CN112570722A - 一种等离子弧雾化法制备超细粉末的装置 - Google Patents

一种等离子弧雾化法制备超细粉末的装置 Download PDF

Info

Publication number
CN112570722A
CN112570722A CN202011495719.9A CN202011495719A CN112570722A CN 112570722 A CN112570722 A CN 112570722A CN 202011495719 A CN202011495719 A CN 202011495719A CN 112570722 A CN112570722 A CN 112570722A
Authority
CN
China
Prior art keywords
plasma
powder
liquid
atomization
spray gun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011495719.9A
Other languages
English (en)
Inventor
林茜
陈钢强
宋书清
宋财根
高书娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Boqian New Materials Co Ltd
Original Assignee
Jiangsu Boqian New Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Boqian New Materials Co Ltd filed Critical Jiangsu Boqian New Materials Co Ltd
Priority to CN202011495719.9A priority Critical patent/CN112570722A/zh
Publication of CN112570722A publication Critical patent/CN112570722A/zh
Priority to PCT/CN2021/119301 priority patent/WO2022127244A1/zh
Priority to JP2021199756A priority patent/JP7386839B2/ja
Priority to TW110146429A priority patent/TWI798989B/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles

Abstract

本发明公开了一种等离子弧雾化法制备超细粉末的装置,涉及粉末制备技术领域,其技术方案要点包括雾化罐,所述雾化罐的顶部设置有熔融保温炉,所述熔融保温炉的底部设置有导液管,所述导液管将熔融保温炉内的熔融液体以液注的形式向雾化罐内导入,并在导入雾化罐内时形成液滴;所述雾化罐的侧壁上设置有等离子雾化喷枪***以及位于等离子雾化喷枪***下端的冷却气入口,所述等离子雾化喷枪***的端部形成有用于朝向液滴并将液滴加热击碎的等离子弧,所述冷却气入口用于将击碎的液滴冷却并形成粉末。本发明具有填补粉末制备中对于粒径1‑20μm粉末工业化生产的空白、拓展粉末制备领域中对原材料的选择以实现金属与非金属超细粉末的制备的效果。

Description

一种等离子弧雾化法制备超细粉末的装置
技术领域
本发明涉及粉末制备技术领域,更具体地说它涉及一种等离子弧雾化法制备超细粉末的装置。
背景技术
粉末作为一种重要的工业原料,可广泛应用于汽车、国防、电子、冶金、航空航天等领域。随着粉末制备工艺的不断改进以及粉末加工烧结等工艺的不断优化,高性能粉末的制备成为一种迫切需要。
目前,对于大颗粒粉末制备,工业上普遍应用的是雾化法,该方法具有生产效率高、设备简单等优点。在众多雾化方法中,水雾化和气雾化法的应用最为广泛,即利用高压气体或高压液体以高流速撞击于熔融金属液流上,迅速低将熔融金属雾化成粉末的技术。雾化法发展至今已经有约一百年历史,通过不断优化喷嘴结构、提高雾化介质流速和压力、提高冷凝速度等,雾化法在技术上已经发展得非常成熟,其制备粉末粒径允许分布在20-300μm,但粒径分布较宽,小粒径粉末占比极低。
而对于纳米粉末的制备,工业上普遍应用的是气相法,即利用一定能量使得固体汽化,再通过化学反应或物理变化等过程使其最终成为纳米粉末。通过该种方法制备的纳米粉末,其粒径分布在10-100nm之间。
由此可见,目前的粉末制备技术所制得的粉末在粒径分布上存在一个空白,即1-20μm的超细粉末很难获得。而根据粉末成型原理,在粉末压制成型之前,需要将不同粒度的粉末颗粒进行混合,尤其是需要调整粉末中颗粒的尺寸比例,将小颗粒填充至大颗粒的间隙,以提高其松装密度,从而有利于粉末后续的压制、烧结等。根据粉末自由填充的基本理论,如果颗粒尺寸比为7:1,则充分混合后的粉末具有较高的松装密度。因此粒径在1-20μm的粉末制备显得非常重要,若其可以大规模工业生产并应用至材料领域,将大幅度提升材料机械性能、电特性等各方面性能。
在现有技术中,为了获得超细粉末,会首先将原料制成极细的丝或大粒径的颗粒,再利用等离子弧的高温特性直接将丝状原料气化,进一步冷却获得粉末。
另外,公告号为CN209288280U 的中国专利公开了一种高熔点金属雾化制粉方法,在熔融原料后利用加热保温装置为熔融液体进行加热保温。
但是上述的两种方式虽然均利用了等离子弧的高温作用,且高温蒸发获得的粉末粒径保持在纳米级别,同样未达到满足工业化制备1-20μm的粉末的需求;且上述第一种方法仅适用于延展性较好的、可拉成丝的且沸点较低的金属或合金,送料有限;上述第二种方法具有生产制造成本高的问题,使得现有的技术难以达到工业化制备要求,有待改进。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种等离子弧雾化法制备超细粉末的装置,该等离子弧雾化法制备超细粉末的装置具有工业化生产并获得粒径1-20μm的超细粉末的效果。
为实现上述目的,本发明提供了如下技术方案:
一种等离子弧雾化法制备超细粉末的装置,包括雾化罐,所述雾化罐的顶部设置有熔融保温炉,所述熔融保温炉的底部设置有导液管,所述导液管将所述熔融保温炉内的熔融液体以液注的形式向所述雾化罐内导入,并在导入雾化罐内时形成液滴;所述雾化罐的侧壁上设置有等离子雾化喷枪***以及位于所述等离子雾化喷枪***下端的冷却气入口,所述等离子雾化喷枪***的端部形成有用于朝向所述液滴并将所述液注加热击碎的等离子弧,所述冷却气入口用于将击碎的液滴瞬间冷却并形成粉末。
通过采用上述技术方案,熔融保温炉中被熔融的液体通过导液管进入雾化罐中时,在导液管内形成液注,并在离开导液管进入雾化罐内时形成液滴,再在等离子雾化喷枪***产生的等离子弧的作用下被击碎成超细液滴后,由冷却气冷却并形成粒径小于20μm的超细粉末;进而通过等离子弧的超音速和高温特性,在显著提高雾化介质温度的同时,增加其动能,从而实现提高雾化效率、降低粉末平均粒径以及缩小粉末粒径分布的效果;使得该等离子弧雾化法制备超细粉末的装置具有填补粉末制备中对于粒径1-20μm粉末工业化生产的空白、拓展粉末制备领域中对于原材料选择以及实现金属与非金属超细粉末的制备的效果。
本发明进一步设置为:所述雾化罐的下端设置有位于底部的收粉筒以及位于所述收粉筒上端且用于收集粒径低于20μm的粉末的布袋收集器。
通过采用上述技术方案,收粉筒用于将粒径较大并经重力下降后的颗粒粉末回收,而粒径较小且粒径低于20μm的粉末通过布袋收集器回收,以达到进一步提升超细粉末制备效率与精度的目的。
本发明进一步设置为:所述冷却气入口为冷却气循环入口,所述布袋收集器与所述冷却气循环入口连通,且所述雾化罐与所述布袋收集器之间设置有冷却气循环出口;所述布袋收集器与所述冷却气循环入口之间设置有高压气循环***。
通过采用上述技术方案,高压气循环***驱动冷却气在雾化罐中循环使用,在进一步降低工业生产成本的同时,通过冷却气将粒径低于20μm的粉末从雾化罐内带出,并经布袋收集器收集,以有效提升粉末的收集效率。
本发明进一步设置为:所述冷却气循环入口设置有两个,两个所述冷却气循环入口呈左右对称且均与所述高压气循环***连接。
通过采用上述技术方案,显著提升经过击碎的液滴在冷却作用下成为粉末的效率,并使得获得的粉末具备规则的结构。
本发明进一步设置为:所述导液管的外侧设置有保温材料;所述导液管的直径为1-20mm,所述保温材料的厚度为10-200mm。
通过采用上述技术方案,稳定控制液注的温度和直径,以达到提升粉末制备效果的目的。
本发明进一步设置为:所述等离子雾化喷枪***设置有至少两个且呈等弧度周向分布于所述雾化罐周围。
通过采用上述技术方案,多个等离子雾化喷枪***相互协同对进入雾化罐内的液滴进行进一步的加热击碎,以实现显著提升粉末制备效果的目的。
本发明进一步设置为:所述等离子雾化喷枪***设置有2-8个,且所述等离子雾化喷枪***与所述雾化罐侧壁垂直角度为30-90°。
通过采用上述技术方案,使得多个等离子雾化喷枪***相互协同;并对进入雾化罐内的液滴进行进一步的有效的加热击碎作业,以实现显著提升粉末制备效果的目的。
本发明进一步设置为:所述等离子雾化喷枪***端口至所述导液管底部的距离为1mm以上;所述等离子雾化喷枪***采用氮气、氢气、氩气、氦气或水蒸气作为工质气体;且所述等离子雾化喷枪***的功率为5-100kW。
通过采用上述技术方案,实现有效获得粒径1-20μm的超细粉末的效果。
本发明进一步设置为:所述雾化罐的直径与高度比为1:1-8。
通过采用上述技术方案,使得该等离子弧雾化法制备超细粉末的装置具有工业化生产并获得粒径1-20μm的超细粉末的效果。
本发明进一步设置为:所述液注的温度的高于原材料熔点100-1500℃;且所述高压气循环***中的冷却气为氮气、氩气或氦气。
通过采用上述技术方案,使得该等离子弧雾化法制备超细粉末的装置具有工业化生产并获得粒径1-20μm的超细粉末的效果。
综上所述,本发明具有以下有益效果:通过熔融保温炉对原材料进行熔融保温,且控制温度为原材料熔点以上100至1500℃;进而在导液管将熔融保温炉内的熔融液体倒入雾化罐内后;等离子雾化喷枪***与冷却气循环入口相互配合,以获得粒径1-20μm的超细粉末,进而在收粉筒收集较大粒径的粉末的同时,超细粉末在冷却气的作用下通过冷却气循环出口进入布袋收集器内,实现显著提升粉末制备效率的目的,使得该等离子弧雾化法制备超细粉末的装置具有工业化生产并获得粒径1-20μm的超细粉末的效果。
附图说明
图1是本实施例的结构示意图。
附图标记说明:1、熔融保温炉;2、等离子雾化喷枪***;3、导液管;4、液注;5、雾化隔层;6、冷却气循环入口;7、等离子弧;8、粉末;9、雾化罐;10、收粉筒;11、冷却气循环出口;12、布袋收集器;13、高压气循环***。
具体实施方式
为使本发明的技术方案和优点更加清楚,以下将结合附图对本发明作进一步详细说明。
需要说明的是,在本申请中所指出的等离子雾化喷枪***2,为由产生等离子弧7所需的等离子弧7发生器、供水***、供电***和供气***组成,以达到提供雾化所需的等离子弧7的目的;且在本申请中,为了实现通过等离子弧7获得所需粒径的粉末8,需要有效控制等离子弧7对熔融液体的加热击碎效果;同时结合对熔融液体的形态控制以及温度控制,实现有效的粉末8获取与回收。
实施例一
如图1所示,一种等离子弧雾化法制备超细粉末的装置,包括雾化罐9。雾化罐9的直径与高度比为1:2。雾化罐9用于直接获得所需粒径的粉末8,以达到工业化生产粒径1-20μm粉末8的目的。
需要提及的是,在雾化罐9的顶部设置有熔融保温炉1,金属或非金属材料在熔融保温炉1内呈熔融状态,且经过保温后的熔融液体温度高于原材料熔点100℃以上。为了节约能源并达到有效获取所需粒径的粉末8的目的,控制熔融液体温度高于原材料熔点120℃、200℃、300℃至1500℃均可。在熔融保温炉1的底部设置有导液管3。导液管3将熔融保温炉1内的熔融液体以液注4的形式向雾化罐9内导入,相应的,液注4的温度高于原材料熔点100-1500℃,以实现有效工业化生产粒径1-20μm粉末8的效果。在导液管3的外侧设置有保温材料。且导液管3的直径为1mm,保温材料的厚度为20mm,以实现稳定控制液注4的温度以及提升粉末8制备效果的目的。
在液注4经导液管3导入雾化管内时,脱离导液管3的液注4形成液滴,呈第一分散形态;
在雾化罐9的侧壁上设置有等离子雾化喷枪***2以及位于等离子雾化喷枪***2下端的冷却气入口。等离子雾化喷枪***2至导液管3底部的距离为1mm;且在等离子雾化喷枪***2的端部形成有用于朝向液滴,并将液滴加热击碎的等离子弧7,以使得经过等离子弧7加热击碎的液滴形成第二分散形态;
在形成第二分散形态的液滴受重力影响下落时,经冷却气入口处的冷却气冷却,将击碎呈第二分散形态的液滴瞬间冷却并形成所需的粉末8。
如图1所示,雾化罐9内设置有雾化隔层5,等离子雾化喷枪***2与导液管3均安装在雾化隔层5上方。在该装置的使用过程中,熔融保温炉1中被熔融的液体通过导液管3进入雾化罐9中时,在导液管3内形成液注4,并在离开导液管3进入雾化罐9内时形成液滴,再在等离子雾化喷枪***2产生的等离子弧7的作用下被击碎成超细液滴后,由冷却气冷却并形成粒径小于20μm的超细粉末8;进而通过等离子弧7的超音速和高温特性,在显著提高雾化介质温度的同时,增加其动能,从而实现提高雾化效率、降低粉末8平均粒径以及缩小粉末8粒径分布的效果;使得该等离子弧7雾化法制备超细粉末8的装置具有填补粉末8制备中对于粒径1-20μm粉末工业化生产的空白、拓展粉末8制备领域中对于原材料的选择以实现金属与非金属超细粉末8的制备的效果。
为了进一步提升超细粉末8制备效率与精度,在雾化罐9的下端设置有位于底部的收粉筒10以及位于收粉筒10上端且用于收集粒径低于20μm的粉末8的布袋收集器12。收粉筒10用于将粒径较大并经重力下降后的颗粒粉末8回收,而粒径较小且粒径低于20μm的粉末8通过布袋收集器12回收,以使得获得的粉末8中,粒径较大的粉末8通过收粉筒10收集,粒径较小的粉末8通过布袋收集器12收集,具有分离难度低以及适于工业化生产的效果。
如图1所示,冷却气入口为冷却气循环入口6,布袋收集器12与冷却气循环入口6连通,且雾化罐9与布袋收集器12之间设置有冷却气循环出口11。与此同时,在布袋收集器12与冷却气循环入口6之间设置有高压气循环***13。因此,高压气循环***13驱动冷却气在雾化罐9中循环使用,在进一步降低工业生产成本的同时,通过冷却气将粒径低于20μm的粉末8从雾化罐9内带出,并经布袋收集器12收集,进而有效提升粉末8的收集效率。
需要说明的是,冷却气循环入口6设置有两个。且两个冷却气循环入口6呈左右对称且均与高压气循环***13连接,进而实现显著提升经过击碎的液滴在冷却作用下成为粉末8的效率的效果,并使得获得的粉末8具备规则的结构。
为了实现显著提升粉末8制备效果的目的,等离子雾化喷枪***2设置有至少两个且呈等弧度周向分布于雾化罐9周围。因此,将使得多个等离子雾化喷枪***2相互协同对进入雾化罐9内的液滴进行进一步的加热击碎,进而在冷却气冷却形成粉末8时,获得所需的粒径为1-20μm的粉末8。而等离子雾化喷枪***2与雾化罐9侧壁垂直角度为30-90°,且在本实施例中为30°。等离子雾化喷枪***2设置有2个,以使得2个等离子雾化喷枪***2相互协同;并对进入雾化罐9内的液滴进行进一步的有效的加热击碎作业。
需要说明的是,在等离子雾化喷枪***2中采用氮气、氢气、氩气、氦气或水蒸气作为工质气体;且在本实施例中,工质气体为氮气。且等离子雾化喷枪***2的功率为5kW。高压气循环***13中的冷却气为氮气、氩气或氦气,且在本实施例中,冷却气为氮气。以使得该等离子弧7雾化法制备超细粉末8的装置具有工业化生产并获得粒径1-20μm的超细粉末8的效果。
实施例二
实施例二与实施例一的不同在于,实施例二中的等离子雾化喷枪***2设置有5个,且等离子雾化喷枪***2与雾化罐9侧壁垂直角度为60°。
实施例三
实施例三与实施例一的不同在于,实施例三中的等离子雾化喷枪***2设置有8个,且等离子雾化喷枪***2与雾化罐9侧壁垂直角度为90°。
实施例四
实施例四与实施例一的不同在于,实施例四中的等离子雾化喷枪***2采用氩气作为工质气体;且等离子雾化喷枪***2的功率为50kW。
实施例五
实施例五与实施例一的不同在于,实施例五中的等离子雾化喷枪***2采用氦气作为工质气体;且等离子雾化喷枪***2的功率为100kW。
实施例六
实施例六与实施例一的不同在于,实施例六中的等离子雾化喷枪***2至所述导液管3底部的距离为10mm。
实施例七
实施例七与实施例一的不同在于,实施例七中的等离子雾化喷枪***2至所述导液管3底部的距离为20mm。
实施例八
实施例八与实施例一的不同在于,实施例八中的雾化罐9的直径与高度比为1:5。
实施例九
实施例九与实施例一的不同在于,实施例九中的雾化罐9的直径与高度比为1:8。
实施例十
实施例十与实施例一的不同在于,实施例十中的导液管3的直径为10mm,保温材料的厚度为100mm。
实施例十一
实施例十一与实施例一的不同在于,实施例十一中的导液管3的直径为20mm,保温材料的厚度为150mm。
综上,本申请通过熔融保温炉1对原材料进行熔融保温,且控制温度为原材料熔点以上100至1500℃;进而在导液管3将熔融保温炉1内的熔融液体倒入雾化罐9内后;等离子雾化喷枪***2与冷却气循环入口6相互配合,以获得粒径1-20μm的超细粉末8,进而在收粉筒10收集较大粒径的粉末8的同时,超细粉末8在冷却气的作用下通过冷却气循环出口11进入布袋收集器12内,实现显著提升粉末8制备效果的目的,使得该等离子弧7雾化法制备超细粉末8的装置具有工业化生产并获得粒径1-20μm的超细粉末8的效果。
以上所述仅为本发明的优选实施例,本发明的保护范围并不仅仅局限于上述实施例,但凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干修改和润饰,这些修改和润饰也应视为本发明的保护范围。

Claims (10)

1.一种等离子弧雾化法制备超细粉末的装置,其特征在于:包括雾化罐(9),所述雾化罐(9)的顶部设置有熔融保温炉(1),所述熔融保温炉(1)的底部设置有导液管(3),所述导液管(3)将所述熔融保温炉(1)内的熔融液体以液注(4)的形式向所述雾化罐(9)内导入,并在导入雾化罐(9)内时形成液滴;所述雾化罐(9)的侧壁上设置有等离子雾化喷枪***(2)以及位于所述等离子雾化喷枪***(2)下端的冷却气入口,所述等离子雾化喷枪***(2)的端部形成有用于朝向所述液滴并将液滴加热击碎的等离子弧(7),所述冷却气入口用于将击碎的液滴瞬间冷却并形成粉末(8)。
2.根据权利要求1所述的一种等离子弧雾化法制备超细粉末的装置,其特征在于:所述雾化罐(9)的下端设置有位于底部的收粉筒(10)以及位于所述收粉筒(10)上端且用于收集粒径低于20μm的粉末(8)的布袋收集器(12)。
3.根据权利要求2所述的一种等离子弧雾化法制备超细粉末的装置,其特征在于:所述冷却气入口为冷却气循环入口(6),所述布袋收集器(12)与所述冷却气循环入口(6)连通,且所述雾化罐(9)与所述布袋收集器(12)之间设置有冷却气循环出口(11);所述布袋收集器(12)与所述冷却气循环入口之间设置有高压气循环***(13)。
4.根据权利要求3所述的一种等离子弧雾化法制备超细粉末的装置,其特征在于:所述冷却气循环入口(6)设置有两个,两个所述冷却气循环入口(6)呈左右对称且均与所述高压气循环***(13)连接。
5.根据权利要求1所述的一种等离子弧雾化法制备超细粉末的装置,其特征在于:所述导液管(3)的外侧设置有保温材料;所述导液管(3)的直径为1-20mm,所述保温材料的厚度为10-200mm。
6.根据权利要求1所述的一种等离子弧雾化法制备超细粉末的装置,其特征在于:所述等离子雾化喷枪***(2)设置有至少两个且呈等弧度周向分布于所述雾化罐(9)周围。
7.根据权利要求6所述的一种等离子弧雾化法制备超细粉末的装置,其特征在于:所述等离子雾化喷枪***(2)设置有2-8个,且所述等离子雾化喷枪***(2)与所述雾化罐(9)侧壁垂直角度为30-90°。
8.根据权利要求7所述的一种等离子弧雾化法制备超细粉末的装置,其特征在于:所述等离子雾化喷枪***(2)端口至所述导液管(3)底部的距离为1mm以上;所述等离子雾化喷枪***(2)采用氮气、氢气、氩气、氦气或水蒸气作为工质气体;且所述等离子雾化喷枪***(2)的功率为5-100kW。
9.根据权利要求1所述的一种等离子弧雾化法制备超细粉末的装置,其特征在于:所述雾化罐(9)的直径与高度比为1:1-8。
10.根据权利要求3所述的一种等离子弧雾化法制备超细粉末的装置,其特征在于:所述液注(4)的温度的高于原材料熔点100-1500℃;且所述高压气循环***(13)中的冷却气为氮气、氩气或氦气。
CN202011495719.9A 2020-12-17 2020-12-17 一种等离子弧雾化法制备超细粉末的装置 Pending CN112570722A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202011495719.9A CN112570722A (zh) 2020-12-17 2020-12-17 一种等离子弧雾化法制备超细粉末的装置
PCT/CN2021/119301 WO2022127244A1 (zh) 2020-12-17 2021-09-18 一种等离子弧雾化法制备超细粉末的装置
JP2021199756A JP7386839B2 (ja) 2020-12-17 2021-12-09 プラズマアーク噴霧法超微細粉末製造装置
TW110146429A TWI798989B (zh) 2020-12-17 2021-12-10 電漿弧霧化法製備超細粉末的裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011495719.9A CN112570722A (zh) 2020-12-17 2020-12-17 一种等离子弧雾化法制备超细粉末的装置

Publications (1)

Publication Number Publication Date
CN112570722A true CN112570722A (zh) 2021-03-30

Family

ID=75135964

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011495719.9A Pending CN112570722A (zh) 2020-12-17 2020-12-17 一种等离子弧雾化法制备超细粉末的装置

Country Status (2)

Country Link
JP (1) JP7386839B2 (zh)
CN (1) CN112570722A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113321238A (zh) * 2021-06-04 2021-08-31 昆明理工大学 一种纳米ito粉末的制备方法
CN114226739A (zh) * 2021-12-24 2022-03-25 湖州慧金材料科技有限公司 一种金属粉末的制备方法
WO2022127244A1 (zh) * 2020-12-17 2022-06-23 江苏博迁新材料股份有限公司 一种等离子弧雾化法制备超细粉末的装置
WO2022248981A1 (fr) * 2021-05-23 2022-12-01 Abenz 81-40 Procédé pour le traitement de gaz et mélanges de gaz, par plasma à températures intermédiaires dit pit pttm, dispositif et utilisation.

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925554B1 (zh) * 1969-05-16 1974-07-01
JPS4920869B1 (zh) * 1970-06-08 1974-05-28
JPS514951B1 (zh) * 1973-02-15 1976-02-16
JPS62207802A (ja) * 1986-03-10 1987-09-12 Hitachi Ltd 超微粒子生成装置
CA2000025A1 (en) * 1989-10-02 1991-04-02 Thomas Leslie Price Baghouse
US5935461A (en) * 1996-07-25 1999-08-10 Utron Inc. Pulsed high energy synthesis of fine metal powders
JP2000319706A (ja) * 1999-04-30 2000-11-21 Mitsui Kinzoku Toryo Kagaku Kk 亜鉛末の製造設備および製造方法
US20160332232A1 (en) * 2015-05-14 2016-11-17 Ati Properties, Inc. Methods and apparatuses for producing metallic powder material
JP6544836B2 (ja) * 2017-07-03 2019-07-17 株式会社 東北テクノアーチ 金属粉末の製造装置及びその製造方法
JP6962825B2 (ja) * 2018-01-04 2021-11-05 日本電子株式会社 高周波誘導熱プラズマ装置
CN209288280U (zh) * 2018-10-30 2019-08-23 湖南天际智慧材料科技有限公司 一种适用于高熔点金属的等离子雾化制粉设备
CN109304471B (zh) * 2018-10-30 2023-10-03 湖南天际智慧材料科技有限公司 一种适用于高熔点金属的等离子雾化制粉设备
CN109967755B (zh) * 2019-05-14 2023-08-18 湖州恒合科技有限公司 一种球形微细金属粉体生产***及其方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022127244A1 (zh) * 2020-12-17 2022-06-23 江苏博迁新材料股份有限公司 一种等离子弧雾化法制备超细粉末的装置
WO2022248981A1 (fr) * 2021-05-23 2022-12-01 Abenz 81-40 Procédé pour le traitement de gaz et mélanges de gaz, par plasma à températures intermédiaires dit pit pttm, dispositif et utilisation.
CN113321238A (zh) * 2021-06-04 2021-08-31 昆明理工大学 一种纳米ito粉末的制备方法
CN114226739A (zh) * 2021-12-24 2022-03-25 湖州慧金材料科技有限公司 一种金属粉末的制备方法

Also Published As

Publication number Publication date
JP7386839B2 (ja) 2023-11-27
JP2022096622A (ja) 2022-06-29

Similar Documents

Publication Publication Date Title
CN112570722A (zh) 一种等离子弧雾化法制备超细粉末的装置
CN106378460B (zh) 制备球形纯钛或钛合金粉末的等离子雾化方法及设备
CN104475743B (zh) 一种微细球形钛及钛合金粉末的制备方法
CN108161019B (zh) 一种感应加热与射频等离子联合雾化制粉***的制粉方法
CN105899312B (zh) 用于无坩埚熔化材料,雾化熔化的材料及制造粉末的方法和装置
CN110076347B (zh) 基于等离子熔炼和圆盘旋转雾化的组合式粉体制备方法与装置
CN109967755B (zh) 一种球形微细金属粉体生产***及其方法
CN105689730A (zh) 一种制备Inconel 625合金球形粉末的方法
CN109808049A (zh) 一种高温气体气雾化制备球形粉末的方法
KR100830052B1 (ko) 금속 미립자의 제조방법과 그 장치
CN108031855A (zh) 一种感应加热与射频等离子联合雾化制粉***
CN107282934B (zh) 一种高频感应等离子体难熔粉末球化处理装置
CN108637267A (zh) 一种利用金属丝材制备金属球形粉末的装置及方法
CN106312083B (zh) 一种适用于低活化马氏体钢微球粉末制备工艺
CN111545766A (zh) 一种制备高纯球形金属粉体的设备及方法
CN108393499A (zh) 一种高能高速等离子制备球形金属粉末的装置和方法
CN108526472A (zh) 一种自由电弧制备金属球形粉末的装置和方法
CN209935864U (zh) 一种球形微细金属粉体生产***
CN107470642A (zh) 一种粉末制备方法
CN110834090A (zh) 一种金属粉末整形细化及净化装置和方法
CN207971424U (zh) 一种感应加热与射频等离子联合雾化制粉***
CN214768940U (zh) 一种等离子弧雾化法制备超细粉末的装置
CN103182513A (zh) 惰性气体保护等离子体制备金属粉末的装置
CN113414398A (zh) 一种等离子体制备金属粉末的设备及其方法
CN112743096A (zh) 一种等离子雾化装置、金属粉末的制备装置及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination