CN112927952A - 一种锂离子混合电容器柔性钛酸锂负极及其制备方法 - Google Patents

一种锂离子混合电容器柔性钛酸锂负极及其制备方法 Download PDF

Info

Publication number
CN112927952A
CN112927952A CN201911244220.8A CN201911244220A CN112927952A CN 112927952 A CN112927952 A CN 112927952A CN 201911244220 A CN201911244220 A CN 201911244220A CN 112927952 A CN112927952 A CN 112927952A
Authority
CN
China
Prior art keywords
stainless steel
nitrogen
lithium
steel net
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911244220.8A
Other languages
English (en)
Inventor
阎景旺
李先锋
周仕贤
张华民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201911244220.8A priority Critical patent/CN112927952A/zh
Publication of CN112927952A publication Critical patent/CN112927952A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种锂离子混合电容器柔性钛酸锂负极及其制备方法,利用静电喷雾沉积法将钛酸锂沉积在不锈钢网上,并且引入十六烷基三甲基溴化铵(CTAB)对钛酸锂进行碳包覆改性。与传统电极制备方式不同,本次电极制备无需使用粘结剂等添加剂,同时利用不锈钢网的柔韧性配合薄活性物质层,最终获得了高倍率性能的柔性钛酸锂。

Description

一种锂离子混合电容器柔性钛酸锂负极及其制备方法
技术领域
本发明属于锂离子电容器或锂离子电池中柔性电极技术领域,具体涉及一种锂离子混合电容器柔性钛酸锂负极及其制备方法。
背景技术
近年来,随着便携式设备和可穿戴电子产品的日益普及,柔性储能设备越来越受到人们的青睐。在当前储能设备中,锂离子电容器因其兼具锂电和超电的特性,成为下一代具有高能量和功率密度储能装置首选。然而,由于电化学滞后现象,负极成为限制锂离子电容器功率输出的主要原因,与多孔电极的表面控制电荷存储相比,负极常受限于块状电极的固有半无限扩散过程。尖晶石结构钛酸锂具有可忽略的体积膨胀、高的脱嵌锂平台电位和优良的循环稳定性引起广泛关注,然而其自身导电性较差,往往需要进行纳米结构设计或表面包覆等方式提升倍率性能。此外,在传统电极制备中需在浆料中添加导电剂、粘结剂等,不仅降低了电极电导率和器件整体的能量密度,还提高了制备成本。同时,传统电极上的活性物质层过厚,在电极弯折时易出现脱落失效的情况,很难满足柔性电极的需求。基于以上问题,用一种简易方法制备出具有优异电化学性能和机械性能的电极仍然是广大科研人员所追求的目标。
发明内容
为解决上述技术问题,本发明的目的是提供一种用于锂离子电容器的柔性电极。利用静电喷雾沉积法将钛酸锂沉积在不锈钢网上,并且引入十六烷基三甲基溴化铵(CTAB)对钛酸锂进行碳包覆改性。与传统电极制备方式不同,本次电极制备无需使用粘结剂等添加剂,同时利用不锈钢网的柔韧性配合薄活性物质层,最终获得了高倍率性能的柔性钛酸锂。
本发明提供一种上述柔性电极的制备方法,具体包括以下步骤:
(1)将十六烷基三甲基溴化铵溶解在有机溶剂中搅拌成均匀溶液,向均匀溶液中加入乙酸锂与钛酸四丁酯,再次搅拌后配制成前驱体溶液;
(2)利用静电喷雾沉积法将前驱体喷涂沉积于不锈钢网上,得到的样品经煅烧后可制备成所述柔性电极。
基于以上技术方案,优选的,所述步骤(1)中,十六烷基三甲基溴化铵用量为6-10mg/ml;
基于以上技术方案,优选的,所述步骤(1)中,乙酸锂与钛酸四丁酯的摩尔比为(4-4.5):5,所述前驱体溶液中,钛酸四丁酯的浓度为0.1mmol/ml。
基于以上技术方案,优选的,所述步骤(1)中,溶剂为乙醇、1,2-丙二醇、乙二醇、异丙醇中任一种或多种。
基于以上技术方案,优选的,所述步骤(2)中,静电喷雾沉积的条件为基底温度150-300℃,沉积速度1-5ml/h,沉积时间为1-5h,施加静电电压为5-10kV。
基于以上技术方案,优选的,所使用的不锈钢网为316L不锈钢。
基于以上技术方案,优选的,所述不锈钢网为400-700目,孔径26μm。
基于以上技术方案,优选的,煅烧条件为600-800℃下6h。
有益效果
(1)相比于传统物理喷雾方法,静电喷雾沉积法效率更高,且沉积产物形貌更加均匀,这种结构增加了材料的比表面积,有利于与电解液接触,提高了锂离子在材料晶格中的可逆嵌入或脱出,因此具有良好的电化学性能。同时,在整个制备过程中不需要使用到粘结剂等,更加经济。
(2)十六烷基三甲基溴化铵经高温煅烧后在钛酸锂颗粒外形成了氮掺杂的碳层,均匀包裹在钛酸锂颗粒外层,降低了钛酸锂电极的内阻,大大提升了电极的倍率性能。作为一种表面活性剂,十六烷基三甲基溴化铵在产物生成过程中也有效抑制了钛酸锂颗粒团聚现象。
(3)与传统铝箔、铜箔等相比,本发明使用到的不锈钢网基底具有三维立体结构,此种结构进一步提升了活性物质与电解液接触面积,提高了离子传导效率。同时依靠不锈钢网的柔韧性,将活性物质喷涂沉积于不锈钢网后使得电极整体具有良好的机械性能。
附图说明
图1为实施例1制备的复合电极实物图。
图2为实施例1制备的复合电极SEM图。
图3为实施例1制备的复合电极倍率性能图。
图4为对比例1制备的纯钛酸锂电极倍率性能图。
图5为对比例8中使用传统物理喷雾法制备的复合电极SEM图。
具体实施方式
实施例1
1、按如下步骤制备柔性氮掺杂碳包覆钛酸锂电极:
(1)将500mg十六烷基三甲基溴化铵溶解在50ml乙醇中配置成均匀溶液;
(2)向均匀溶液中加入4mmol乙酸锂与5mmol钛酸四丁酯,搅拌后配制成前驱体溶液;
(3)将15cm×10cm的不锈钢网(600目)用盐酸、丙酮、去离子水分别超声清洗3次进行预处理,然后置于仪器加热台并设置温度为300℃,将步骤(2)配制的前驱体溶液装入注射器中,设置液体流速为5ml/h,喷嘴与不锈钢网基底的距离为5cm,静电电压为7kV,喷涂沉积1小时;
(4)将步骤(3)得到的样品在转移至管式炉中,在氩气氛围下马弗炉升温速率为每分钟5℃,700℃下烧结6小时,自然冷却至室温后得到柔性氮掺杂碳包覆钛酸锂复合电极,并且将电极作为锂离子电容器负极使用。
2、按如下步骤装锂离子电池并测试:
将上述步骤所制备的电极裁成直径为14mm的圆片作为工作电极,金属锂片作为对电极组成2016型扣式电池。其中工作电极的活性物质质量为1.0mg,Celgard2325多孔膜为隔膜,1mol L-1的LiPF6+EC(碳酸乙烯酯)+DEC(碳酸二乙酯)为电解液,在充满氩气的手套箱内组装电池(Ar>99.99%,H2O<1ppm,O2<1ppm)。将组装好的电池静置10h后进行性能测试,其测试条件为:分别在0.5C/1C/3C/5C/10C/20C/30C/50C不同倍率下充放电测试5圈,测试电压区间为1-3V。
图1为柔性氮掺杂碳包覆钛酸锂复合电极的实物图,电极具有良好的柔韧性,在弯折30次后未发生活性物质脱落现象,从扫描电镜图(图2)看出沉积层形貌较为粗糙,该结构能增加活性物质与电解液的接触面积。扣式电池倍率性能测试结果于图3,在50C时仍然有约94mA h g-1的比容量,在3C倍率下循环1000后容量保持在84%,表明电极具有较好的结构稳定性和良好的倍率性能。
实施例2
1、按如下步骤制备柔性氮掺杂碳包覆钛酸锂电极:
(1)将500mg十六烷基三甲基溴化铵溶解在50ml乙醇中配置成均匀溶液;
(2)向均匀溶液中加入4.5mmol乙酸锂与5mmol钛酸四丁酯,搅拌后配制成前驱体溶液;
(3)将15cm×10cm的不锈钢网(600目)用盐酸、丙酮、去离子水分别超声清洗3次进行预处理,然后置于仪器加热台并设置温度为300℃,将步骤(2)配制的前驱体溶液装入注射器中,设置液体流速为5ml/h,喷嘴与不锈钢网基底的距离为5cm,静电电压为7kV,喷涂沉积1小时;
(4)将步骤(3)得到的样品在转移至管式炉中,在氩气氛围下马弗炉升温速率为每分钟5℃,700℃下烧结6小时,自然冷却至室温后得到复合电极,并且将电极作为锂离子电容器负极使用。
按实施例1中扣式电池组装方式及测试条件进行性能测试,在50C时比容量约91mAh g-1,电池在3C倍率循环1000圈后,容量保持在初始值的89%。
实施例3
(1)将500mg十六烷基三甲基溴化铵溶解在50ml乙醇中配置成均匀溶液;
(2)向均匀溶液中加入4mmol乙酸锂与5mmol钛酸四丁酯,搅拌后配制成前驱体溶液;
(3)将15cm×10cm的不锈钢网(600目)用盐酸、丙酮、去离子水分别超声清洗3次进行预处理,然后置于仪器加热台并设置温度为150℃,将步骤(2)配制的前驱体溶液装入注射器中,设置液体流速为5ml/h,喷嘴与不锈钢网基底的距离为5cm,静电电压为7kV,喷涂沉积1小时;
(4)将步骤(3)得到的样品在转移至管式炉中,在氩气氛围下马弗炉升温速率为每分钟5℃,700℃下烧结6小时。
按实施例1中扣式电池组装方式及测试条件进行性能测试,在50C时比容量约82mAh g-1,电池在3C倍率循环1000圈后,容量保持在初始值的86%。
实施例4
(1)将500mg十六烷基三甲基溴化铵溶解在50ml乙二醇中配置成均匀溶液;
(2)向均匀溶液中加入4mmol乙酸锂与5mmol钛酸四丁酯,搅拌后配制成前驱体溶液;
(3)将15cm×10cm的不锈钢网(600目)用盐酸、丙酮、去离子水分别超声清洗3次进行预处理,然后置于仪器加热台并设置温度为300℃,将步骤(2)配制的前驱体溶液装入注射器中,设置液体流速为1ml/h,喷嘴与不锈钢网基底的距离为5cm,静电电压为7kV,喷涂沉积5小时;
(4)将步骤(3)得到的样品在转移至管式炉中,在氩气氛围下马弗炉升温速率为每分钟5℃,700℃下烧结6小时。
按实施例1中扣式电池组装方式及测试条件进行性能测试,在50C时比容量约87mAh g-1,电池在3C倍率循环1000圈后,容量保持在初始值的86%。
实施例5
(1)将500mg十六烷基三甲基溴化铵溶解在50ml乙二醇中配置成均匀溶液;
(2)向均匀溶液中加入4mmol乙酸锂与5mmol钛酸四丁酯,搅拌后配制成前驱体溶液;
(3)将15cm×10cm的不锈钢网(600目)用盐酸、丙酮、去离子水分别超声清洗3次进行预处理,然后置于仪器加热台并设置温度为300℃,将步骤(2)配制的前驱体溶液装入注射器中,设置液体流速为5ml/h,喷嘴与不锈钢网基底的距离为5cm,静电电压为7kV,喷涂沉积1小时;
(4)将步骤(3)得到的样品在转移至管式炉中,在氩气氛围下马弗炉升温速率为每分钟5℃,700℃下烧结6小时。
按实施例1中扣式电池组装方式及测试条件进行性能测试,在50C时比容量约80mAh g-1,电池在3C倍率循环1000圈后,容量保持在初始值的89%。
实施例6
(1)将500mg十六烷基三甲基溴化铵溶解在50ml乙醇中配置成均匀溶液;
(2)向均匀溶液中加入4mmol乙酸锂与5mmol钛酸四丁酯,搅拌后配制成前驱体溶液;
(3)将15cm×10cm的不锈钢网(400目)用盐酸、丙酮、去离子水分别超声清洗3次进行预处理,然后置于仪器加热台并设置温度为300℃,将步骤(2)配制的前驱体溶液装入注射器中,设置液体流速为5ml/h,喷嘴与不锈钢网基底的距离为5cm,静电电压为7kV,喷涂沉积1小时;
(4)将步骤(3)得到的样品在转移至管式炉中,在氩气氛围下马弗炉升温速率为每分钟5℃,700℃下烧结6小时。
按实施例1中扣式电池组装方式及测试条件进行性能测试,在50C时比容量约83mAh g-1,电池在3C倍率循环1000圈后,容量保持在初始值的88%。
对比例1
1、按如下步骤制备纯钛酸锂电极:
(1)将4mmol乙酸锂与5mmol钛酸四丁酯加到50ml乙醇,搅拌后配制成前驱体溶液;
(2)将15cm×10cm的不锈钢网(600目)用盐酸、丙酮、去离子水分别超声清洗3次进行预处理,然后置于仪器加热台并设置温度为300℃,将步骤(2)配制的前驱体溶液装入注射器中,设置液体流速为5ml/h,喷嘴与不锈钢网基底的距离为5cm,静电电压为7kV,喷涂沉积1小时;
(3)将步骤(2)得到的样品在转移至管式炉中,在氩气氛围下马弗炉升温速率为每分钟5℃,700℃下烧结6小时,自然冷却至室温后得到复合电极,并且将电极作为锂离子电容器负极使用。
按实施例1中扣式电池组装方式及测试条件进行性能测试,测试结果见图4。
对比例2
按实施例1中条件,将不锈钢网600目更换成200目,进行对比实验。
对比例3
按实施例1中条件,将不锈钢网基底更换成泡沫镍基底制备电极,进行对比实验。
对比例4
按实施例1中条件,将基底温度由300℃改为100℃,进行对比实验。
对比例5
按实施例1中条件,将静电电压由7kV改为3kV,进行对比实验。
对比例6
按实施例1中条件,将煅烧温度由700℃改为300℃,进行对比实验。
表1是实施例1与对比例2-6的性能对比,比较不同制备条件的性能差异。
表1
Figure BDA0002307063900000061
Figure BDA0002307063900000071
注明:在对比例3中,与不锈钢网基底相比,泡沫镍基底的样品明显不具备柔性,在弯折5次后断裂。以对比例6中煅烧温度合成钛酸锂样品中有二氧化钛杂相,物相不纯。
对比例7
在150-250℃温度下,水热反应合成钛酸锂,配制浆料涂覆于不锈钢网上进行对比实验。实验结果涂覆层很难控制厚度,并且在弯折时出现活性物质脱落的现象,性能急剧下降。另外水热过程繁琐复杂、时间长,不符合高效率制备柔性电极这一目标。
对比例8
按实施例1中条件,采用传统物理喷雾的方式,使用气喷枪将前驱体溶液喷涂于不锈钢网基底,煅烧后制备复合电极。实验结果活性物质脱落严重,扫描电镜图片(图5)观察到钛酸锂颗粒较大,不利于提升材料倍率性能。经测试50C时比容量仅为47mAh/g。

Claims (9)

1.一种柔性电极的制备方法,其特征在于,包括以下步骤:
(1)将十六烷基三甲基溴化铵溶解在有机溶剂中,搅拌得到溶液A,向溶液A中加入乙酸锂与钛酸四丁酯,搅拌后,得到前驱体溶液;
(2)利用静电喷雾沉积法将所述前驱体溶液喷涂沉积于不锈钢网上,煅烧,得到所述柔性电极。
2.根据权利要求1所述的制备方法,其特征在在于,所述溶液A中,十六烷基三甲基溴化铵的浓度为6-10mg/ml。
3.根据权利要去1所述的制备方法,其特征在于,乙酸锂与钛酸四丁酯的摩尔比为4-4.5:5;所述前驱体溶液中,钛酸四丁酯的浓度为0.1mmol/ml。
4.根据权利要求1所述的制备方法,其特征在于,所述溶剂为乙醇、1,2-丙二醇、乙二醇、异丙醇中的至少一种。
5.根据权利要求1所述的制备方法,其特征在于,所述静电喷雾沉积法的条件为:不锈钢网温度150-300℃,沉积速度1-5ml/h,沉积时间为1-5h,施加静电电压为5-10kV。
6.根据权利要求1所述的制备方法,其特征在于,所述不锈钢网的材质为316L不锈钢;所述不锈钢网为400-700目,孔径20-50μm。
7.根据权利要求1所述的制备方法,其特征在于,所述煅烧条件为600-800℃下6-8h。
8.一种权利要求1-7任意一项所述制备方法制备的柔性电极,其特征在于,所述的柔性电极包括不锈钢网和沉积层;所述沉积层为碳包覆层包覆的钛酸锂,所述沉积层厚度为1-2.5μm;钛酸锂粒径大为50-90nm;碳包覆层的厚度为2-5nm,所述碳包覆层为氮掺杂的碳包覆层;氮以吡啶氮、石墨氮、吡咯氮三种形式掺杂于碳中,所述氮掺杂的碳包覆层中,掺杂量占碳含量的1-6wt%。
9.一种权利要求8所述的柔性电极的应用,其特征在于,所述柔性电极在锂离子电容器或锂离子电池中作为负极。
CN201911244220.8A 2019-12-06 2019-12-06 一种锂离子混合电容器柔性钛酸锂负极及其制备方法 Pending CN112927952A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911244220.8A CN112927952A (zh) 2019-12-06 2019-12-06 一种锂离子混合电容器柔性钛酸锂负极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911244220.8A CN112927952A (zh) 2019-12-06 2019-12-06 一种锂离子混合电容器柔性钛酸锂负极及其制备方法

Publications (1)

Publication Number Publication Date
CN112927952A true CN112927952A (zh) 2021-06-08

Family

ID=76162437

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911244220.8A Pending CN112927952A (zh) 2019-12-06 2019-12-06 一种锂离子混合电容器柔性钛酸锂负极及其制备方法

Country Status (1)

Country Link
CN (1) CN112927952A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167299A (zh) * 2014-08-21 2014-11-26 中国科学院大连化学物理研究所 一种金属网加强的高面密度超级电容器电极及其制备方法
CN104269515A (zh) * 2014-09-19 2015-01-07 清华大学深圳研究生院 一种锂离子电池负极片及其制备方法、锂离子电池
CN104393275A (zh) * 2014-12-09 2015-03-04 江南大学 一种碳包覆钛酸锂电池材料的制备方法
CN106784603A (zh) * 2016-12-28 2017-05-31 珠海银隆新能源有限公司 一种集流体涂层的制备方法
CN106876783A (zh) * 2015-12-10 2017-06-20 中国科学院大连化学物理研究所 一种全固态锂硫电池
CN107611345A (zh) * 2016-07-12 2018-01-19 苑举君 一种锂离子电池负极薄膜材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167299A (zh) * 2014-08-21 2014-11-26 中国科学院大连化学物理研究所 一种金属网加强的高面密度超级电容器电极及其制备方法
CN104269515A (zh) * 2014-09-19 2015-01-07 清华大学深圳研究生院 一种锂离子电池负极片及其制备方法、锂离子电池
CN104393275A (zh) * 2014-12-09 2015-03-04 江南大学 一种碳包覆钛酸锂电池材料的制备方法
CN106876783A (zh) * 2015-12-10 2017-06-20 中国科学院大连化学物理研究所 一种全固态锂硫电池
CN107611345A (zh) * 2016-07-12 2018-01-19 苑举君 一种锂离子电池负极薄膜材料及其制备方法
CN106784603A (zh) * 2016-12-28 2017-05-31 珠海银隆新能源有限公司 一种集流体涂层的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
云斯宁: "《新型能源材料与器件》", 31 January 2019 *
吴其胜: "《新能源材料 第2版》", 31 July 2017 *
魏浩,杨志: "《锂硫电池》", 31 August 2018 *

Similar Documents

Publication Publication Date Title
Chen et al. Mesoporous ZnCo2O4 microspheres composed of ultrathin nanosheets cross-linked with metallic NiSix nanowires on Ni foam as anodes for lithium ion batteries
KR100904351B1 (ko) 리튬 이차전지용 전극, 리튬 이차전지 및 그 제조법
CN103474632B (zh) 一种用于锂电池的负极材料及其制备方法和应用
CN111199835B (zh) 分级结构镍钴硒/镍钴双氢氧化物复合电极材料制备方法
CN109616331B (zh) 一种核壳型的氢氧化镍纳米片/锰钴氧化物复合电极材料及其制备方法
CN108288703B (zh) 一种石墨烯包覆掺氟钛酸锂纳米线的制备方法及其应用
CN105226258A (zh) 一种锂离子电池负极复合薄膜材料及其制备方法
CN108281627B (zh) 一种锂离子电池用锗碳复合负极材料及其制备方法
CN107634206B (zh) 一种锂离子电池柔性负极材料及其制备方法
CN110336002A (zh) 一种用于锂离子电池的氮掺杂碳包覆氧化锌复合纳米材料
CN115172724A (zh) 硫酸亚铁钠/碳纳米管复合正极材料、制备方法及钠离子电池
Wang et al. Transition Metal Nitrides in Lithium‐and Sodium‐Ion Batteries: Recent Progress and Perspectives
CN110304658B (zh) 一种用于锂离子电池的Nb18W16O93负极材料及其制备方法
KR101490024B1 (ko) 산화물 보호층을 갖는 고성능 리튬 이차전지용 음극재
Xu et al. ZnO@ SnO2 Micron Flower as an Anode Material to Enhance the Cycling Performance of Zinc–Nickel Secondary Batteries
CN116177556B (zh) 钠电正极材料及其前驱体、以及制备方法和应用
CN111063549B (zh) 二维MOFs纳米片衍生的混合电容器全电极材料
Bahrawy et al. Hierarchical porous nickel tin sulfide nanosheets as a binder free electrode for hybrid supercapacitor
KR20130047885A (ko) 산화수산화니켈-탄소나노튜브 나노복합체 전극의 제조 방법
CN112687875A (zh) 一种钼酸镍柔性薄膜复合材料的制备方法和应用
EP3402748A1 (en) Nanoparticle/porous graphene composite, synthesizing methods and applications of same
CN106684383B (zh) 介孔二氮化三钼纳米线及其制备方法和应用
CN112927952A (zh) 一种锂离子混合电容器柔性钛酸锂负极及其制备方法
CN110589818B (zh) 一种氮掺杂介孔碳材料的制备方法及其应用
CN110491680B (zh) 一种三维氮化钛纳米线材料的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210608

RJ01 Rejection of invention patent application after publication