CN112731801B - 一种对称死区非线性的自适应动态面输出反馈控制方法 - Google Patents

一种对称死区非线性的自适应动态面输出反馈控制方法 Download PDF

Info

Publication number
CN112731801B
CN112731801B CN202011497778.XA CN202011497778A CN112731801B CN 112731801 B CN112731801 B CN 112731801B CN 202011497778 A CN202011497778 A CN 202011497778A CN 112731801 B CN112731801 B CN 112731801B
Authority
CN
China
Prior art keywords
dynamic surface
dead zone
gain
filter
feedback control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011497778.XA
Other languages
English (en)
Other versions
CN112731801A (zh
Inventor
刘烨
周秋坤
刘露露
吴健珍
陈剑雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Engineering Science
Original Assignee
Shanghai University of Engineering Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Engineering Science filed Critical Shanghai University of Engineering Science
Priority to CN202011497778.XA priority Critical patent/CN112731801B/zh
Publication of CN112731801A publication Critical patent/CN112731801A/zh
Application granted granted Critical
Publication of CN112731801B publication Critical patent/CN112731801B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/024Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明涉及一种对称死区非线性的自适应动态面输出反馈控制方法,包括:引入高增益K滤波器估计***的不可测量状态,获取当前具有死区输入的严反馈***的控制函数,并对带有未知死区输入的***设计自适应输出反馈控制律;基于高增益K观测器设计自适应动态面控制器,对对称死区非线性进行自适应动态面输出反馈控制。与现有技术相比,本发明具有对具有未知死区非线性影响的非线性***进行高精度信号跟踪控制等优点。

Description

一种对称死区非线性的自适应动态面输出反馈控制方法
技术领域
本发明涉及动力***控制技术领域,尤其是涉及一种对称死区非线性的自适应动态面输出反馈控制方法。
背景技术
随着电动伺服***、液压伺服***等工业运动控制***的广泛应用,工业控制***中大量执行器中存在的死区非线性问题得到了广泛的讨论研究。自适应控制是一种有效处理不确定项的控制方法,对死区非线性***的进行自适应控制一直以来都是一个热门的研究领域。现有技术中,针对具有已知死区参数约束的线性***提出了一种自适应死区逆补偿方案,该方案保证了全状态已知的情况下的全局稳定性和渐近跟踪。同样地,为了消除死区的影响,有研究学者构造了死区的自适应逆,并提出了线性模型参考控制器。此外,针对自适应反步法控制器设计中的死区效应的影响,已有技术构造了平滑的死区逆函数,并采用该逆函数来消除死区效应,但另一方面,该方法难以构造各种死区逆的模型;因此该研究在不构造死区逆的情况下,将死区非线性分为两部分:一部分是线性部分,另一部分是具有未知界的“类扰动”部分,再利用鲁棒自自适应控制对其进行处理。另一种现有技术针对一类具有未知非对称死区的多输入多输出非线性***,提出了鲁棒性自适应动态面控制(DSC)方案,并利用初始化技术,得到了跟踪误差的L_∞性能(一个***的整体性能指标)。当只有输入和输出信号可测时,其他学者研究了基于跟踪微分器的死区非线性***的改进的输出反馈动态面控制,在所有控制函数都是正的和有界的前提下,实现了稳态和瞬态性能。此外,基于模糊逻辑***和神经网络技术,另有研究提出了具有未知死区的非线性***的半全局鲁棒自适应控制器。
基于上述关于死区的研究成果可知大多数现有的控制方法需要测量所有***状态。而对于具有死区的非线性***,自适应输出反馈控制仍然具有挑战性。例如,现有技术提出了一种受死区非线性输入影响的不确定非线性***的自适应输出反馈控制,但该方法无法保证***的瞬态跟踪性能,这可能会导致一些不期望发生的后果,如超调量过大等。另外,现有技术虽然实现了瞬态性能,但由于引入了跟踪误差变换,因此需要更复杂的动态面控制设计。直到目前为止,对于具有死区的非线性的***,输出反馈控制的难点一直都是状态观测器的构造和相对简单的控制设计过程,在消除死区影响的前提下,使得闭环***稳定,保证***的稳态和瞬态跟踪性能。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种对称死区非线性的自适应动态面输出反馈控制方法,该方法通过考虑未知死区输入的影响,引入高增益K滤波器对***未知状态进行估计,并补偿未知死区非线性影响;利用动态面技术,解决因虚拟控制微分导致的计算膨胀问题,减轻计算量;采用自适应控制,对死区特性以及***中的未知参数进行在线估计;通过初始化理论,调整设计参数值,可以保证跟踪误差的性能,使跟踪误差收敛到任意小的一个邻域。
本发明的目的可以通过以下技术方案来实现:
一种对称死区非线性的自适应动态面输出反馈控制方法,该方法包括如下步骤:
引入高增益K滤波器估计***的不可测量状态,获取当前具有死区输入的严反馈***的控制函数,并对带有未知死区输入的***设计自适应输出反馈控制律;
基于高增益K滤波器设计自适应动态面控制器,对对称死区非线性进行自适应动态面输出反馈控制。
进一步地,基于高增益K滤波器设计自适应动态面控制器的具体步骤包括:
第1步、定义第一个动态面误差:
s1=y-yd
对其求导数,得到:
Figure GDA0003517378280000021
其中:
Θ=[bm1,…,θr]T
Figure GDA0003517378280000022
取虚拟控制
Figure GDA0003517378280000031
为:
Figure GDA0003517378280000032
其中,c1>0为设计参数,
Figure GDA0003517378280000033
为p(=bm -1)的估计,
Figure GDA0003517378280000034
Figure GDA0003517378280000035
的估计,
Figure GDA0003517378280000036
Figure GDA0003517378280000037
σ为以小正常数;
参数
Figure GDA0003517378280000038
Figure GDA0003517378280000039
的更新率为:
Figure GDA00035173782800000310
Figure GDA00035173782800000311
其中,
Figure GDA00035173782800000312
γp为自适应增益,
Figure GDA00035173782800000313
ηp为正设计参数,
Figure GDA00035173782800000314
通过时间常数为τ2的一阶滤波器,得到:
Figure GDA00035173782800000315
第i步、定义第i,2≤i≤n-1个动态面误差为:
Si=ζi-zi
对其求导数得到:
Figure GDA00035173782800000316
取虚拟控制
Figure GDA00035173782800000317
为:
Figure GDA00035173782800000318
其中,ci>0是设计参数,
Figure GDA00035173782800000319
通过时间常数为τi+1的一阶滤波器:
Figure GDA00035173782800000320
第ρ步、定义第ρ个动态面误差:
Sρ=ζρ-zρ
对其求导数得到:
Figure GDA00035173782800000321
取实际控制v为:
Figure GDA00035173782800000322
其中,cρ是正设计参数。
进一步地,基于高增益K滤波器设计自适应动态面控制器过程中还包括初始化操作,所述初始化操作包括调节设计参数步骤。具体内容为:
将高增益K滤波器、参数更新率的初始值均设为0,并假设ω1(0)=y(0),yd(0)=y(0),则有:
Figure GDA0003517378280000041
则跟踪误差的
Figure GDA0003517378280000042
性能满足:
Figure GDA0003517378280000043
令yd(0)=y(0),则动态面误差的表达式为:
S1(0)=y(0)-yd(0)=0
进而得出:
Si(0)=0,2≤i≤ρ
由高增益K滤波器的初始值,即ξi(0)=0(1≤i≤r),ζ(0)=0,可知
Figure GDA0003517378280000044
于是ω1(0)=y(0)=x1(0),ε1(0)=0,于是对于q≤1有:
Figure GDA0003517378280000045
因此,可得V(t)的上界值为:
Figure GDA0003517378280000046
则跟踪误差的
Figure GDA0003517378280000047
性能满足:
Figure GDA0003517378280000048
本发明提供的对称死区非线性的自适应动态面输出反馈控制方法,相较于现有技术至少包括如下有益效果:
(1)引入高增益K观测器估计***未知状态,在***中考虑了被控***中已知的光滑函数的作用,并没有简单地将死区的***的控制项当作有界扰动处理,可补偿死区的影响;
(2)利用动态面技术,不仅可以规避因对虚拟控制进行微分造成的计算复杂度问题,而且能简化控制器设计;
(3)设计的控制器能够消除死区非线性的影响,保证闭环***的稳定性,并且在理论上可通过调参使***跟踪误差任意小;
(4)提出的自适应调参率,仅需在线估计一个标量值而不是向量值,可以降低计算负担、利于实际应用;
(5)引入初始化理论,通过调节设计参数可以提高***的瞬态跟踪性能。
附图说明
图1为实施例中输出信号及参考信号示意图;
图2为实施例中跟踪误差示意图;
图3为实施例中控制输入示意图;
图4为实施例中状态信号x2及其观测器估计值
Figure GDA0003517378280000051
的示意图;
图5为实施例中高增益K观测器的观测误差ε的示意图;
图6为实施例中对称死区非线性的自适应动态面输出反馈控制方法的流程示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
实施例
本实施例涉及一种对称死区非线性的自适应动态面输出反馈控制方法,针对一类参数严反馈***,考虑未知死区输入的影响,引入高增益K滤波器来估计未知状态和补偿死区的影响,采用动态面技术,解决了因虚拟控制微分导致的计算膨胀问题,简化了控制器设计和减轻了计算量。对死区以及***未知参数进行在线估计,最终所设计的控制器,在消除死区影响的同时,可以保证闭环***的稳定性,并通过调节设计参数,可以实现跟踪误差的有界收敛。最后通过一个单连杆机器人动力学模型仿真实例对该设计方案进行了验证。本发明对称死区非线性的自适应动态面输出反馈控制方法步骤包括:
(1)引入高增益K滤波器估计***的不可测量状态,这对于在无需跟踪误差变换的情况下直接改善瞬态性能至关重要。
(2)采用自适应动态面控制消除死区效应,进而避免后推设计中固有的微分***的问题。另外,自适应律只需在设计的第一步中进行在线更新,这大大简化了设计的过程,减少了计算量。
(3)在DSC中加入了一种初始化技术,以保证跟踪误差的瞬态性能。也就是说,只要调整一些设计参数的值,就可以保证稳态跟踪误差和跟踪误差的最大超调量任意小。
本发明的对称死区非线性的自适应动态面输出反馈控制方法具体包括如下步骤:
步骤一、获取当前具有死区输入的严反馈***的控制函数,对控制函数进行变换。
考虑如下具有死区输入的严反馈***的控制函数:
Figure GDA0003517378280000061
其中:
Figure GDA0003517378280000062
其中,
Figure GDA0003517378280000063
分别表示***状态向量和输出信号;θi,i=1,...,r和b是未知常数;fi,j(y),i=1,…,r,j=1,…n和gi(y),i=0,…,m,(gm(y)≠0)均是已知光滑函数;ρ(≥1)=n-m表示***相对阶,其中的n、m是已知常数;
Figure GDA0003517378280000064
为未知死区非线性的输出,其表达式如下:
u(t)=mv(t)+d(t) (3)
其中:
Figure GDA0003517378280000065
其中,v是本发明方法所要设计的控制输入,m,dr,dl均是有界的未知正常数,并且
Figure GDA0003517378280000066
Figure GDA0003517378280000067
是未知常数。
则利用式(4)可将式(1)重写为:
Figure GDA0003517378280000068
其中bm=bm。
步骤二、控制目标:针对带有未知死区输入的***的公式(1)中设计自适应输出反馈控制律,使***输出跟踪误差y-yd(yd为参考信号)渐进收敛到原点,并且闭环***内所有信号均有界。自适应输出反馈控制律包括:
假设1:假设参考信号yd是光滑已知的函数,并且当t≥0时,
Figure GDA0003517378280000071
始终属于一个已知闭集。
假设2:假设***参数b的符号已知,本实施例中假设为正。
假设3:假设***中:
Figure GDA0003517378280000072
输入(y0,y,x2,...,xρ),输出xρ+1是有界输入有界输出稳定。
步骤三、基于高增益K滤波器设计自适应动态面控制器。
1)高增益K滤波器
选择合适的向量k=[k1,k2,…,kn]T,使A0=A-ke1 T是Hurwitz矩阵。则式(5)可改写为:
Figure GDA0003517378280000073
式中,bG(y)d(t)为***的控制项。
由于***中仅有输出信号可测,故采用高增益K滤波器来估计***状态,同时补偿死区非线性的影响:
Figure GDA0003517378280000074
Figure GDA0003517378280000075
Figure GDA0003517378280000076
其中,Ψ=diag(1,q,…,qn-1),q≥1,q是观测器增益,en-i表示n维向量的第(n-i)个坐标向量。
状态估计为:
Figure GDA0003517378280000077
观测器估计误差定义为
Figure GDA0003517378280000078
则可以根据式(8)-(10)和式(11)得出:
Figure GDA0003517378280000079
其中,ε1是向量ε的第一行。
引理1:定义如下二次型函数:
Vε:=εTPε (13)
其中,对称矩阵P满足
Figure GDA0003517378280000081
其中
Figure GDA0003517378280000082
满足:
Figure GDA0003517378280000083
其中,I是单位矩阵。此时,有以下不等式成立:
Figure GDA0003517378280000084
其中,
Figure GDA0003517378280000085
是关于y的连续函数,
Figure GDA0003517378280000086
λmax(·)是·的最大特征值。
证明:使用坐标变换
Figure GDA0003517378280000087
可得
Figure GDA0003517378280000088
并有:
Figure GDA0003517378280000089
接下来定义如下二次型函数:
Figure GDA00035173782800000810
因此,可得
Figure GDA00035173782800000811
于是:
Figure GDA00035173782800000812
同时,存在一个非负连续光滑函数
Figure GDA00035173782800000813
满足
Figure GDA00035173782800000814
Figure GDA00035173782800000815
证明完成。
2)自适应动态面控制器设计
基于上述高增益K滤波器,提出以下自适应动态面控制器设计:
第1步、定义第一个动态面误差(跟踪误差)
s1=y-yd (20)
对其求导有:
Figure GDA00035173782800000816
其中:
Θ=[bm1,…,θr]T
Figure GDA0003517378280000091
取虚拟控制
Figure GDA0003517378280000092
为:
Figure GDA0003517378280000093
其中,c1>0是设计参数,
Figure GDA0003517378280000094
为p(=bm -1)的估计,
Figure GDA0003517378280000095
Figure GDA0003517378280000096
的估计,
Figure GDA0003517378280000097
Figure GDA0003517378280000098
在引理1中已定义,
Figure GDA0003517378280000099
Figure GDA00035173782800000910
σ是以小正常数。
参数
Figure GDA00035173782800000911
Figure GDA00035173782800000912
的更新率为:
Figure GDA00035173782800000913
Figure GDA00035173782800000914
其中,
Figure GDA00035173782800000915
γp是自适应增益,
Figure GDA00035173782800000916
ηp是正设计参数。
为避免“微分***”问题,让
Figure GDA00035173782800000917
通过时间常数为τ2的一阶滤波器:
Figure GDA00035173782800000918
第i步、(2≤i≤n-1)定义第i个动态面误差为:
Si=ζi-zi (26)
对其求导有:
Figure GDA00035173782800000919
取虚拟控制
Figure GDA00035173782800000920
Figure GDA00035173782800000921
其中ci>0是设计参数。
Figure GDA00035173782800000922
通过时间常数为τi+1的一阶滤波器:
Figure GDA00035173782800000923
第ρ步、定义第ρ个动态面误差:
Sρ=ζρ-zρ (30)
对其求导有:
Figure GDA00035173782800000924
取实际控制v为:
Figure GDA00035173782800000925
其中,cρ是正设计参数。
步骤四、***稳定性分析
定义
Figure GDA0003517378280000101
2≤i≤ρ,类似于动态面技术,根据式(8)-(10),(20)-(32),存在光滑连续函数Bi+1(·),i=1,…,ρ-1使下面的不等式成立:
Figure GDA0003517378280000102
Figure GDA0003517378280000103
其中,
Figure GDA0003517378280000104
定义如下Lyapunov函数:
Figure GDA0003517378280000105
Figure GDA0003517378280000106
Figure GDA0003517378280000107
Figure GDA0003517378280000108
于是基于上述控制方法,可得到如下定理:
定理1:针对带有未知死区输入(3)的一类严反馈非线性***(1),在假设1-3的条件下,应用高增益K滤波器(8)-(10),控制律(32),自适应律(23),(24),则对于任意初始条件满足V(0)≤C2
Figure GDA0003517378280000109
其中C1、C2是任意正常数,则可以通过调节设计参数q,ci,i=1,...,ρ,τi+1,i=1,...,ρ-1,
Figure GDA00035173782800001010
ηp和自适应增益
Figure GDA00035173782800001011
γp使闭环***信号半全局有界,并且可使跟踪误差信号收敛到任意小。
证明:定义有界紧集为
Figure GDA00035173782800001012
Figure GDA00035173782800001013
由上述可知在紧集Ω1×Ω2内存在正常数Mi+1满足|Bi+1(·)|≤Mi+1,结合式(33),(34)和杨氏不等式可得:
Figure GDA00035173782800001014
Figure GDA0003517378280000111
其中,ι是任意正常数。
利用引理1中的
Figure GDA0003517378280000112
和杨氏不等式可得如下不等式关系
Figure GDA0003517378280000113
并满足如下设计参数不等式
Figure GDA0003517378280000114
此外,
Figure GDA0003517378280000115
可写为
Figure GDA0003517378280000116
由该项可知当
Figure GDA0003517378280000117
时,
Figure GDA0003517378280000118
Figure GDA0003517378280000119
时,
Figure GDA00035173782800001110
有一个上界,定义为
Figure GDA00035173782800001111
基于上述式(41),(42),(43),则可得V的时间导数满足:
Figure GDA00035173782800001112
其中,
Figure GDA00035173782800001113
对式(44)求解可得:
Figure GDA00035173782800001114
此外,当t→∞时,有
Figure GDA00035173782800001115
Figure GDA00035173782800001116
由此,我们可得Si,…,Sρ,Y2,…,Yρ,
Figure GDA00035173782800001117
ε是有界的。根据假设1和式(20)知y有界,故而fi,j(y),gi(y),
Figure GDA0003517378280000121
有界,根据高增益K滤波器(8)-(10)得ω,ξi,ψ有界。由状态估计知有下式成立:
Figure GDA0003517378280000122
所以ζ1有界。依据式(22),(25)知z2有界,再根据式(26)知ζ2有界,类似地,可以得到z3,…,zρ3,…,ζρ有界,又因式(47)得x2,…,xρ有界。参照假设3知xρ+1有界,因此ζρ+1有界,根据式(32)可得控制律v有界。最后从式(8)知ζ有界,所以***状态信号x有界。因此,闭环***中所有信号均有界,并且跟踪误差可以收敛到一个闭集内。
定理2:在假设1、2下,通过应用初始化技术,将高增益K滤波器、参数更新率的初始值均设为0,并假设ω1(0)=y(0),yd(0)=y(0),则有:
Figure GDA0003517378280000123
则跟踪误差的
Figure GDA0003517378280000124
性能满足:
Figure GDA0003517378280000125
证明:
让yd(0)=y(0),根据式(20)有:
S1(0)=y(0)-yd(0)=0 (50)
根据式(23),(24)和初始条件可得
Figure GDA0003517378280000126
根据式(22),可得
Figure GDA0003517378280000127
因此,根据式(25),可得z2(0)=0,
Figure GDA0003517378280000128
同样地,可以得出:
Si(0)=0,2≤i≤ρ (51)
此外,根据式(25)-(29)有
Yi+1(0)=0,1≤i≤ρ-1 (52)
根据式(35),(43),(51)和(52),可得
Figure GDA0003517378280000129
将式(53)代入式(45)得:
Figure GDA0003517378280000131
由高增益K滤波器的初始值,即ξi(0)=0(1≤i≤r),ζ(0)=0,可知
Figure GDA0003517378280000132
于是ω1(0)=y(0)=x1(0),ε1(0)=0,于是对于q≤1有:
Figure GDA0003517378280000133
因此,可得V(t)的上界值:
Figure GDA0003517378280000134
上式意味着跟踪误差的
Figure GDA0003517378280000135
性能满足:
Figure GDA0003517378280000136
因此,通过调节设计参数,可以使||S||1∞收敛到原点的任意小邻域内。证明结束。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的工作人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (3)

1.一种对称死区非线性的自适应动态面输出反馈控制方法,其特征在于,包括:
引入高增益K滤波器估计***的不可测量状态,获取当前具有死区输入的严反馈***的控制函数,并对带有未知死区输入的***设计自适应输出反馈控制律;
基于高增益K滤波器设计自适应动态面控制器,对对称死区非线性进行自适应动态面输出反馈控制;
基于高增益K滤波器设计自适应动态面控制器的具体步骤包括:
第1步、定义第一个动态面误差:
s1=y-yd,
对其求导数,得到:
Figure FDA0003737510470000011
其中:
Θ=[bm1,…,θr]T
Figure FDA0003737510470000012
取虚拟控制
Figure FDA0003737510470000013
为:
Figure FDA0003737510470000014
其中,c1>0为设计参数,
Figure FDA0003737510470000015
为p=bm -1的估计,
Figure FDA0003737510470000016
Figure FDA0003737510470000017
的估计,
Figure FDA0003737510470000018
Figure FDA0003737510470000019
σ为以小正常数;
参数
Figure FDA00037375104700000110
Figure FDA00037375104700000111
的更新率为:
Figure FDA00037375104700000112
Figure FDA00037375104700000113
其中,
Figure FDA00037375104700000114
为自适应增益,
Figure FDA00037375104700000115
为正设计参数,
Figure FDA00037375104700000116
通过时间常数为τ2的一阶滤波器,得到:
Figure FDA00037375104700000117
Si=ζi-zi
对其求导数得到:
Figure FDA0003737510470000021
取虚拟控制
Figure FDA0003737510470000022
为:
Figure FDA0003737510470000023
其中,ci>0是设计参数,
Figure FDA0003737510470000024
通过时间常数为τi+1的一阶滤波器:
Figure FDA0003737510470000025
第ρ步、定义第ρ个动态面误差:
Sρ=ζρ-zρ
对其求导数得到:
Figure FDA0003737510470000026
取实际控制v为:
Figure FDA0003737510470000027
其中,cρ是正设计参数。
2.根据权利要求1所述的对称死区非线性的自适应动态面输出反馈控制方法,其特征在于,基于高增益K滤波器设计自适应动态面控制器过程中还包括初始化操作,所述初始化操作包括调节设计参数步骤。
3.根据权利要求2所述的对称死区非线性的自适应动态面输出反馈控制方法,所述初始化操作的具体内容为:
将高增益K滤波器、参数更新率的初始值均设为0,并假设ω1(0)=y(0),yd(0)=y(0),则有:
Figure FDA0003737510470000028
Figure FDA0003737510470000029
令yd(0)=y(0),则动态面误差的表达式为:
S1(0)=y(0)-yd(0)=0
进而得出:
Si(0)=0,2≤i≤ρ
由高增益K滤波器的初始值,即ξi(0)=0(1≤i≤r),ζ(0)=0,可知
Figure FDA0003737510470000031
于是ω1(0)=y(0)=x1(0),ε1(0)=0,于是对于q≤1有:
Figure FDA0003737510470000032
因此,可得V(t)的上界值为:
Figure FDA0003737510470000033
Figure FDA0003737510470000034
CN202011497778.XA 2020-12-17 2020-12-17 一种对称死区非线性的自适应动态面输出反馈控制方法 Active CN112731801B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011497778.XA CN112731801B (zh) 2020-12-17 2020-12-17 一种对称死区非线性的自适应动态面输出反馈控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011497778.XA CN112731801B (zh) 2020-12-17 2020-12-17 一种对称死区非线性的自适应动态面输出反馈控制方法

Publications (2)

Publication Number Publication Date
CN112731801A CN112731801A (zh) 2021-04-30
CN112731801B true CN112731801B (zh) 2022-10-14

Family

ID=75602807

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011497778.XA Active CN112731801B (zh) 2020-12-17 2020-12-17 一种对称死区非线性的自适应动态面输出反馈控制方法

Country Status (1)

Country Link
CN (1) CN112731801B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114371616B (zh) * 2021-12-09 2023-09-12 上海工程技术大学 一种死区非线性时滞***的跟踪控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2423377B (en) * 2002-12-09 2007-04-18 Georgia Tech Res Inst Adaptive Output Feedback Apparatuses And Methods Capable Of Controlling A Non-Minimum Phase System
CN106438593B (zh) * 2016-10-21 2018-01-12 电子科技大学 一种存在参数不确定性和负载干扰的电液伺服控制方法及机械臂
CN106773694B (zh) * 2016-12-26 2019-10-22 东北电力大学 压电精密位置平台自适应输出反馈逆控制方法
CN107632518B (zh) * 2017-09-05 2019-10-18 西北工业大学 基于高增益观测器的高超声速飞行器神经网络复合学习控制方法
CN107479384B (zh) * 2017-09-05 2019-10-22 西北工业大学 高超声速飞行器神经网络复合学习非反步控制方法
US20200089229A1 (en) * 2018-09-18 2020-03-19 GM Global Technology Operations LLC Systems and methods for using nonlinear model predictive control (mpc) for autonomous systems
CN110333657B (zh) * 2019-07-10 2022-08-16 上海工程技术大学 用于死区非线性不确定***的自适应动态面跟踪控制方法
CN111976677B (zh) * 2020-09-02 2023-06-16 哈尔滨理工大学 一种纯电动汽车复合制动防抱死控制***及控制方法

Also Published As

Publication number Publication date
CN112731801A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
Zhang et al. Fixed-time output feedback trajectory tracking control of marine surface vessels subject to unknown external disturbances and uncertainties
Ni et al. Prescribed performance fixed-time recurrent neural network control for uncertain nonlinear systems
Chen et al. Adaptive synchronization of multiple uncertain coupled chaotic systems via sliding mode control
Li et al. Adaptive fuzzy robust output feedback control of nonlinear systems with unknown dead zones based on a small-gain approach
Wang et al. Adaptive finite-time tracking control of switched nonlinear systems
Yang et al. Adaptive neural prescribed performance tracking control for near space vehicles with input nonlinearity
Liu et al. Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems
Zhou Decentralized adaptive control for large-scale time-delay systems with dead-zone input
Liu et al. Adaptive predefined performance control for MIMO systems with unknown direction via generalized fuzzy hyperbolic model
Boulkroune et al. Adaptive fuzzy tracking control for a class of MIMO nonaffine uncertain systems
CN104950677A (zh) 基于反演滑模控制的机械臂***饱和补偿控制方法
CN106774379B (zh) 一种智能超螺旋强鲁棒姿态控制方法
Mohammadzadeh et al. A new robust observer-based adaptive type-2 fuzzy control for a class of nonlinear systems
CN113359445A (zh) 一种多智能体磁滞***分布式输出反馈渐近一致控制方法
Su et al. A combined backstepping and dynamic surface control to adaptive fuzzy state‐feedback control
Zhang et al. Design of course-keeping controller for a ship based on backstepping and neural networks
Wang et al. Decentralised adaptive dynamic surface control for a class of interconnected non-linear systems
Zhang et al. Finite-time adaptive quantized motion control for hysteretic systems with application to piezoelectric-driven micropositioning stage
CN112731801B (zh) 一种对称死区非线性的自适应动态面输出反馈控制方法
He et al. An α‐variable model‐free prescribed‐time control for nonlinear system with uncertainties and disturbances
CN106647241B (zh) 一种新型的非线性pid控制器
He et al. Finite-time stability of state-dependent delayed systems and application to coupled neural networks
CN109108964B (zh) 一种基于自适应动态规划Nash博弈的空间机械臂协调控制方法
Wang et al. Finite-time performance guaranteed event-triggered adaptive control for nonlinear systems with unknown control direction
Chen et al. Recurrent wavelet neural backstepping controller design with a smooth compensator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant