CN112630185A - 一种基于近红外光电复合材料检测冈田酸毒素的方法 - Google Patents

一种基于近红外光电复合材料检测冈田酸毒素的方法 Download PDF

Info

Publication number
CN112630185A
CN112630185A CN202011488935.0A CN202011488935A CN112630185A CN 112630185 A CN112630185 A CN 112630185A CN 202011488935 A CN202011488935 A CN 202011488935A CN 112630185 A CN112630185 A CN 112630185A
Authority
CN
China
Prior art keywords
solution
okadaic acid
flower
tungsten oxide
chitosan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011488935.0A
Other languages
English (en)
Other versions
CN112630185B (zh
Inventor
陈晓梅
郑晨琰
尹明明
苏炳元
魏洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Disease Prevention Control Center
Jimei University
Original Assignee
Xiamen Disease Prevention Control Center
Jimei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Disease Prevention Control Center, Jimei University filed Critical Xiamen Disease Prevention Control Center
Priority to CN202011488935.0A priority Critical patent/CN112630185B/zh
Publication of CN112630185A publication Critical patent/CN112630185A/zh
Priority to US17/507,340 priority patent/US11828723B2/en
Application granted granted Critical
Publication of CN112630185B publication Critical patent/CN112630185B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/49Systems involving the determination of the current at a single specific value, or small range of values, of applied voltage for producing selective measurement of one or more particular ionic species
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/36Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 halogen being the only anion, e.g. NaYF4
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5308Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Urology & Nephrology (AREA)
  • Electrochemistry (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Geology (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明提出了一种基于近红外光电复合材料检测冈田酸毒素的方法,包括以下步骤:通过简单的高温溶剂热法合成NaYF4:Yb,Tm上转换纳米粒子(UCNP)和半导体材料花状氧化钨(WO3);通过经典的酰胺化反应,将UCNP与冈田酸单克隆抗体偶联,构建一种竞争性的近红外光电化学免疫吸附测定法(cNIR‑PECIA),用于冈田酸毒素的检测。此外,本发明采用网板印刷碳电极(SPE)作为工作电极,仅需少量电解质,这是低成本且免维护的。

Description

一种基于近红外光电复合材料检测冈田酸毒素的方法
技术领域
本发明属于毒素检测领域,具体涉及一种基于近红外光电复合材料检测冈田酸毒素的方法。
背景技术
我国是海产品生产和消费大国,海产品的质量安全问题关系国计民生。冈田酸(OA)是腹泻性贝类毒素(DSP)的主要成分,它的长期毒性影响对贝类水产养殖业的发展和公共卫生构成了严重威胁。OA可以诱导蛋白质过度磷酸化和增殖基因的表达,从而导致肿瘤形成。欧洲食品***(EFSA)提议在2018年将贝类中OA的最大限量从160μg/kg降低至45μg/kg。OA毒性强且不易找到有效解毒剂,因此,发展快速、准确、灵敏的OA检测方法尤为重要。
目前,OA的检测方法主要包括鼠生物法、高效液相色谱-质谱联用法和免疫传感器法。鼠生物法虽然技术简单、无需使用专门仪器,但由于鼠个体情况不同,容易造成较大偏差,灵敏度不高;高效液相色谱-质谱联用法虽有强大的分析功能,但仪器昂贵,分析周期较长,分析成本高且操作专业性强,给OA的分析带来诸多不便。相较而言,免疫传感器以抗体-抗原的特异性结合为基础,具有操作简便、快速、成本低的特点,特别是随着生物技术的快速发展,一些特异性高的毒素抗体相继问世,有效减少了抗体交叉反应,在一定程度上促进了OA免疫传感器的发展。尽管如此,在实际应用中,免疫传感器仍存在一些局限:首先,固定基质对毒素抗体的有效固载量不高,直接影响了免疫传感器的灵敏度;其次,酶作为最常用的抗体标记物,存在操作复杂、酶易失活等问题,影响传感信号的稳定性,不利于提高检测的重现性。综上所述,发掘新的传感材料,设计和构建高效的免疫传感界面,是实现对OA快速、灵敏检测的重要途径。
近年来,大部分PEC传感器的工作方向聚焦于以能量较大的紫外或可见(UV-Vis)光作为激发光源,然而UV-Vis光在生物体内深层组织中的穿透能力有限,并且对生物分子结构具有破坏性,局限于生物体表面的分析检测。相比之下,具有低光毒性与良好生物相容性的近红外(NIR)光则是一种更好的选择,它可以避免生物组织的自辐照,从而为体内的应用研究提供了进一步发展的可能性。然而由于缺少稳定的NIR PEC材料,目前关于NIR PEC传感器的研究报道较少。据我们所知,具有NIR响应的光敏材料大致可以分为两类:(1)禁带宽度较小的金属硫化物;(2)光学吸收稳定的金属氧化物。然而前者稳定性较差,后者虽具有良好的稳定性,但大多只能被UV-Vis光激发,因此探索一些新型的近红外光电材料仍存在巨大的挑战。
上转换材料发光(UCL)不同于一般材料,它由基质材料和发光中心(激活剂和敏化剂)组成,其发出光子的能量大于而不是小于激发光子的能量,是典型的反斯托克斯过程,通常将NIR光转换为UV-Vis光。在众多的敏化剂和激活剂中,Yb3+和Er3+/Tm3+/Ho3+是经典的组合。其中NaYF4:Yb,Tm上转换纳米粒子在近红外(980nm)的激发下,能发出蓝光(450nm和480nm)和红光(650nm),其发射光谱与半导体材料氧化钨(WO3)的吸收光谱完全匹配。WO3具备独特的光学及电学特性,目前已被广泛应用于光催化、电催化和生物传感等领域。
发明内容
本申请的目的在于提供一种基于近红外光电复合材料检测冈田酸毒素的方法,通过简单的高温溶剂热法合成NaYF4:Yb,Tm上转换纳米粒子和半导体材料氧化钨(WO3),二者通过反应生成WO3/NaYF4:Yb,Tm复合材料有良好的近红外光电性能,并将其应用于冈田酸毒素(OA)的检测。
本发明提出了一种基于近红外光电复合材料检测冈田酸毒素的方法,包括以下步骤:
步骤S1:将冈田酸单克隆抗体(Anti-OA-MAb)和磷酸盐缓冲液按质量比1:1000-3000混合,得到溶液A;
步骤S2:将聚乙烯亚胺/NaYF4:Yb,Tm(BPEI/UCNP)分散于含有1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)的磷酸盐缓冲液中,得到溶液B;
步骤S3:将溶液A与溶液B进行混合反应得到溶液C,将溶液C离心后的沉淀分散于含有牛血清白蛋白(BSA)的磷酸盐缓冲液中,得到目标产物NaYF4:Yb,Tm-Ab(UCNP-Ab);
步骤S4:将花状氧化钨(Flower-like-WO3)和壳聚糖(CS)溶于超纯水中,得到花状氧化钨/壳聚糖(Flower-like-WO3/CS)悬浮液D;
步骤S5:将花状氧化钨/壳聚糖(Flower-like-WO3/CS)悬浮液D滴于网板印刷碳电极(SPE)上,得到目标产物花状氧化钨/壳聚糖/网板印刷碳电极(Flower-like-WO3/CS/SPE);
步骤S6:将冈田酸毒素(OA)加入到2-吗啉乙磺酸生物缓冲液中,得到溶液E,将步骤S5得到的花状氧化钨/壳聚糖/网板印刷碳电极(Flower-like-WO3/CS/SPE)浸入溶液E中反应;
步骤S7:将步骤S6得到的花状氧化钨/壳聚糖/网板印刷碳电极(Flower-like-WO3/CS/SPE)分别在乙酰胺溶液和含有吐温-20(Tween-20)的牛血清白蛋白溶液(BSA)中进行反应,得到目标产物冈田酸毒素/花状氧化钨/壳聚糖/网板印刷碳电极(OA/Flower-like-WO3/CS/SPE);
步骤S8:将NaYF4:Yb,Tm-Ab(UCNP-Ab)的稀释溶液和冈田酸毒素标准溶液(OA)浇铸在冈田酸毒素/花状氧化钨/壳聚糖/网板印刷碳电极(OA/Flower-like-WO3/CS/SPE)上进行反应,反应后用含有吐温-20(Tween-20)的磷酸盐缓冲液冲洗;以及
步骤S9:利用计时电流法,设置偏置电压为0V,测试步骤S8得到的所述冈田酸/花状氧化钨/壳聚糖/网板印刷碳电极(OA/Flower-like-WO3/CS/SPE)的光电行为。
在一个优选的实施例中,磷酸盐缓冲液的物质的量浓度为10mmol/L,pH值为7.4。
在一个优选的实施例中,步骤S2中200μL,8mg/mL的聚乙烯亚胺/NaYF4:Yb,Tm(BPEI/UCNP)分散于含有10mg/mL的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)和5mg/mL的N-羟基琥珀酰亚胺(NHS)的600μL磷酸盐缓冲液中。
在一个优选的实施例中,步骤S3的溶液A与溶液B的反应温度为4℃,反应时间为2小时,磷酸盐缓冲液含有0.1%的牛血清白蛋白(BSA)。
在一个优选的实施例中,步骤S4的超纯水含有0.3%-0.5%花状氧化钨(Flower-like-WO3)和0.25wt%壳聚糖(CS)。
在一个优选的实施例中,步骤S5的花状氧化钨/壳聚糖(Flower-like-WO3/CS)悬浮液D的体积为10μL,花状氧化钨/壳聚糖/网板印刷碳电极(Flower-like-WO3/CS/SPE)在60℃温度下干燥。
在一个优选的实施例中,步骤S6的500μL,0.5mg/mL的冈田酸毒素(OA)与含有10mg/mL的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)和5mg/mL的N-羟基琥珀酰亚胺(NHS)的2-吗啉乙磺酸生物缓冲液反应1小时后得到溶液E,花状氧化钨/壳聚糖/网板印刷碳电极(Flower-like-WO3/CS/SPE)与溶液E的反应时间为1小时,且2-吗啉乙磺酸生物缓冲液的pH值为5.0,物质的量浓度为0.1mol/L。
在一个优选的实施例中,步骤S7的牛血清白蛋白(BSA)溶液中含有0.05%的吐温-20(Tween-20),牛血清白蛋白(BSA)溶液的体积为50μL,质量分数为1%。
在一个优选的实施例中,步骤S8的NaYF4:Yb,Tm-Ab(UCNP-Ab)稀释溶液中的NaYF4:Yb,Tm-Ab(UCNP-Ab)和磷酸盐缓冲液按质量比1:5~20混合,磷酸盐缓冲液中含有0.05%的吐温-20(Tween-20)。冈田酸毒素分散于10mmol/L的磷酸盐缓冲液中,形成浓度为0.001~60ng/mL的冈田酸毒素标准溶液(OA)。
在一个优选的实施例中,步骤S8的NaYF4:Yb,Tm-Ab(UCNP-Ab)的稀释溶液和冈田酸毒素标准溶液(OA)与冈田酸毒素/花状氧化钨/壳聚糖/网板印刷碳电极(OA/Flower-like-WO3/CS/SPE)在温度37℃下反应1小时。
本发明的一种基于近红外光电复合材料检测冈田酸毒素的方法,通过简单的高温溶剂热法合成NaYF4:Yb,Tm上转换纳米粒子和半导体材料氧化钨(WO3),该方法可以方便、快速、可控的得到WO3/NaYF4:Yb,Tm复合材料,其具有良好的近红外光电性能,并将其应用于冈田酸毒素(OA)的检测。目前没有关于该复合材料的制备及应用于光电领域的报道。相比于其他近红外光电材料,本发明具有合成步骤简单、耗时短以及光电性能良好,有利于新型的PEC生物传感平台的开发。相比于其他OA检测方法,本发明具有操作简单、灵敏度高、稳定性好。此外,本发明采用SPE作为工作电极,仅需少量电解质即可,这是低成本且免维护的。
附图说明
包括附图以提供对实施例的进一步理解并且附图被并入本说明书中并且构成本说明书的一部分。附图图示了实施例并且与描述一起用于解释本发明的原理。将容易认识到其它实施例和实施例的很多预期优点,因为通过引用以下详细描述,它们变得被更好地理解。附图的元件不一定是相互按照比例的。同样的附图标记指代对应的类似部件。
图1是根据本发明的一个实施例的一种基于近红外光电复合材料检测冈田酸毒素的方法流程图;
图2是根据本发明的一个实施例的Flower-like-WO3的SEM图;
图3是根据本发明的一个实施例的BPEI/UCNP的STEM图;
图4是根据本发明的一个实施例的NaYF4:Yb,Tm(UCNP)和Anti-OA-MAb偶联之前和之后的粒径变化的粒径示意图;
图5是根据本发明的一个实施例的检测不同浓度OA的光电流示意图;
图6是根据本发明的一个实施例的SPE实物示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
下面将结合附图1对本发明作详细的介绍,本发明的一种基于近红外光电复合材料检测冈田酸毒素的方法,包括以下步骤:
步骤S1:将冈田酸单克隆抗体(Anti-OA-MAb)和磷酸盐缓冲液(pH值为7.4,物质的量浓度为10mmol/L)按质量比1:1000-2000混合,得到溶液A;
步骤S2:将200μL,8mg/mL的BPEI/UCNP分散在含有EDC和NHS的600μL磷酸盐缓冲液中,得到溶液B;
步骤S3:将溶液A与溶液B进行混合,在温度为4℃下反应2小时得到溶液C,将溶液C离心后并用磷酸盐缓冲液洗涤沉淀物,将洗涤后的沉淀物分散于含有0.1%BSA的磷酸盐缓冲液中,得到目标产物UCNP-Ab,将其保存在4℃温度下备用;
步骤S4:将6mg Flower-like-WO3(花状氧化钨)和0.25wt%CS(壳聚糖)溶于2mL超纯水中,得到Flower-like-WO3/CS悬浮液D
步骤S5:取10μL Flower-like-WO3/CS悬浮液D滴于SPE电极(网板印刷碳电极)上,并在60℃温度下干燥,得到目标产物Flower-like-WO3/CS/SPE;
步骤S6:将500μL,0.5mg/mL OA(冈田酸毒素)加入到含有EDC和NHS的2-吗啉乙磺酸生物缓冲液中,在黑暗中放置1小时,得到溶液E,将Flower-like-WO3/CS/SPE浸入溶液E中,保持1小时后取出,用磷酸盐缓冲液洗涤3次,以确保完全除去所有未结合的OA;
步骤S7:将步骤S6得到的Flower-like-WO3/CS/SPE分别在乙酰胺溶液和含有0.05%Tween-20的1%BSA溶液中反应1小时,而后用磷酸盐缓冲液彻底洗涤,得到目标产物OA/Flower-like-WO3/CS/SPE,将其保存在4℃温度下备用;
步骤S8:将20μL UCNP-Ab与磷酸盐缓冲液按质量比1:5~20稀释,将UCNP-Ab的稀释溶液和20μL OA标准溶液浇铸在OA/Flower-like-WO3/CS/SPE上,且在温度为37℃下反应1小时后,用含有0.05%Tween-20的磷酸盐缓冲液冲洗;
步骤S9:以1W/cm红外半导体激光器为光源,利用计时电流法,设置偏置电压为0V,测试步骤S8得到的OA/Flower-like-WO3/CS/SPE的光电行为。
实施例1:Flower-like-WO3(花状氧化钨)的制备
步骤S1:将0.1g氯化胆碱和16mL无水乙醇混合搅拌溶解,得到溶液A;
步骤S2:将0.3g氯化钨加入到溶液A中,得到澄清溶液,持续搅拌10分钟,得到溶液B;
步骤S3:将0.4g氢醌加入到溶液B中,得到黄色浑浊溶液,持续搅拌15分钟,得到溶液C;
步骤S4:将溶液C转移至30mL反应釜中,在110℃温度下水热反应4h;
步骤S5:反应结束并冷却至室温后,通过离心收集黑色沉淀物,乙醇洗涤干燥后,将其置于马弗炉中450℃退火30分钟,得到目标产物Flower-like-WO3
图2为Flower-like-WO3的SEM图,如图2所示,可以看出WO3微球由光滑的纳米片组成,呈规则的花形,单个大小约为3.8μm。纳米花结构可以提供更大的比表面积,这有利于将光能转换成电能。
实施例2:BPEI/UCNP的制备
步骤S1:将0.71g氯化钇、0.23g氯化镱、0.02g氯化铥和30mL超纯水混合搅拌溶解,得到溶液A;
步骤S2:将0.50g氟化钠和30mL超纯水混合搅拌溶解,得到溶液B;
步骤S3:将0.87g乙二胺四乙酸和50mL超纯水混合加热搅拌,得到溶液C;
步骤S4:将溶液A逐滴加入到溶液C中,此时混合溶液颜色从透明状变为乳白状,持续搅拌30分钟,得到溶液D;
步骤S5:将0.1g聚乙烯亚胺加入到溶液D中,此时混合溶液从乳白状又变为透明状,持续搅拌30分钟,得到溶液E;
步骤S6:将溶液C逐滴加入到溶液E中,此时混合溶液变为粘稠状,持续搅拌30分钟,得到溶液F;
步骤S7:将溶液F转移至30mL反应釜中,在200℃烘箱中水热反应2h;
步骤S8:反应结束并冷却至室温后,通过离心收集白色沉淀物,然后将其重新分散于超纯水中,得到目标产物BPEI/NaYF4:Yb,Tm(BPEI/UCNP)上转换纳米粒子,置于冰箱4℃储存。
图3为BPEI/UCNP的STEM图,从BPEI/UCNP的STEM图中可以得出所制备的NaYF 4:Yb,Tm上转换纳米球的直径在11nm至13nm之间,周围有一层浅色物质,这可能是由于有机聚合物BPEI的改性。
实施案例3:SPE(网板印刷碳电极)的制备
步骤S1:用碳墨水丝网印刷工作电极层,用碳墨水和Ag/AgCl墨水丝网印刷对电极/参比电极层。
步骤S2:将每个丝网印刷层在60℃下干燥,并使其在室温下冷却,得到目标产物SPE,如图4为SPE实物示意图。
图5为NaYF4:Yb,Tm(UCNP)和Anti-OA-MAb偶联之前和偶联之后的粒径变化,如图5所示,UCNP和Anti-OA-MAb的平均粒径分别为196.6nm和1545nm,UCNP-Anti-OA-MAb的平均粒径为1650nm,接近UCNP的粒径和Anti-OA-MAb之和,证明UCNP可以成功标记于Anti-OA-MAb上。
图6为检测不同浓度OA的光电流示意图,从图6可以清楚地看到,光电流信号随着OA浓度的增加而逐渐减小。这是由于减少了与电极上固定化OA连接的UCNP-Ab免疫探针的数量,从而导致光电流强度的降低。因此,游离OA的浓度可以通过PEC强度的变化来确定。
本发明的一种基于近红外光电复合材料检测冈田酸毒素的方法,通过简单的高温溶剂热法合成NaYF4:Yb,Tm上转换纳米粒子和半导体材料氧化钨(WO3),该方法可以方便、快速、可控的得到WO3/NaYF4:Yb,Tm复合材料,其具有良好的近红外光电性能,并将其应用于冈田酸毒素(OA)的检测。目前没有关于该复合材料的制备及应用于光电领域的报道。相比于其他近红外光电材料,本发明具有合成步骤简单、耗时短以及光电性能良好,有利于新型的PEC生物传感平台的开发。相比于其他OA检测方法,本发明具有操作简单、灵敏度高、稳定性好。此外,本发明采用SPE作为工作电极,仅需少量电解质即可,这是低成本且免维护的。
虽然上面结合本发明的优选实施例对本发明的原理进行了详细的描述,本领域技术人员应该理解,上述实施例仅仅是对本发明的示意性实现方式的解释,并非对本发明包含范围的限定。实施例中的细节并不构成对本发明范围的限制,在不背离本发明的精神和范围的情况下,任何基于本发明技术方案的等效变换、简单替换等显而易见的改变,均落在本发明保护范围之内。

Claims (10)

1.一种基于近红外光电复合材料检测冈田酸毒素的方法,其特征在于,包括以下步骤:
步骤S1:将冈田酸单克隆抗体和磷酸盐缓冲液按质量比1:1000-3000混合,得到溶液A;
步骤S2:将聚乙烯亚胺/NaYF4:Yb,Tm分散于含有1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和N-羟基琥珀酰亚胺的磷酸盐缓冲液中,得到溶液B;
步骤S3:将所述溶液A与所述溶液B进行混合反应得到溶液C,将所述溶液C离心后的沉淀分散于含有牛血清白蛋白的磷酸盐缓冲液中,得到目标产物NaYF4:Yb,Tm-Ab;
步骤S4:将花状氧化钨和壳聚糖溶于超纯水中,得到花状氧化钨/壳聚糖悬浮液D;
步骤S5:将所述花状氧化钨/壳聚糖悬浮液D滴于网板印刷碳电极上,得到目标产物花状氧化钨/壳聚糖/网板印刷碳电极;
步骤S6:将冈田酸毒素加入到2-吗啉乙磺酸生物缓冲液中,得到溶液E,将步骤S5得到的所述花状氧化钨/壳聚糖/网板印刷碳电极浸入所述溶液E中反应;
步骤S7:将步骤S6得到的所述花状氧化钨/壳聚糖/网板印刷碳电极分别在乙酰胺溶液和含有吐温-20的牛血清白蛋白溶液中进行反应,得到目标产物冈田酸毒素/花状氧化钨/壳聚糖/网板印刷碳电极;
步骤S8:将所述NaYF4:Yb,Tm-Ab的稀释溶液和冈田酸毒素标准溶液浇铸在所述冈田酸毒素/花状氧化钨/壳聚糖/网板印刷碳电极上进行反应,反应后用含有吐温-20的磷酸盐缓冲液冲洗;以及
步骤S9:利用计时电流法,设置偏置电压为0V,测试步骤S8得到的所述冈田酸毒素/花状氧化钨/壳聚糖/网板印刷碳电极的光电行为。
2.根据权利要求1所述的基于近红外光电复合材料检测冈田酸毒素的方法,其特征在于,所述磷酸盐缓冲液的物质的量浓度为10mmol/L,pH值为7.4。
3.根据权利要求1所述的基于近红外光电复合材料检测冈田酸毒素的方法,其特征在于,步骤S2中200μL,8mg/mL的所述聚乙烯亚胺/NaYF4:Yb,Tm分散于含有10mg/mL的所述1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和5mg/mL的所述N-羟基琥珀酰亚胺的600μL所述磷酸盐缓冲液中。
4.根据权利要求1所述的基于近红外光电复合材料检测冈田酸毒素的方法,其特征在于,步骤S3的所述溶液A与所述溶液B的反应温度为4℃,反应时间为2小时,所述磷酸盐缓冲液含有0.1%的所述牛血清白蛋白。
5.根据权利要求1所述的基于近红外光电复合材料检测冈田酸毒素的方法,其特征在于,步骤S4的所述超纯水含有0.3%-0.5%的所述花状氧化钨和0.25wt%的所述壳聚糖。
6.根据权利要求1所述的基于近红外光电复合材料检测冈田酸毒素的方法,其特征在于,步骤S5的所述花状氧化钨/壳聚糖悬浮液D的体积为10μL,所述花状氧化钨/壳聚糖/网板印刷碳电极在60℃温度下干燥。
7.根据权利要求1所述的基于近红外光电复合材料检测冈田酸毒素的方法,其特征在于,步骤S6的500μL,0.5mg/mL的所述冈田酸毒素与含有10mg/mL的所述1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和5mg/mL的所述N-羟基琥珀酰亚胺的所述2-吗啉乙磺酸生物缓冲液反应1小时后得到所述溶液E,所述花状氧化钨/壳聚糖/网板印刷碳电极与所述溶液E的反应时间为1小时,且所述2-吗啉乙磺酸生物缓冲液的pH值为5.0,物质的量浓度为0.1mol/L。
8.根据权利要求1所述的基于近红外光电复合材料检测冈田酸毒素的方法,其特征在于,步骤S7的所述牛血清白蛋白溶液中含有0.05%的所述吐温-20,所述牛血清白蛋白溶液的体积为50μL,质量分数为1%。
9.根据权利要求1所述的基于近红外光电复合材料检测冈田酸毒素的方法,其特征在于,步骤S8的所述NaYF4:Yb,Tm-Ab稀释溶液中的所述NaYF4:Yb,Tm-Ab和所述磷酸盐缓冲液按质量比1:5~20混合,所述磷酸盐缓冲液中含有0.05%的所述吐温-20,所述冈田酸毒素标准溶液的浓度为0.001~60ng/mL。
10.根据权利要求1所述的基于近红外光电复合材料检测冈田酸毒素的方法,其特征在于,步骤S8的所述NaYF4:Yb,Tm-Ab的稀释溶液和所述冈田酸毒素标准溶液与所述冈田酸毒素/花状氧化钨/壳聚糖/网板印刷碳电极在温度37℃下反应1小时。
CN202011488935.0A 2020-12-16 2020-12-16 一种基于近红外光电复合材料检测冈田酸毒素的方法 Active CN112630185B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011488935.0A CN112630185B (zh) 2020-12-16 2020-12-16 一种基于近红外光电复合材料检测冈田酸毒素的方法
US17/507,340 US11828723B2 (en) 2020-12-16 2021-10-21 Method for detecting an okadaic acid based on a near-infrared photoelectric composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011488935.0A CN112630185B (zh) 2020-12-16 2020-12-16 一种基于近红外光电复合材料检测冈田酸毒素的方法

Publications (2)

Publication Number Publication Date
CN112630185A true CN112630185A (zh) 2021-04-09
CN112630185B CN112630185B (zh) 2023-10-17

Family

ID=75313994

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011488935.0A Active CN112630185B (zh) 2020-12-16 2020-12-16 一种基于近红外光电复合材料检测冈田酸毒素的方法

Country Status (2)

Country Link
US (1) US11828723B2 (zh)
CN (1) CN112630185B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116002758A (zh) * 2023-02-09 2023-04-25 北京信息科技大学 一种二维掺铵六角相氧化钨的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103112882A (zh) * 2013-03-08 2013-05-22 南开大学 一种具有靶向性近红外NaYF4上转换纳米晶的制备
US20170038375A1 (en) * 2015-08-06 2017-02-09 Gwangju Institute Of Science And Technology Complex for detecting target material and method of detecting target material using the same
CN108927079A (zh) * 2018-08-28 2018-12-04 天津大学 真菌毒素通量检测用上转换磁性编码微球及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105241931B (zh) 2015-10-15 2016-07-06 济南大学 一种基于多孔三氧化钨纳米花构建的真菌毒素传感器的制备方法及应用
CN108845015B (zh) 2018-06-28 2020-09-01 济南大学 一种基于三氧化钨复合材料的光电化学黄曲霉毒素b1传感器的制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103112882A (zh) * 2013-03-08 2013-05-22 南开大学 一种具有靶向性近红外NaYF4上转换纳米晶的制备
US20170038375A1 (en) * 2015-08-06 2017-02-09 Gwangju Institute Of Science And Technology Complex for detecting target material and method of detecting target material using the same
CN108927079A (zh) * 2018-08-28 2018-12-04 天津大学 真菌毒素通量检测用上转换磁性编码微球及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
於然 等: "基于上转换免疫层析技术的真菌毒素检测", 北京工业大学学报, vol. 41, no. 12, pages 1915 - 1920 *
欧阳秀酝 等: "基于荧光共振能量转移的免疫传感器检测黄曲霉毒素B1", 食品与发酵工业, vol. 46, no. 16, pages 226 - 230 *
王伟杰 等: "基于S, P-GQDs 的荧光免疫分析法测定冈田酸毒素", 中国化学会第十三届全国分析化学年会论文集(二), pages 1317 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116002758A (zh) * 2023-02-09 2023-04-25 北京信息科技大学 一种二维掺铵六角相氧化钨的制备方法

Also Published As

Publication number Publication date
US11828723B2 (en) 2023-11-28
US20220187243A1 (en) 2022-06-16
CN112630185B (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
Hlaváček et al. Competitive upconversion-linked immunosorbent assay for the sensitive detection of diclofenac
Gorris et al. Perspectives and challenges of photon-upconversion nanoparticles-Part II: bioanalytical applications
Wang et al. Dual-luminophore-doped silica nanoparticles for multiplexed signaling
Resch-Genger et al. Perspectives and challenges of photon-upconversion nanoparticles-Part I: routes to brighter particles and quantitative spectroscopic studies
Zhang et al. Spectrum-based electrochemiluminescent immunoassay with ternary CdZnSe nanocrystals as labels
Ji et al. Background-free chromatographic detection of sepsis biomarker in clinical human serum through near-infrared to near-infrared upconversion immunolabeling
CN106867509B (zh) 一种Nd3+敏化核壳上转换纳米晶材料及其制备方法和水检测应用
Wang et al. Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4: Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles
Zhang et al. Dual-lanthanide-chelated silica nanoparticles as labels for highly sensitive time-resolved fluorometry
KR102042661B1 (ko) 타겟 물질 검출용 복합체 및 이를 이용한 타겟 물질 검출방법
Yan et al. Preparation of carbon quantum dots based on starch and their spectral properties
Saleh et al. Detection of biotin–avidin affinity binding by exploiting a self-referenced system composed of upconverting luminescent nanoparticles and gold nanoparticles
Ma et al. A novel ascorbic acid sensor based on the Fe 3+/Fe 2+ modulated photoluminescence of CdTe quantum dots@ SiO 2 nanobeads
CN110596060B (zh) 一种检测***特异性抗原的光谱分析中荧光传感器的构建方法及其应用
JP2008540308A (ja) シリカ系フォトルミネセンスセンサーおよび使用方法
Sedlmeier et al. Highly sensitive laser scanning of photon-upconverting nanoparticles on a macroscopic scale
Zheng et al. Competitive near-infrared PEC immunosorbent assay for monitoring okadaic acid based on a disposable flower-like WO3-Modified screen-printed electrode
Christ et al. Chemical sensing and imaging based on photon upconverting nano-and microcrystals: a review
CN108865110A (zh) 硅烷氨基化修饰的长余辉纳米材料及其制备方法、Lp-PLA2检测试剂及其制备方法
KR101701885B1 (ko) 업컨버팅 나노입자 및 특이적 리셉터를 포함하는 당뇨병 진단용 복합체
Su et al. Enhanced Blue Afterglow through Molecular Fusion for Bio‐applications
Ge et al. Mesoporous upconversion nanoparticles modified with a Tb (III) complex to display both green upconversion and downconversion luminescence for in vitro bioimaging and sensing of temperature
CN107356570B (zh) 一种固态上转换荧光探针及其制备方法与应用
Zhang et al. Sensitive single-color fluorescence “off–on” switch system for dsDNA detection based on quantum dots-ruthenium assembling dyads
Bu et al. Dual-modal immunochromatographic test for sensitive detection of zearalenone in food samples based on biosynthetic staphylococcus aureus-mediated polymer dot nanocomposites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant