N二维材料;
(4)将10mgCa2N二维材料分散至20mL的碳酸丙烯酯中,即得到Ca2N二维材料溶液成品。
实施例2
本实施例提供一种Ca2N二维材料溶液的制备方法,具体包括:
(1)将Ca3N2粉(D99=20μm)和钙粉(D99=15μm)按照摩尔比为0.8:1混合均匀,得到混合物;
(2)将所述混合物采用0.56GPa的压力压制;
(3)将压制后的混合物封装在铂箔中,然后在1150℃热处理30h,即得到Ca2N二维材料;
(4)将10mg Ca2N二维材料分散至20mL的碳酸二甲酯中,即得到Ca2N二维材料溶液成品。
实施例3
本实施例提供一种HJT电池,其制备方法如下:
(1)提供N型单晶硅片,并制绒;
(2)在硅片正面依次沉积本征非晶硅层和n型非晶硅层;
(3)在硅片背面依次沉积本征非晶硅层和p型非晶硅层;
(4)在硅片正面和背面沉积TCO层;
(5)制备正面电极,具体的,先将用于正面电极的模具(pvdf材质,高1mm,210mm×210mm,镂空区宽度为100μm)放置到正面TCO上,然后将实施例1制备得到的Ca2N二维材料溶液;然后在-25℃冷冻干燥,最后去除模具;
(6)制备背面电极,具体的,先将用于背面电极的模具(pvdf材质,高1mm,210mm×210mm,镂空区宽度为100μm)放置到背面TCO上,然后将实施例1制备得到的Ca2N二维材料溶液;然后在-25℃冷冻干燥,最后去除模具;即得到HJT电池成品。
实施例4
本实施例提供一种HJT电池,其制备方法如下:
(1)提供N型单晶硅片,并制绒;
(2)在硅片正面依次沉积本征非晶硅层和n型非晶硅层;
(3)在硅片背面依次沉积本征非晶硅层和p型非晶硅层;
(4)在硅片正面和背面沉积TCO层;
(5)制备正面电极,具体的,先将用于正面电极的模具(pvdf材质,高1mm,210mm×210mm,镂空区宽度为100μm)放置到正面TCO上,然后将实施例2制备得到的Ca2N二维材料溶液;然后在-25℃冷冻干燥,最后去除模具;
(6)制备背面电极,具体的,先将用于背面电极的模具(pvdf材质,高1mm,210mm×210mm,镂空区宽度为100μm)放置到背面TCO上,然后将实施例2制备得到的Ca2N二维材料溶液;然后在-25℃冷冻干燥,最后去除模具;即得到HJT电池成品。
将常规HJT电池(低温银浆电极)、实施例3、实施例4得到的HJT电池做测试,结果如下:
J<sub>sc</sub>(mA/cm<sup>2</sup>) V<sub>oc</sub>(mV) FF/% Eff(%)
常规HJT电池 41.6 710.6 82.4 24.4
实施例3 42.3 718.3 83.6 25.2
实施例4 42.4 720.5 83.2 25.5
由上表可以看出,本发明制备的太阳能电池电极可将HJT电池的转换效率提高至25.2%以上。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (9)

1.一种太阳能电池电极的制备方法,其特征在于,包括:
(1)将模具加载至硅片上,所述模具包括密封板和镂空区,所述镂空区与所述硅片上待形成电极的区域对应;
(2)将Ca2N二维材料溶液注入所述镂空区中;
(3)将步骤(2)得到的硅片冷冻干燥,然后去除模具,即得到太阳能电池电极成品;
其中,所述Ca2N二维材料溶液为Ca2N二维材料与有机溶剂的混合溶液;
所述Ca2N二维材料由Ca3N2经高温处理制得,或
所述Ca2N二维材料由Ca3N2和Ca的混合物经高温处理制得。
2.如权利要求1所述的太阳能电池电极的制备方法,其特征在于,所述有机溶剂为碳酸二甲酯或碳酸丙烯酯,所述Ca2N二维材料溶液中Ca2N的浓度为0.1~5g/L。
3.如权利要求1所述的太阳能电池电极的制备方法,其特征在于,所述Ca2N二维材料溶液的制备方法为:
(1)将Ca3N2粉和钙粉按照摩尔比为1:(1~1.5)混合均匀,得到混合物;
(2)将所述混合物采用0.5~0.7GPa的压力压制;
(3)将压制后的混合物封装在真空容器中,并进行热处理,即得到Ca2N二维材料;
(4)将Ca2N二维材料分散至有机溶剂中,即得到Ca2N二维材料溶液成品;
其中,热处理温度为1050~1200℃;热处理时间为30~50h。
4.如权利要求3所述的太阳能电池电极的制备方法,其特征在于,步骤(3)中,先将压制后的混合物卷入钼箔中,并置入真空的安瓿中,然后在管式炉中进行高温处理。
5.如权利要求3所述的太阳能电池电极的制备方法,其特征在于,步骤(4)中,将Ca2N二维材料与碳酸二甲酯混合,并超声处理80~100min,即得到Ca2N二维材料溶液成品。
6.如权利要求1所述的太阳能电池电极的制备方法,其特征在于,所述模具由聚偏氟乙烯、聚四氟乙烯或ABS制成。
7.一种太阳能电池电极,其特征在于,其由权利要求1~6任一项所述的太阳能电池电极的制备方法制备而得。
8.一种太阳能电池,其特征在于,其包括如权利要求7所述的太阳能电池电极。
9.如权利要求8所述的太阳能电池,其特征在于,所述太阳能电池为HJT电池。
CN202110097502.0A 2021-01-25 2021-01-25 太阳能电池电极及其制备方法、太阳能电池 Active CN112951929B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110097502.0A CN112951929B (zh) 2021-01-25 2021-01-25 太阳能电池电极及其制备方法、太阳能电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110097502.0A CN112951929B (zh) 2021-01-25 2021-01-25 太阳能电池电极及其制备方法、太阳能电池

Publications (2)

Publication Number Publication Date
CN112951929A CN112951929A (zh) 2021-06-11
CN112951929B true CN112951929B (zh) 2022-12-30

Family

ID=76236483

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110097502.0A Active CN112951929B (zh) 2021-01-25 2021-01-25 太阳能电池电极及其制备方法、太阳能电池

Country Status (1)

Country Link
CN (1) CN112951929B (zh)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427682B (zh) * 2006-07-04 2014-02-21 Semiconductor Energy Lab 顯示裝置的製造方法
CN101807628B (zh) * 2010-04-02 2012-05-23 日强光伏科技有限公司 一种制作太阳能电池正面栅线电极的方法
KR101399419B1 (ko) * 2011-04-26 2014-06-30 엔젯 주식회사 태양전지의 전면전극 형성방법
JP5884101B2 (ja) * 2012-07-26 2016-03-15 国立大学法人東京工業大学 窒化物エレクトライド及びその製法
CN104347155A (zh) * 2013-07-31 2015-02-11 南昌欧菲光科技有限公司 透明导电膜
US10099938B2 (en) * 2013-12-12 2018-10-16 Samsung Electronics Co., Ltd. Electrically conductive thin films
CN106006579B (zh) * 2016-05-18 2018-11-27 北京理工大学 一种Ca2N的制备方法
CN108470835B (zh) * 2018-03-29 2019-10-29 大连理工大学 基于二维过渡金属碳化物或氮化物的钙钛矿太阳能电池及其制备方法
CN210614154U (zh) * 2019-07-01 2020-05-26 宁夏大学 一种复合陶瓷超声波雾化片

Also Published As

Publication number Publication date
CN112951929A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
EP2650926B1 (en) Solar cell and method of making a solar cell
CN107275432B (zh) 一种晶体硅太阳能电池及其制备方法
CN113707734B (zh) 具有空穴选择钝化结构的晶硅/钙钛矿叠层太阳电池
CN101944555A (zh) 铝硼共掺的硅太阳电池背场及其制作方法
CN104332522B (zh) 一种石墨烯双结太阳能电池及其制备方法
CN106898662A (zh) 一种p‑i‑n型硒化锑太阳电池
CN218788382U (zh) 一种高效异质结太阳能电池
CN104241447A (zh) 一种铜锌锡硫薄膜材料的制备方法
CN102437210B (zh) 全无机氧化物高效量子点太阳电池及其制作方法
CN112054090A (zh) 一种叠加tco透明导电薄膜的高效双面topcon电池工艺
CN112951929B (zh) 太阳能电池电极及其制备方法、太阳能电池
CN107768523B (zh) 一种同质结钙钛矿薄膜太阳能电池及其制备方法
CN111668378B (zh) 一种以v-二氧化锡作为电子传输层的钙钛矿太阳能电池及其制备方法
CN107887475A (zh) 氧化钨电子传输层的制备方法及其产品和应用
CN108666429B (zh) 一种具有高电荷传输性质的钙钛矿薄膜的制备方法
CN105244390A (zh) 基于纳米石墨电子传输层的多量子阱光伏电池及制备方法
CN106252448B (zh) 一种含GaInNAs材料的多结太阳能电池及其制备方法
CN114520288A (zh) 一种晶硅钙钛矿叠层太阳电池的制备方法
CN114093959A (zh) 太阳能电池及光伏组件
CN112670365A (zh) 一种GaAs/MXene异质结太阳电池及其制备方法
CN109671849B (zh) 用于碳基钙钛矿太阳能电池的介孔碳电极及其制备方法
CN101777592B (zh) 基于重掺umg硅外延生成高低结的太阳电池及制备方法
CN107887513B (zh) 一种基于三元无机平板型异质结薄膜的太阳电池及其制备方法
CN103928534B (zh) 一种金属卤氧化物纳米薄膜/Si复合电池片及其制备方法
CN113948677B (zh) 可直接用于制备锂离子电池的硅烯负极片及其制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant