CN112813396A - 一步磁控溅射沉积无机/有机交替混合结构超高阻隔膜的制备方法 - Google Patents

一步磁控溅射沉积无机/有机交替混合结构超高阻隔膜的制备方法 Download PDF

Info

Publication number
CN112813396A
CN112813396A CN202011618401.5A CN202011618401A CN112813396A CN 112813396 A CN112813396 A CN 112813396A CN 202011618401 A CN202011618401 A CN 202011618401A CN 112813396 A CN112813396 A CN 112813396A
Authority
CN
China
Prior art keywords
film
inorganic
organic
rotary target
barrier film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011618401.5A
Other languages
English (en)
Inventor
徐从康
周曼曼
郑晓宁
王洪祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANDONG YONGJU MEDICAL TECHNOLOGY Co.,Ltd.
Original Assignee
Shandong Yongju Medical Technology Co ltd
Shantou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Yongju Medical Technology Co ltd, Shantou University filed Critical Shandong Yongju Medical Technology Co ltd
Priority to CN202011618401.5A priority Critical patent/CN112813396A/zh
Publication of CN112813396A publication Critical patent/CN112813396A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0652Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种一步磁控溅射沉积无机/有机交替混合结构超高阻隔膜的制备方法。尤其是在可弯曲的柔性基体上用无机物旋转靶材和有机物旋转靶材通过R2R一步法制备的超高阻隔膜,通过控制旋转靶材的配比和R2R工艺,制备了具有高阻水性能的柔性透明超高阻隔膜。WVTR:10‑6g/(m2·day);透光率大于90%。可满足OLED、QLED和薄膜太阳能电池等柔性电子器件的封装要求。

Description

一步磁控溅射沉积无机/有机交替混合结构超高阻隔膜的制 备方法
技术领域
本发明涉及一种超高阻隔膜的制备方法,具体涉及一种一步磁控溅射沉积无机/有机交替混合结构超高阻隔膜的制备方法。
背景技术
研究表明空气中水、氧和其它有害物质对OLED、QLED和薄膜太阳能电池等柔性电子器件的寿命影响很大,对柔性电子器件进行有效封装可以大大延长器件寿命。用于电子封装的高阻隔薄膜对透水蒸气率(WVTR)和透氧率(OTR)值要求更低,这种薄膜封装所用材料除了满足极低的气透率,还要求具有高透光性、稳定性,与封装器件有一致的膨胀系数等特点。传统刚性显示器件用特制玻璃进行封装即可满足要求,而柔性电子器件需要使用柔性透明高阻隔电子薄膜进行封装,以保证电子性能和使用寿命。无机薄膜通常比有机薄膜表现出更高的抗水渗透能力且无机单层薄膜制备工艺简单,成本低,相对于有机薄膜性能稳定受环境影响小使用寿命长,常常用于电子封装,不过在沉积过程中会产生多种缺陷,加上薄膜应力容易导致裂纹,受临界厚度制约。有机膜层的引入可以平滑无机层表面,弥补无机层缺陷,阻断无机薄膜缺陷通道,从而避免缺陷在无机薄膜层中的扩展,实现缺陷在厚度方向的近似独立化处理。但是无机-有机混合结构薄膜的制备成本高,不利于成品商品化。因为无机-有机多层膜的沉积通常是通过两种不同的沉积方法的两个步骤来完成的。有机层可以通过等离子体聚合、蒸发和湿涂层技术沉积,而无机层通常通过溅射、化学气相沉积(CVD)、和原子层沉积来沉积。因此,开发一种简单的有机-无机多层沉积工艺,采用一步式R2R加工方法,对高阻隔膜的大批量生产和商业化具有重要意义。
发明内容
发明目的:提供一种一步磁控溅射沉积无机/有机交替混合结构超高阻隔膜的制备方法。尤其是在可弯曲的柔性基体上用无机物旋转靶材和有机物旋转靶材通过R2R一步法制备的超高阻隔膜,通过控制旋转靶材的配比和R2R工艺,制备了具有高阻水性能的柔性透明超高阻隔膜。
技术方案:提供一种一步磁控溅射沉积无机—有机交替混合结构超高阻隔膜的制备方法。在可弯曲的柔性基体上用无机物旋转靶材和有机物旋转靶材通过R2R一步法制备了无机/有机连续多层膜。通过控制旋转靶材的配比和R2R工艺,实现高阻水性和高透明性的超高阻隔膜。用Ca电阻分析仪表征超高阻隔膜的阻隔性;用Agilent Cary-5000光谱仪表征透光性。
步骤1.可弯曲柔性原料卷通过开卷***向R2R***输送基板;
步骤2.基板在R2R***的真空室加热到55~75℃除去表面湿气;然后通过驱动装置进入等离子轰击室,400w的功率暴露于Ar/O2等离子体中,来改善薄膜之间的附着力;
步骤3.在R2R薄膜沉积***腔室1,射频功率10-15KW,Ar流量200-400SCCM,N2流量0-250SCCM,工作压力10mTorr;用无机物旋转靶材在柔性基板上沉积厚度50纳米的无机薄膜1;
步骤4.在R2R薄膜沉积***腔室2,射频功率1-2KW,纯Ar流量350SCCM,工作压力10mTorr;用有机物旋转靶材在无机薄膜1上沉积厚度60纳米的有机薄膜2;
步骤5.在R2R薄膜沉积***腔室3,射频功率10-15KW,Ar流量200-400SCCM,N2流量0-250SCCM,工作压力10mTorr;用无机物旋转靶材在有机薄膜2上沉积厚度50纳米的无机薄膜3;
步骤6.在R2R薄膜沉积***腔室4,射频功率1-2KW,纯Ar流量350SCCM,工作压力10mTorr;用有机物旋转靶材在无机薄膜3上沉积厚度60纳米的有机薄膜4;
步骤7.通过收卷***对沉积的无机—有机连续多层膜的超高阻隔膜重新卷绕成卷;
步骤8.用MOCON水蒸气透过率分析仪和Agilent Cary-5000光谱仪对制备的超高阻隔膜的阻水性能和光透性能表征。
附图说明
图1为本发明卷对卷(R2R)磁控溅射(MS)超高阻隔膜制备示意图。
具体实施方式
步骤1.可弯曲柔性原料卷通过开卷***向R2R***输送基板;
步骤2.基板在R2R***的真空室加热到55~75℃除去表面湿气;然后通过驱动装置进入等离子轰击室,350~450W的功率暴露于Ar/O2等离子体中,来改善薄膜之间的附着力;
步骤3.在R2R薄膜沉积***腔室,射频功率10-15KW,Ar流量200-400SCCM,N2流量0-250SCCM,工作压力10mTorr;用无机物旋转靶材在柔性基板上沉积厚度50纳米的无机薄膜;
步骤4.在R2R薄膜沉积***腔室,射频功率1-2KW,纯Ar流量350SCCM,工作压力10mTorr;用有机物旋转靶材在无机薄膜上沉积厚度60纳米的有机薄膜;
步骤5.在R2R薄膜沉积***腔室,射频功率10-15KW,Ar流量200-400SCCM,N2流量0-250SCCM,工作压力10mTorr;用无机物旋转靶材在有机薄膜上沉积厚度50纳米的无机薄膜;
步骤6.在R2R薄膜沉积***腔室,射频功率1-2KW,纯Ar流量350SCCM,工作压力10mTorr;用有机物旋转靶材在无机薄膜上沉积厚度60纳米的有机薄膜;
步骤7.通过收卷***对沉积的无机—有机连续多层膜的超高阻隔膜重新卷绕成卷;
步骤8.用MOCON水蒸气透过率分析仪和Agilent Cary-5000光谱仪对制备的超高阻隔膜的阻水性能和光透性能表征。
实施例1
(1)可弯曲PET原料卷通过开卷***向R2R***输送PET基板。
(2)PET基板在R2R***的真空室加热到55~75℃除去表面湿气;然后通过驱动装置进入等离子轰击室,400w的功率暴露于Ar/O2等离子体中,来改善薄膜之间的附着力。
(3)在R2R薄膜沉积***腔室1,射频功率12KW,纯Ar流量350SCCM,工作压力10mTorr;用氧化铝旋转靶材在PET基板上沉积厚度50纳米的氧化铝薄膜。
(4)在R2R薄膜沉积***腔室2,射频功率1.0KW,纯Ar流量350SCCM,工作压力10mTorr;用聚四氟乙烯(PTFE)旋转靶材在氧化铝上沉积厚度60纳米的PTFE薄膜。
(5)在R2R薄膜沉积***腔室3,射频功率12KW,纯Ar流量350SCCM,工作压力10mTorr;用氧化铝旋转靶材在PTFE上沉积厚度50纳米的氧化铝薄膜。
(6)在R2R薄膜沉积***腔室4,射频功率1.0KW,纯Ar流量350SCCM,工作压力10mTorr;用聚四氟乙烯(PTFE)旋转靶材在氧化铝上沉积厚度60纳米的PTFE薄膜。
(7)通过收卷***对沉积的氧化铝—聚四氟乙烯连续多层膜的超高阻隔膜重新卷绕成卷。
(8)用Ca电阻水蒸气透过率分析仪和Agilent Cary-5000光谱仪对制备的超高阻隔膜的阻水性能和光透性能表征。
实施例2
(1)可弯曲PET原料卷通过开卷***向R2R***输送PET基板。
(2)PET基板在R2R***的真空室加热到55~75℃除去表面湿气;然后通过驱动装置进入等离子轰击室,400w的功率暴露于Ar/O2等离子体中,来改善薄膜之间的附着力。
(3)在R2R薄膜沉积***腔室1,射频功率12KW,纯Ar流量350SCCM,工作压力10mTorr;用氧化铝旋转靶材在PET基板上沉积厚度50纳米的氧化铝薄膜。
(4)在R2R薄膜沉积***腔室2,射频功率1.0KW,纯Ar流量350SCCM,工作压力10mTorr;用碳纳米管掺杂聚四氟乙烯(PPFC)旋转靶材在氧化铝上沉积厚度60纳米的PPFC薄膜。
(5)在R2R薄膜沉积***腔室3,射频功率12KW,纯Ar流量350SCCM,工作压力10mTorr;用氧化铝旋转靶材在PPFC上沉积厚度50纳米的氧化铝薄膜。
(6)在R2R薄膜沉积***腔室4,射频功率1.0KW,纯Ar流量350SCCM,工作压力10mTorr;用碳纳米管掺杂聚四氟乙烯(PPFC)旋转靶材在氧化铝上沉积厚度60纳米的PPFC薄膜。
(7)通过收卷***对沉积的Al2O3-PPFC连续多层膜的超高阻隔膜重新卷绕成卷。
(8)用Ca电阻水蒸气透过率分析仪和Agilent Cary-5000光谱仪对制备的超高阻隔膜的阻水性能和光透性能表征。
实施例3
(1)可弯曲PET原料卷通过开卷***向R2R***输送PET基板。
(2)PET基板在R2R***的真空室加热到55~75℃除去表面湿气;然后通过驱动装置进入等离子轰击室,400w的功率暴露于Ar/O2等离子体中,来改善薄膜之间的附着力。
(3)在R2R薄膜沉积***腔室1,射频功率12KW,纯Ar流量350SCCM,工作压力10mTorr;用氧化硅旋转靶材在PET基板上沉积厚度50纳米的SiO2薄膜。
(4)在R2R薄膜沉积***腔室2,射频功率1.0KW,纯Ar流量350SCCM,工作压力10mTorr;聚四氟乙烯(PTFE)旋转靶材在氧化硅上沉积厚度60纳米的PTFE薄膜。
(5)在R2R薄膜沉积***腔室3,射频功率12KW,纯Ar流量350SCCM,工作压力10mTorr;用氧化硅旋转靶材在PTFE上沉积厚度50纳米的SiO2薄膜。
(6)在R2R薄膜沉积***腔室4,射频功率1.0KW,纯Ar流量350SCCM,工作压力10mTorr;聚四氟乙烯(PTFE)旋转靶材在氧化硅上沉积厚度60纳米的PTFE薄膜。
(7)通过收卷***对沉积的氧化硅—PTFE连续多层膜的超高阻隔膜重新卷绕成卷。
(8)用Ca电阻水蒸气透过率分析仪和Agilent Cary-5000光谱仪对制备的超高阻隔膜的阻水性能和光透性能表征。
实施例4
(1)可弯曲PET原料卷通过开卷***向R2R***输送PET基板。
(2)PET基板在R2R***的真空室加热到55~75℃除去表面湿气;然后通过驱动装置进入等离子轰击室,400w的功率暴露于Ar/O2等离子体中,来改善薄膜之间的附着力。
(3)在R2R薄膜沉积***腔室1,射频功率12KW,纯Ar流量350SCCM,工作压力10mTorr;用氧化硅旋转靶材在PET基板上沉积厚度50纳米的SiO2薄膜。
(4)在R2R薄膜沉积***腔室2,射频功率1.0KW,纯Ar流量350SCCM,工作压力10mTorr;碳纳米管掺杂聚四氟乙烯(PPFC)旋转靶材在氧化硅上沉积厚度60纳米的PPFC薄膜。
(5)在R2R薄膜沉积***腔室3,射频功率12KW,纯Ar流量350SCCM,工作压力10mTorr;用氧化硅旋转靶材在PPFC上沉积厚度50纳米的SiO2薄膜。
(6)在R2R薄膜沉积***腔室4,射频功率1KW,纯Ar流量350SCCM,工作压力10mTorr;碳纳米管掺杂聚四氟乙烯(PPFC)旋转靶材在氧化硅上沉积厚度60纳米的PPFC薄膜。
(7)通过收卷***对沉积的SiO2—PPFC连续多层膜的超高阻隔膜重新卷绕成卷。
(8)用Ca电阻水蒸气透过率分析仪和Agilent Cary-5000光谱仪对制备的超高阻隔膜的阻水性能和光透性能表征。
实施例5
(1)可弯曲PET原料卷通过开卷***向R2R***输送PET基板。
(2)PET基板在R2R***的真空室加热到55~75℃除去表面湿气;然后通过驱动装置进入等离子轰击室,400w的功率暴露于Ar/O2等离子体中,来改善薄膜之间的附着力。
(3)在R2R薄膜沉积***腔室1,射频功率10KW,Ar流量200SCCM,N2流量200SCCM,工作压力10mTorr;用硅旋转靶材在PET基板上沉积厚度50纳米的SiNx薄膜。
(4)在R2R薄膜沉积***腔室2,射频功率1.5KW,纯Ar流量350SCCM,工作压力10mTorr;碳纳米管掺杂聚四氟乙烯(PPFC)旋转靶材在SiNx上沉积厚度60纳米的PPFC薄膜。
(5)在R2R薄膜沉积***腔室3,射频功率10KW,Ar流量300SCCM,N2流量150SCCM,工作压力10mTorr;用硅旋转靶材在PPFC上沉积厚度50纳米的SiNx薄膜。
(6)在R2R薄膜沉积***腔室4,射频功率1.5KW,纯Ar流量350SCCM,工作压力10mTorr;碳纳米管掺杂聚四氟乙烯(PPFC)旋转靶材在SiNx上沉积厚度60纳米的PPFC薄膜。
(7)通过收卷***对沉积的SiNx—PPFC连续多层膜的超高阻隔膜重新卷绕成卷。
(8)用Ca电阻水蒸气透过率分析仪和Agilent Cary-5000光谱仪对制备的超高阻隔膜的阻水性能和光透性能表征。
发明实施 实施例1 实施例2 实施例3 实施例4 实施例5
WVTR(g/(m<sup>2</sup>·day)) ≤10<sup>-5</sup> ≤10<sup>-5</sup> ≤10<sup>-6</sup> ≤10<sup>-4</sup> ≤10<sup>-4</sup>
透光率(%) 91 92 92 89 90
上述实施例仅用于说明本发明,根据上述实施例,可以更好地理解本发明,而不用于限制本发明的范围。此外,本领域科研技术人员在阅读本发明后,以等同替换或变量等对本发明进行各种修改,同样属于本发明权利要求书所限定的范围。

Claims (4)

1.一种一步磁控溅射沉积无机/有机交替混合结构超高阻隔膜的制备方法,其特征在于:在可弯曲的柔性原料卷上用无机物旋转靶材和有机物旋转靶材通过R2R一步法制备超高阻隔膜,通过控制旋转靶材的配比和R2R工艺,制备具有高阻水性能的柔性透明超高阻隔膜。
2.根据权利要求1所述的一步磁控溅射沉积无机/有机交替混合结构超高阻隔膜的制备方法,其特征在于:无机物旋转靶材为氧化铝、氧化硅、氧化钛、氮化硅或氮氧化铝中的一种或一种以上;有机物旋转靶材为聚四氟乙烯、碳纳米管掺杂聚四氟乙烯、石墨烯掺杂聚四氟乙烯、聚甲基丙烯酸甲酯或聚酰亚胺中的一种或一种以上;柔性原料卷为PET、PI、PES、PDMS或柔性玻璃中的一种或一种以上;
步骤如下:
步骤1.可弯曲柔性原料卷通过开卷***向R2R***输送基板;
步骤2.基板在R2R***的真空室加热到55~75℃除去表面湿气;然后通过驱动装置进入等离子轰击室,350~450w的功率暴露于Ar/O2等离子体中,来改善薄膜之间的附着力;
步骤3.在R2R薄膜沉积***腔室1,射频功率10-15KW,Ar流量200-400SCCM,N2流量0-250SCCM,工作压力10mTorr;用无机物旋转靶材在柔性基板上沉积厚度50纳米的无机薄膜1;
步骤4.在R2R薄膜沉积***腔室2,射频功率1-2KW,纯Ar流量350SCCM,工作压力10mTorr;用有机物旋转靶材在无机薄膜1上沉积厚度60纳米的有机薄膜2;
步骤5.在R2R薄膜沉积***腔室3,射频功率10-15KW,Ar流量200-400SCCM,N2流量0-250SCCM,工作压力10mTorr;用无机物旋转靶材在有机薄膜2上沉积厚度50纳米的无机薄膜3;
步骤6.在R2R薄膜沉积***腔室4,射频功率1-2KW,纯Ar流量350SCCM,工作压力10mTorr;用有机物旋转靶材在无机薄膜3上沉积厚度60纳米的有机薄膜4;
步骤7.通过收卷***对沉积的无机-有机连续多层膜的超高阻隔膜重新卷绕成卷;
步骤8.用MOCON水蒸气透过率分析仪和Agilent Cary-5000光谱仪对制备的超高阻隔膜的阻水性能和光透性能表征。
3.根据权利要求2所述的一步磁控溅射沉积无机/有机交替混合结构超高阻隔膜的制备方法,其特征在于:超高阻隔膜包括至少两个无机层;用的无机物旋转靶材还包括各种掺杂的复合无机旋转靶材。
4.根据权利要求2所述的一步磁控溅射沉积无机/有机交替混合结构超高阻隔膜的制备方法,其特征在于:超高阻隔膜包括至少两个有机层;有机旋转靶材还包括各种掺杂的复合有机旋转靶材。
CN202011618401.5A 2020-12-30 2020-12-30 一步磁控溅射沉积无机/有机交替混合结构超高阻隔膜的制备方法 Pending CN112813396A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011618401.5A CN112813396A (zh) 2020-12-30 2020-12-30 一步磁控溅射沉积无机/有机交替混合结构超高阻隔膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011618401.5A CN112813396A (zh) 2020-12-30 2020-12-30 一步磁控溅射沉积无机/有机交替混合结构超高阻隔膜的制备方法

Publications (1)

Publication Number Publication Date
CN112813396A true CN112813396A (zh) 2021-05-18

Family

ID=75855813

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011618401.5A Pending CN112813396A (zh) 2020-12-30 2020-12-30 一步磁控溅射沉积无机/有机交替混合结构超高阻隔膜的制备方法

Country Status (1)

Country Link
CN (1) CN112813396A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030203210A1 (en) * 2002-04-30 2003-10-30 Vitex Systems, Inc. Barrier coatings and methods of making same
US20040195960A1 (en) * 2001-08-20 2004-10-07 Grzegorz Czeremuszkin Coatings with low permeation of gases and vapors
WO2017039342A1 (ko) * 2015-09-01 2017-03-09 한국화학연구원 탄화불소 박막을 포함하는 배리어 필름 및 이의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040195960A1 (en) * 2001-08-20 2004-10-07 Grzegorz Czeremuszkin Coatings with low permeation of gases and vapors
US20030203210A1 (en) * 2002-04-30 2003-10-30 Vitex Systems, Inc. Barrier coatings and methods of making same
WO2017039342A1 (ko) * 2015-09-01 2017-03-09 한국화학연구원 탄화불소 박막을 포함하는 배리어 필름 및 이의 제조방법

Similar Documents

Publication Publication Date Title
JP5136114B2 (ja) ガスバリア膜の作製方法及び作製装置
JP2008235165A (ja) 透明導電膜を有するロール状樹脂フィルムの製造方法
JP5730235B2 (ja) ガスバリアフィルムおよびガスバリアフィルムの製造方法
JP5538361B2 (ja) 透明バリア層システム
US10151024B2 (en) Method for producing transparent conductive film
CN109468607B (zh) 一种气体阻隔薄膜的制备方法
JP5212356B2 (ja) 透明導電膜を有するロール状樹脂フィルムの製造方法及びこれを用いる有機エレクトロルミネッセンス素子
JP4969495B2 (ja) ガスバリアフィルムの製造方法及びガスバリアフィルム
JP5509864B2 (ja) ガスバリア性フィルムの製造方法
JP4106931B2 (ja) 透明ガスバリア薄膜被覆フィルム
JP2006076051A (ja) バリアフィルム及びその製造方法
CN112813396A (zh) 一步磁控溅射沉积无机/有机交替混合结构超高阻隔膜的制备方法
US20150255749A1 (en) Gas permeation barriers and methods of making the same
Minakata et al. 16.4: Fully R2R‐Processed Flexible OLEDs for Lighting
CN112736204B (zh) 金属诱导非晶结晶化转变超高阻隔膜及其制备方法
JP2002234103A (ja) 透明基板、透明基板の作製方法、及び基板作製装置
WO2017086035A1 (ja) ガスバリアー性フィルム
TWI666121B (zh) 層合薄膜、有機電致發光裝置、光電轉換裝置及液晶顯示器
WO2017104357A1 (ja) プラズマcvd成膜装置用電極、電極の製造方法、プラズマcvd成膜装置および機能性フィルムの製造方法
KR101837564B1 (ko) 배리어 적층체 및 이의 제조방법
JP4525330B2 (ja) 導電性ガスバリア積層体の製造方法
WO2015163358A1 (ja) ガスバリアーフィルム及びその製造方法
JP2003183813A (ja) 透明導電性フィルムの製造装置
JP6897567B2 (ja) ガスバリアーフィルム
JP4648935B2 (ja) ガスバリアフィルムの製造方法、及びガスバリアフィルムの製造装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210906

Address after: 255400 No. 1618, Hongda Road, Linzi District, Zibo City, Shandong Province

Applicant after: SHANDONG YONGJU MEDICAL TECHNOLOGY Co.,Ltd.

Address before: No.17 Hongda Road, Linzi District, Zibo City, Shandong Province

Applicant before: SHANDONG YONGJU MEDICAL TECHNOLOGY Co.,Ltd.

Applicant before: SHANTOU University

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210518