CN112574468B - 具有多层次连续网络结构的导热高分子复合材料及制备方法 - Google Patents

具有多层次连续网络结构的导热高分子复合材料及制备方法 Download PDF

Info

Publication number
CN112574468B
CN112574468B CN201910941137.XA CN201910941137A CN112574468B CN 112574468 B CN112574468 B CN 112574468B CN 201910941137 A CN201910941137 A CN 201910941137A CN 112574468 B CN112574468 B CN 112574468B
Authority
CN
China
Prior art keywords
heat
network
conducting
composite material
conducting filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910941137.XA
Other languages
English (en)
Other versions
CN112574468A (zh
Inventor
秦盟盟
陈莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan Yingwei New Materials Technology Partnership LP
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN201910941137.XA priority Critical patent/CN112574468B/zh
Publication of CN112574468A publication Critical patent/CN112574468A/zh
Application granted granted Critical
Publication of CN112574468B publication Critical patent/CN112574468B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/212Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase and solid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08J2361/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08J2361/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2479/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0862Nickel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/046Carbon nanorods, nanowires, nanoplatelets or nanofibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种具有多层次连续网络结构的导热高分子复合材料及制备方法,准备一网络C,对网络C进行负载方法2~50次,每次负载方法为:浸入分散液A中,取出后在20~200℃的温度下干燥,获得负载有导热填料网络C,将负载有导热填料网络C浸入溶液B中,取出后在20~320℃的温度下干燥30~300min,获得导热高分子复合材料,本发明的制备方法所需原料简单易得,通过简单的浸渍工艺,能够使导热填料形成多层次的三维连续导热网络,通过控制负载的次数,能够获得具有不同导热性能的导热高分子复合材料。获得导热高分子复合材料的高分子基体与导热填料网络之间的平均距离较小,导热系数较高。

Description

具有多层次连续网络结构的导热高分子复合材料及制备方法
技术领域
本发明属于导热材料技术领域,具体来说涉及一种具有多层次连续网络结构的导热高分子复合材料及制备方法。
背景技术
随着5G通讯、高集成度芯片、人工智能等的快速发展,电子器件的功率密度和产热量大幅提高,如果没有充分的热管理保障,极易导致相关器件提前老化或是损坏。传统的金属导热材料(如铝、铜等)由于存在密度较大、比热导率(热导率与材料体积密度之比)较低、热膨胀系数较高、易氧化等局限性,已很难满足目前日益增长的散热需求。基于导热填料增强的高分子复合材料因具有较低的密度、优异的机械性能、加工性能和较高的热导率,成为近年来最具发展前景的一类导热材料,因而在能源、通讯、电子等领域具有广阔的应用前景。
石墨烯、碳纳米管、氮化硼等高导热材料因具有优异的导热性能而广泛作为填料增加高分子材料的导热性能。导热填料需要在高分子基体内部形成连续的导热网络,才能有效降低界面热阻,提高复合材料的导热性能。采用传统共混方法形成连续导热通道的工艺需要在高分子基体中加入大量的填料,这会深刻影响高分子复合材料的微观结构,进而损害其可加工性及力学性能。因此,如何提高导热填料的利用效率,使复合材料在较低的填料添加水平下获得较高的导热性能是导热高分子复合材料研究的持续挑战。
近年来,国内外研究人员通过构建三维连续导热网络来提高复合材料导热性能。例如,Ding等(Li X,Shao L,Song N,Shi L,Ding P.Enhanced thermal-conductive andanti-dripping properties of polyamide composites by 3D graphene structures atlow filler content.Composites Part A:Applied Science and Manufacturing.2016;88:305-14.)将氧化石墨烯进行水热组装形成三维石墨烯网络,并与尼龙6进行复合,2wt%石墨烯含量的复合材料的导热系数达到0.85W/mK,是尼龙6基体的3倍。Bai等(Zhao Y,WuZ,Bai S.Study on thermal properties of graphene foam/graphene sheets filledpolymer composites.Composites Part A:Applied Science and Manufacturing.2015;72:200-6.)利用化学气相沉积制备三维石墨烯,0.7wt%含量的石墨烯能将复合材料的导热系数提高近2倍。这些结果表明,三维连续导热网络的构建是复合材料导热性能提升的重要因素。
研究表明,三维连续导热网络的构建能够减弱声子的界面散射、促进声子在整个网络的高效传递、提升复合材料的导热性能;然而,声子作为热流的载体,其传递路径的密度和分布也是决定导热网络热流传输能力的关键,进而深刻影响复合材料的三维导热性能。现有研究在三维连续导热网络的构建及复合材料导热性能提升方面取得了一系列进展,然而现有三维连续导热网络结构单一,网络骨架与聚合物基体之间的平均距离较大,不利于导热填料发挥自身的高导热特性。例如Lin等利用石墨烯网络增强环氧树脂的导热性能,其中石墨烯的质量分数达到5%,复合材料的导热系数为1.52W/mK,远远低于石墨烯的理论导热率5300W/mK,这是因为石墨烯导热网络与聚合物基体之间距离过大,热量难以快速从高分子基体传递到导热网络。因此,开发高导热高分子复合材料,不仅需要搭建三维连续导热网络,更重要的是要研究和发展具有高导热性能的三维连续导热网络,进而大幅提高复合材料的三维导热性能。
发明内容
针对现有技术的不足,本发明的目的在于提供一种具有多层次连续网络结构的导热高分子复合材料的制备方法。
本发明的另一目的是提供上述制备方法获得的导热高分子复合材料,该导热高分子复合材料以具有三维连续网络结构的网络C为模板,在其网络结构骨架的表面依次循环负载导热填料与高分子基体材料(高分子或高分子前驱体溶液的溶质),导热填料和高分子基体材料均各自形成连续的网络,两种网络交替沉积形成本发明具有多层次连续网络结构的导热高分子复合材料。
本发明的目的是通过下述技术方案予以实现的。
一种具有多层次连续网络结构的导热高分子复合材料的制备方法,包括以下步骤:
准备一网络C,所述网络C为具有三维连续网络结构的材料,对所述网络C进行负载方法2~50次,每次负载方法为:浸入分散液A中1~30min,取出后在20~200℃的温度下干燥0.5~3h,获得负载有导热填料网络C,将所述负载有导热填料网络C浸入溶液B中1~300min,取出后在20~320℃的温度下干燥30~300min,获得导热高分子复合材料,其中,
所述分散液A的制备方法为:将导热填料分散于液体D中,得到混合物,用细胞粉碎机对所述混合物超声波处理5~60min,得到分散液A,所述分散液A中导热填料的浓度为0.01~5mg/mL,所述导热填料为导热系数大于10W/mK的导热材料;
所述溶液B为高分子水溶液或高分子前驱体溶液,其中,所述高分子为聚乙烯醇、聚乙二醇、纤维素、聚丙烯酸或聚氨酯,所述高分子水溶液中高分子的质量分数为1~15%;所述高分子前驱体溶液的溶质为聚二甲基硅氧烷、环氧树脂、聚酰胺酸或多巴胺。
在上述技术方案中,所述网络C为聚氨酯网络、三聚氰胺网络、聚酰亚胺网络、纤维素网络、聚丙烯网络、镍泡沫、铜泡沫或碳泡沫。
在上述技术方案中,所述导热填料为碳纳米管、碳纳米纤维、银纳米纤维、氮化硼纳米管、石墨烯、氮化硼纳米片或氮化碳纳米片。
在上述技术方案中,所述液体D为丙酮、四氢呋喃、乙酸乙酯、异丙醇、N-甲基吡咯烷酮、N,N-二甲基甲酰胺或二甲基亚砜。
在上述技术方案中,所述超声波处理的功率为20~800W。
在上述技术方案中,所述离心的时间不超过30min。
在上述技术方案中,将所述负载有导热填料网络C浸入溶液B中1~300min,取出后离心,在20~320℃的温度下干燥30~300min,所述离心的转速小于等于2000r/min。
在上述技术方案中,当所述高分子前驱体溶液的溶质为聚二甲基硅氧烷、环氧树脂、聚酰胺酸时,该高分子前驱体溶液的溶剂为N-甲基吡咯烷酮、丙酮、二甲苯;
当所述高分子前驱体溶液的溶质为多巴胺时,该高分子前驱体溶液的溶剂为Tris缓冲液。
上述制备方法获得的导热高分子复合材料。
在上述技术方案中,该导热高分子复合材料以网络C为骨架,在所述骨架的表面负载有导热填料层和高分子基体材料层,所述导热填料层和高分子基体材料层沿负载的厚度方向交错设置,其中,导热填料层由所述分散液A干燥而成,所述高分子基体材料层由所述溶液B干燥而成。
本发明的有益效果如下:
本发明的制备方法所需原料简单易得,通过简单的浸渍工艺,能够使导热填料形成多层次的三维连续导热网络,通过控制负载的次数,能够获得具有不同导热性能的导热高分子复合材料。获得导热高分子复合材料的高分子基体与导热填料网络之间的平均距离较小,导热系数较高。
附图说明
图1为本发明的制备方法的过程示意图;
图2为(a)实施例1导热高分子复合材料和(b)对比例1高分子复合材料的光学显微镜照片;
图3为实施例2中负载的次数N与导热系数Y的关系。
具体实施方式
药品购买源:
丙酮、二甲苯、四氢呋喃、乙酸乙酯、异丙醇、N-甲基吡咯烷酮、N,N-二甲基甲酰胺、二甲基亚砜等化学试剂为化学纯,购买自天津市江天化工技术有限公司;
碳纳米管、碳纳米纤维、银纳米纤维、氮化硼纳米管、石墨烯、氮化硼纳米片和氮化碳纳米片购买自南京先丰纳米材料科技有限公司;
聚乙烯醇、聚乙二醇、纤维素、聚丙烯酸、聚氨酯、聚二甲基硅氧烷、环氧树脂、聚酰胺酸、多巴胺和Tris缓冲液购买自天津利维坦科技有限公司;
聚氨酯网络、三聚氰胺网络、聚酰亚胺网络、纤维素网络、聚丙烯网络、镍泡沫、铜泡沫、碳泡沫、碳纳米管泡沫购买自天津利维坦科技有限公司,其孔径范围为50~200微米;
导热系数测试:将材料加工为直径50mm、厚度3mm的样品,采用热流法测试该材料的导热系数。
下面结合具体实施例进一步说明本发明的技术方案。
实施例1
如图1所示,一种具有多层次连续网络结构的导热高分子复合材料的制备方法,包括以下步骤:
准备一网络C,网络C为孔径为150μm的聚氨酯网络。对网络C进行负载方法50次,每次负载方法为:浸入分散液A中30min,取出后在20℃的温度下干燥0.5h,获得负载有导热填料网络C,将负载有导热填料网络C浸入溶液B中30min,取出后于2000r/min离心30min,在20℃的温度下干燥300min,获得导热高分子复合材料,其中,
分散液A的制备方法为:将导热填料分散于液体D中,得到混合物,用细胞粉碎机对混合物超声波处理60min,得到分散液A,超声波处理的功率为20W,分散液A中导热填料的浓度为0.01mg/mL(导热填料为碳纳米管,其导热系数为500W/mK);液体D为异丙醇。
溶液B为高分子水溶液,其中,高分子为聚乙烯醇,高分子水溶液中高分子的质量分数为15%。
经测试,本实施例的导热高分子复合材料的导热系数为3W/mK,本实施例的导热高分子复合材料中碳纳米管质量分数为0.8%。
对比例1
一种单一导热填料网络结构的高分子复合材料的制备方法,包括以下步骤:
1)准备一网络C,网络C为孔径为150μm的聚氨酯网络。
2)将网络C先重复碳纳米管负载方法50次,获得负载有碳纳米管聚氨酯网络,每次碳纳米管负载方法为:浸渍于分散液A中50min,取出后在20℃的温度下干燥0.5h。
分散液A的制备方法为:将导热填料分散于液体D中,得到混合物,用细胞粉碎机对混合物超声波处理60min,得到分散液A,超声波处理的功率为20W,分散液A中导热填料的浓度为0.01mg/mL;导热填料为碳纳米管。液体D为异丙醇。
3)将负载有碳纳米管聚氨酯网络重复聚乙烯醇的负载方法50次,得到单一导热填料网络结构的高分子复合材料,其中,每次聚乙烯醇的负载方法为:浸渍于溶液B中5min,取出后在2000r/min的速率下离心处理30min,处理后在20℃的温度下干燥300min。其中,溶液B为高分子水溶液,其中,高分子为聚乙烯醇,高分子水溶液中高分子的质量分数为15%。
测试本对比例1中单一导热填料网络结构的高分子复合材料的导热系数为0.5W/mK,测试本对比例1中单一导热填料网络结构的高分子复合材料中碳纳米管质量分数为0.8%。
图2为光学显微镜照片,其中,2(a)为实施例1导热高分子复合材料,2(b)为对比例1高分子复合材料。由图2可知,相比单一导热填料网络结构的高分子复合材料,本发明具有多层次连续网络结构的导热高分子复合材料中导热填料网络更加致密,导热填料网络与高分子基体之间的距离更小,使得实施例1中导热高分子复合材料的导热系数远高于对比例1中的高分子复合材料的导热系数。
对比例2
一种分散有碳纳米管的聚乙烯醇复合材料的制备方法,包括以下步骤:
分散液A的制备方法为:将导热填料分散于液体D中,得到混合物,用细胞粉碎机对混合物超声波处理60min,得到分散液A,超声波处理的功率为20W,分散液A中导热填料的浓度为0.01mg/mL;导热填料为碳纳米管。液体D为异丙醇。
溶液B为高分子水溶液,其中,高分子为聚乙烯醇,高分子水溶液中高分子的质量分数为15%。
按照碳纳米管与聚乙烯醇质量比为0.8:99.2,将上述分散液A与溶液B混合,将所得混合物在90℃的温度下搅拌300min,然后停止搅拌,在90℃下干燥100min获得分散有碳纳米管的聚乙烯醇复合材料。测试本对比例2分散有碳纳米管的聚乙烯醇复合材料的导热系数为0.3W/mK,测试本对比例2分散有碳纳米管的聚乙烯醇复合材料中碳纳米管质量分数为0.8%。
由实施例1、对比例1~2可知,在导热填料(碳纳米管)的含量、高分子基体的种类相同的情况下,具有多层次连续网络结构的导热高分子复合材料具有更高的导热性能。
实施例2
一种具有多层次连续网络结构的导热高分子复合材料的制备方法,包括以下步骤:
准备一网络C,网络C为孔径为100μm的三聚氰胺网络。对网络C进行负载方法50次,每次负载方法为:浸入分散液A中1min,取出后在50℃的温度下干燥1h,获得负载有导热填料网络C,将负载有导热填料网络C浸入溶液B中20min,取出后于1000r/min离心15min,在50℃的温度下干燥200min,获得导热高分子复合材料,其中,
分散液A的制备方法为:将导热填料分散于液体D中,得到混合物,用细胞粉碎机对混合物超声波处理5min,得到分散液A,超声波处理的功率为800W,分散液A中导热填料的浓度为3mg/mL(导热填料为碳纳米管,其导热系数为500W/mK);液体D为丙酮。
溶液B为高分子水溶液,其中,高分子为聚乙二醇,高分子水溶液中高分子的质量分数为10%。
在50次负载方法中,每间隔10次测量一次导热系数,负载的次数N与导热系数Y的关系如图3所示。由此可见,具有多层次连续网络结构的导热高分子复合材料的导热系数与负载步骤的次数呈现正相关关系。
实施例3
一种具有多层次连续网络结构的导热高分子复合材料的制备方法,包括以下步骤:
准备一网络C,网络C为孔径为50μm的纤维素网络。对网络C进行负载方法50次,每次负载方法为:浸入分散液A中10min,取出后在50℃的温度下干燥3h,获得负载有导热填料网络C,将负载有导热填料网络C浸入溶液B中1min,取出后于500r/min离心15min,在50℃的温度下干燥30min,获得导热高分子复合材料,其中,
分散液A的制备方法为:将导热填料分散于液体D中,得到混合物,用细胞粉碎机对混合物超声波处理30min,得到分散液A,超声波处理的功率为500W,分散液A中导热填料的浓度为5mg/mL(导热填料为银纳米纤维,其导热系数为200W/mK);液体D为四氢呋喃。
溶液B为高分子水溶液,其中,高分子为纤维素,高分子水溶液中高分子的质量分数为1%。
经测试,本实施例的导热高分子复合材料的导热系数为2.8W/mK。
实施例4
一种具有多层次连续网络结构的导热高分子复合材料的制备方法,包括以下步骤:
准备一网络C,网络C为孔径为60μm的聚酰亚胺网络。对网络C进行负载方法50次,每次负载方法为:浸入分散液A中10min,取出后在200℃的温度下干燥1h,获得负载有导热填料网络C,将负载有导热填料网络C浸入溶液B中1min,取出后于100r/min离心5min,在320℃的温度下干燥300min,获得导热高分子复合材料,其中,
分散液A的制备方法为:将导热填料分散于液体D中,得到混合物,用细胞粉碎机对混合物超声波处理30min,得到分散液A,超声波处理的功率为500W,分散液A中导热填料的浓度为2mg/mL(导热填料为石墨烯,其导热系数为1000W/mK);液体D为N-甲基吡咯烷酮。
溶液B为高分子前驱体溶液,高分子前驱体溶液的溶质为聚酰胺酸,高分子前驱体溶液的溶剂为N-甲基吡咯烷酮,高分子前驱体溶液中溶质的质量分数为10%。
经测试,本实施例的导热高分子复合材料的导热系数为4.5W/mK。
实施例5
一种具有多层次连续网络结构的导热高分子复合材料的制备方法,包括以下步骤:
准备一网络C,网络C为孔径为200μm的聚丙烯网络。对网络C进行负载方法30次,每次负载方法为:浸入分散液A中10min,取出后在50℃的温度下干燥1h,获得负载有导热填料网络C,将负载有导热填料网络C浸入溶液B中10min,取出后于100r/min离心5min,在60℃的温度下干燥100min,获得导热高分子复合材料,其中,
分散液A的制备方法为:将导热填料分散于液体D中,得到混合物,用细胞粉碎机对混合物超声波处理50min,得到分散液A,超声波处理的功率为500W,分散液A中导热填料的浓度为1mg/mL(导热填料为氮化硼纳米片,其导热系数为200W/mK);液体D为乙酸乙酯。
溶液B为高分子水溶液,其中,高分子为聚丙烯酸,高分子水溶液中高分子的质量分数为10%。
经测试,本实施例的导热高分子复合材料的导热系数为1.5W/mK。
实施例6
一种具有多层次连续网络结构的导热高分子复合材料的制备方法,包括以下步骤:
准备一网络C,网络C为孔径为200μm的镍泡沫。对网络C进行负载方法50次,每次负载方法为:浸入分散液A中10min,取出后在200℃的温度下干燥1h,获得负载有导热填料网络C,将负载有导热填料网络C浸入溶液B中300min,取出后在20℃的温度下干燥30min,获得导热高分子复合材料,其中,
分散液A的制备方法为:将导热填料分散于液体D中,得到混合物,用细胞粉碎机对混合物超声波处理30min,得到分散液A,超声波处理的功率为500W,分散液A中导热填料的浓度为2mg/mL(导热填料为氮化硼纳米片,其导热系数为200W/mK);液体D为N,N-二甲基甲酰胺。
溶液B为高分子前驱体溶液,高分子前驱体溶液的溶质为多巴胺,高分子前驱体溶液的溶剂为Tris缓冲液,高分子前驱体溶液中溶质的质量分数为10%。
经测试,本实施例的导热高分子复合材料的导热系数为3.5W/mK。
实施例7
一种具有多层次连续网络结构的导热高分子复合材料的制备方法,包括以下步骤:
准备一网络C,网络C为孔径为200μm的碳泡沫。对网络C进行负载方法25次,每次负载方法为:浸入分散液A中10min,取出后在200℃的温度下干燥1h,获得负载有导热填料网络C,将负载有导热填料网络C浸入溶液B中100min,取出后在50℃的温度下干燥30min,获得导热高分子复合材料,其中,
分散液A的制备方法为:将导热填料分散于液体D中,得到混合物,用细胞粉碎机对混合物超声波处理30min,得到分散液A,超声波处理的功率为500W,分散液A中导热填料的浓度为2mg/mL(导热填料为氮化碳纳米片,其导热系数为50W/mK);液体D为二甲基亚砜。
溶液B为高分子水溶液,其中,高分子为聚氨酯,高分子水溶液中高分子的质量分数为10%。
经测试,本实施例的导热高分子复合材料的导热系数为2.5W/mK。
实施例8
一种具有多层次连续网络结构的导热高分子复合材料的制备方法,包括以下步骤:
准备一网络C,网络C为孔径为100μm的三聚氰胺网络。对网络C进行负载方法2次,每次负载方法为:浸入分散液A中1min,取出后在50℃的温度下干燥1h,获得负载有导热填料网络C,将负载有导热填料网络C浸入溶液B中20min,取出后于500r/min离心15min,在100℃的温度下干燥120min,获得导热高分子复合材料,其中,
分散液A的制备方法为:将导热填料分散于液体D中,得到混合物,用细胞粉碎机对混合物超声波处理5min,得到分散液A,超声波处理的功率为800W,分散液A中导热填料的浓度为3mg/mL(导热填料为碳纳米纤维,导热系数为100W/mK);液体D为丙酮。
溶液B为高分子前驱体溶液,高分子前驱体溶液的溶质为聚二甲基硅氧烷,高分子前驱体溶液的溶剂为丙酮,高分子前驱体溶液中溶质的质量分数为10%。
经测试,本实施例的导热高分子复合材料的导热系数为0.5W/mK。
实施例9
一种具有多层次连续网络结构的导热高分子复合材料的制备方法,包括以下步骤:
准备一网络C,网络C为孔径为50μm的铜泡沫。对网络C进行负载方法10次,每次负载方法为:浸入分散液A中10min,取出后在200℃的温度下干燥1h,获得负载有导热填料网络C,将负载有导热填料网络C浸入溶液B中10min,取出后于100r/min离心5min,在100℃的温度下干燥100min,获得导热高分子复合材料,其中,
分散液A的制备方法为:将导热填料分散于液体D中,得到混合物,用细胞粉碎机对混合物超声波处理30min,得到分散液A,超声波处理的功率为500W,分散液A中导热填料的浓度为2mg/mL(导热填料为石墨烯,导热系数为1000W/mK);液体D为N-甲基吡咯烷酮。
溶液B为高分子前驱体溶液,高分子前驱体溶液的溶质为环氧树脂,高分子前驱体溶液的溶剂为二甲苯,高分子前驱体溶液中溶质的质量分数为10%。
经测试,本实施例的导热高分子复合材料的导热系数为3.9W/mK。
本发明具有多层次连续网络结构的导热高分子复合材料在三维连续网络结构骨架(网络C)的表面依次循环负载导热填料与高分子基体材料,因此,导热填料和高分子基体材料不仅各自形成三维连续的网络,而且两种网络交替沉积,使得本发明的导热高分子复合材料中不仅具有高导热的三维填料网络,而且本发明的导热高分子复合材料中高分子基体与导热填料网络之间的平均距离较小,因此热量能够及时从高分子基体传递到导热填料网络,然后沿着导热填料网络快速传递,表现出较高的导热性能;此外,通过控制导热填料和高分子负载的次数,能够控制复合材料中导热填料的含量,进而获得不同的导热性能。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (4)

1.一种具有多层次连续网络结构的导热高分子复合材料的制备方法,其特征在于,包括以下步骤:
准备一网络C,所述网络C为具有三维连续网络结构的材料,对所述网络C进行负载方法2~50次,每次负载方法为:浸入分散液A中1~30min,取出后在20~200℃的温度下干燥0.5~3h,获得负载有导热填料网络C,将所述负载有导热填料网络C浸入溶液B中1~300min,取出后在20~320℃的温度下干燥30~300min,获得导热高分子复合材料,其中,所述网络C为聚氨酯网络、三聚氰胺网络、聚酰亚胺网络、纤维素网络、聚丙烯网络、镍泡沫、铜泡沫或碳泡沫,
所述分散液A的制备方法为:将导热填料分散于液体D中,得到混合物,用细胞粉碎机对所述混合物超声波处理5~60min,得到分散液A,所述分散液A中导热填料的浓度为0.01~5mg/mL,所述导热填料为导热系数大于10W/mK的导热材料,所述导热填料为碳纳米管、碳纳米纤维、银纳米纤维、氮化硼纳米管、石墨烯、氮化硼纳米片或氮化碳纳米片,所述液体D为丙酮、四氢呋喃、乙酸乙酯、异丙醇、N-甲基吡咯烷酮、N,N-二甲基甲酰胺或二甲基亚砜;
所述溶液B为高分子水溶液或高分子前驱体溶液,其中,所述高分子为聚乙烯醇、聚乙二醇、纤维素、聚丙烯酸或聚氨酯,所述高分子水溶液中高分子的质量分数为1~15%;所述高分子前驱体溶液的溶质为聚二甲基硅氧烷、环氧树脂、聚酰胺酸或多巴胺,当所述高分子前驱体溶液的溶质为聚二甲基硅氧烷、环氧树脂、聚酰胺酸时,该高分子前驱体溶液的溶剂为N-甲基吡咯烷酮、丙酮、二甲苯,当所述高分子前驱体溶液的溶质为多巴胺时,该高分子前驱体溶液的溶剂为Tris缓冲液;
具有多层次连续网络结构的导热高分子复合材料的导热系数与负载步骤的次数呈现正相关关系。
2.根据权利要求1所述的制备方法,其特征在于,所述超声波处理的功率为20~800W。
3.根据权利要求2所述的制备方法,其特征在于,将所述负载有导热填料网络C浸入溶液B中1~300min,取出后离心,在20~320℃的温度下干燥30~300min,所述离心的转速小于等于2000r/min。
4.根据权利要求3所述的制备方法,其特征在于,所述离心的时间不超过30min。
CN201910941137.XA 2019-09-30 2019-09-30 具有多层次连续网络结构的导热高分子复合材料及制备方法 Active CN112574468B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910941137.XA CN112574468B (zh) 2019-09-30 2019-09-30 具有多层次连续网络结构的导热高分子复合材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910941137.XA CN112574468B (zh) 2019-09-30 2019-09-30 具有多层次连续网络结构的导热高分子复合材料及制备方法

Publications (2)

Publication Number Publication Date
CN112574468A CN112574468A (zh) 2021-03-30
CN112574468B true CN112574468B (zh) 2022-07-15

Family

ID=75116775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910941137.XA Active CN112574468B (zh) 2019-09-30 2019-09-30 具有多层次连续网络结构的导热高分子复合材料及制备方法

Country Status (1)

Country Link
CN (1) CN112574468B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113121961B (zh) * 2021-04-20 2022-05-31 安徽大学 一种mfs@cnt环氧树脂复合材料及其制备方法
CN114561192B (zh) * 2022-01-21 2022-09-23 贵州大学 一种镀镍泡沫和MXene协同支撑的多功能相变复合材料及其制备方法
CN115433389A (zh) * 2022-10-19 2022-12-06 安徽大学 一种两步法构建的双重导热网络聚氨酯导热复合材料及其制备方法
CN116023828B (zh) * 2023-03-29 2023-06-09 北京奥科瑞丰新能源股份有限公司 生物质锅炉内壁防腐涂层及其制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104119627A (zh) * 2014-07-15 2014-10-29 西南科技大学 一种高体积分数导热复合材料及其制备方法
CN105694433A (zh) * 2016-03-30 2016-06-22 天津大学 一种兼备高导热性和柔韧性的聚合物泡沫/石墨烯复合材料制备方法
CN107459778A (zh) * 2017-08-30 2017-12-12 复旦大学 一种具有高热导率的环氧基复合材料及其制备方法
CN109095930A (zh) * 2017-06-20 2018-12-28 中国科学院金属研究所 一种氮化硼泡沫材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104119627A (zh) * 2014-07-15 2014-10-29 西南科技大学 一种高体积分数导热复合材料及其制备方法
CN105694433A (zh) * 2016-03-30 2016-06-22 天津大学 一种兼备高导热性和柔韧性的聚合物泡沫/石墨烯复合材料制备方法
CN109095930A (zh) * 2017-06-20 2018-12-28 中国科学院金属研究所 一种氮化硼泡沫材料及其制备方法
CN107459778A (zh) * 2017-08-30 2017-12-12 复旦大学 一种具有高热导率的环氧基复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Melamine foam-supported 3D interconnected boron nitride nanosheets network encapsulated in epoxy to achieve significant thermal conductivity enhancement at an ultralow filler loading;Wang, XW et al;《CHEMICAL ENGINEERING JOURNAL》;20180915;第348卷;第723-731页 *

Also Published As

Publication number Publication date
CN112574468A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
CN112574468B (zh) 具有多层次连续网络结构的导热高分子复合材料及制备方法
Zhang et al. Thermally conductive and insulating epoxy composites by synchronously incorporating Si-sol functionalized glass fibers and boron nitride fillers
Mei et al. An ultra-thin carbon-fabric/graphene/poly (vinylidene fluoride) film for enhanced electromagnetic interference shielding
CN107304490B (zh) 一种石墨烯/聚酰亚胺复合碳纤维的制备方法
CN108752713A (zh) 一种定向排列石墨烯超高热导率复合材料及其制备方法
WO2016127465A1 (zh) 一种高强聚丙烯腈纳米复合纤维的制备方法
CN111584151B (zh) 一种碳纤维/碳/石墨复合碳毡及其增强聚合物复合材料导热导电性能的方法
CN110626030B (zh) 一种高导热聚酰亚胺多层复合薄膜及其制备方法
Jiang et al. Anisotropic and lightweight carbon/graphene composite aerogels for efficient thermal insulation and electromagnetic interference shielding
Shaikh et al. Progress in carbon fiber and its polypropylene-and polyethylene-based composites
CN110042486A (zh) 一种高取向连通的bn复合纤维材料的制备方法
CN114854087B (zh) 一种具备双导热网络的聚酰亚胺复合材料及其制备方法
CN111979609A (zh) 一种大直径石墨烯纤维的制备方法
CN109762204A (zh) 三维结构氮化硼-氧化石墨烯杂化材料、其制备方法及作为填料在导热复合材料的用途
CN105063807A (zh) 一种高强中模碳纤维的制备方法
TW202120775A (zh) 石墨片的製造方法
CN112759788A (zh) 一种具有固液互穿网络结构的导热复合水凝胶及制备方法
Cai et al. Strong, flexible and thermal-resistant CNT/polyarylacetylene nanocomposite films
WO2024027527A1 (zh) 改性连续碳纤维增强聚醚醚酮复合材料层合板及其制备方法
CN110894338B (zh) 基于超弹性网络的可控形变精准调控复合材料及其制备方法和应用
CN105442096A (zh) 一种降低聚丙烯腈基碳纤维石墨化温度的方法
CN113353927B (zh) 一种导热复合石墨膜及其制备方法
CN109503889A (zh) 一种银纳米线杂化填料的制备方法及使用该填料的复合材料
Zhang et al. Bio-inspired design and fabrication of super-strong and multifunctional carbon nanotube composites
CN110330765B (zh) 一种利用sls成型多孔陶瓷导热网络制备导热聚合物材料的工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230605

Address after: Room 603, Floor 6, Block B, Tianming ISQUARE, No. 19, Zhongwang Road, Zhengdong New Area, Zhengzhou, Henan 450018

Patentee after: China Hydrogen Corporation (Zhengzhou) Energy Technology Co.,Ltd.

Address before: 300384 No. 391 Binshui West Road, Xiqing District, Tianjin

Patentee before: TIANJIN University OF TECHNOLOGY

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230625

Address after: 250400 room 106, Nanmei dema Steel Technology Park, national highway 105, Pingyin County, Jinan City, Shandong Province

Patentee after: JINAN YINGWEI NEW MATERIALS TECHNOLOGY PARTNERSHIP (L.P.)

Address before: Room 603, Floor 6, Block B, Tianming ISQUARE, No. 19, Zhongwang Road, Zhengdong New Area, Zhengzhou, Henan 450018

Patentee before: China Hydrogen Corporation (Zhengzhou) Energy Technology Co.,Ltd.

TR01 Transfer of patent right