CN112447888A - 光半导体元件 - Google Patents

光半导体元件 Download PDF

Info

Publication number
CN112447888A
CN112447888A CN202010145989.0A CN202010145989A CN112447888A CN 112447888 A CN112447888 A CN 112447888A CN 202010145989 A CN202010145989 A CN 202010145989A CN 112447888 A CN112447888 A CN 112447888A
Authority
CN
China
Prior art keywords
layer
semiconductor element
optical semiconductor
light
variation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010145989.0A
Other languages
English (en)
Inventor
岩本昌伸
菅原秀人
矶本建次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Devices and Storage Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Devices and Storage Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020017199A external-priority patent/JP2021114594A/ja
Application filed by Toshiba Corp, Toshiba Electronic Devices and Storage Corp filed Critical Toshiba Corp
Publication of CN112447888A publication Critical patent/CN112447888A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34346Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers
    • H01S5/34353Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers based on (AI)GaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
    • H01S5/2227Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties special thin layer sequence
    • H01S5/2228Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties special thin layer sequence quantum wells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

实施方式提供一种降低晶片面内的光输出的变动的光半导体元件。实施方式的光半导体元件具有基板、发光层、和分布布拉格反射器。发光层具有AlGaAs多量子阱层。分布布拉格反射器设置在基板与发光层之间,周期性地层叠了第1层与第2层的对。第1层包含AlxGa1-xAs,第2层包含Inz(AlyGa1-y)1-zP。第1层的折射率n1比第2层的折射率n2高。以所述分布布拉格反射器的反射率的波长分布中的频带的中心波长为λ0,第1层具有比λ0/(4n1)大的厚度。第2层具有比λ0/(4n2)小的厚度。

Description

光半导体元件
关联申请
本申请享受以日本专利申请第2019-154590号(申请日:2019年8月27日)、日本专利申请第2020-11009号(申请日:2020年1月27日)及日本专利申请第2020-17199号(申请日:2020年2月4日)为基础申请的优先权。本申请通过参照这些基础申请而包含基础申请的全部内容。
技术领域
本发明的实施方式涉及光半导体元件。
背景技术
若在发光层与基板之间设置分布布拉格反射器(DBR:Distributed BraggReflector),则能反射从发光层射向基板的光,并向上方释放出高输出红外光。
在层叠了折射率不同的两个层而成的DBR中,由于结晶生长温度在批次(ロット)内和批次间变动,因此DBR的反射率最大的波长变化,光半导体元件晶片的面内光输出发生变动。
发明内容
实施方式提供一种降低晶片面内的光输出变动的光半导体元件。
本发明实施方式的光半导体元件具有基板、发光层、和分布布拉格反射器。所述发光层具有AlGaAs多量子阱层。所述分布布拉格反射器设置在所述基板与所述发光层之间,周期性地层叠了第1层与第2层的对。所述第1层包含AlxGa1-xAs,所述第2层包含Inz(AlyGa1-y)1-zP。所述第1层的折射率n1比所述第2层的折射率n2高。将所述分布布拉格反射器的反射率的波长分布中的频带的中心波长设为λ0,所述第1层具有比λ0/(4n1)大的厚度。所述第2层具有比λ0/(4n2)小的厚度。
附图说明
图1的(a)是涉及第1实施方式的光半导体元件的模式截面图,图1的(b)是分布反射器的局部模式侧面图。
图2是表示相对于结晶生长温度的变动的相对膜厚变化率依赖性的模拟图。
图3的(a)是涉及比较例的光半导体元件的模式截面图,图3的(b)是分布反射器的局部模式侧面图。
图4是表示比较例的不同批次芯片光输出的平均值的图。
图5是表示InzGa1-zP的相对膜厚变化率相对于结晶生长温度变动的依赖性的模拟图。
图6是表示InzAl1-zP的相对膜厚变化率相对于结晶生长温度变动的依赖性的模拟图。
图7是表示DBR相对反射率相对于InzAl1-zP的In混晶比z的依赖性的模拟图。
图8的(a)是第2实施方式中z=0.50下的DBR相对反射率的模拟图,图8的(b)是表示第2实施方式中z=0.45下的DBR相对反射率的模拟图。
具体实施方式
下面,参照附图来说明本发明的实施方式。
图1的(a)是涉及第1实施方式的光半导体元件的模式截面图,图1的(b)是分布反射器的局部模式侧面图。
光半导体元件10具有基板20、发光层30、和分布布拉格反射器40。发光层30具有AlxGa1-xAs多量子阱层(MQW:Multi Quantum Well)构造。MQW包含含有AlxGa1-xAs的阱层与阻挡层。
分布布拉格反射器(DBR:Distributed Bragg Reflector)40设置在基板20与发光层30之间,周期性地层叠了第1层(折射率为n1)52与第2层(折射率为n2)54的对53。分布布拉格反射器40在空气中的反射率的波长分布中的频带的中心波长为λ0,该对53的周期在中心波长λ0下的相位差相当于180°。第1层52包含AlxGa1-xAs,第2层54包含Inz(AlyGa1-y)1-zP。另外,设中心波长λ0为700nm以上。
图1的(b)中,设第1层52的厚度为T1,设通过T1的厚度的相位变化量为α1(°),设折射率为n1。在中心波长λ0(自由空间内)下,相位变化量α1由式(1)表示。
α1(°)=90°×T1/(λ0/4n1) 式(1)
另外,设第2层54的厚度为T2,设通过T2的厚度的相位变化量为α2(°),设折射率为n2。在中心波长λ0下,相位变化量α2由式(2)表示。
α2(°)=90°×T2/(λ0/4n2) 式(2)
这里,设波长λ0下(下面表述为「@λ0」)的第1层52的折射率n1(@λ0)比第2层54的折射率n2(@λ0)大(n1>n2)。此时,(@λ0)设计成,从发光层30释放出且在第1层52与第2层54的界面被反射的光L1、和靠下方1对的第1层52与第2层54的界面被反射的光L2的相位差为(α12)=180°。因此,光L1与光L2的光路差变为360°,反射光彼此增强。结果,通过增加DBR的层叠数,能提高DBR向上方的反射率,提高光输出。
在第1实施方式中,第1层52在中心波长λ0下具有比4分之1波长(媒质内波长)大的厚度T1,第2层54在中心波长下具有比4分之1波长(媒质内波长)小的厚度T2。即,相位变化量α1>相位变化量α2
另外,光半导体元件10可进一步包含基板20、设置在基板20与DBR40之间的缓冲层32、设置在DBR40与发光层30之间的第1包层34、设置在发光层30上的第2包层36、和接触层38。通过在接触层38上设置上部电极60、在基板20的内表面设置下部电极62,向发光层30注入电流,从而光11被向上方释放。
设缓冲层32包含n型GaAs等。设DBR40的第1层52包含n型AlxGa1-xAs(0≤x≤1)等。设DBR40的第2层54包含n型Inz(AlyGa1-y)1-zP(0≤y≤1、0≤z≤1)等。设第1包层34包含n型AlxGa1-xAs或Inz(AlyGa1-y)1-zP(0≤x≤1、0≤y≤1、0≤z≤1)等。设发光层30包含i-AlxGa1-xAs(0≤x≤1)多量子阱层等。设第2包层36包含n型AlxGa1-xAs或Inz(AlyGa1-y)1-zP(0≤x≤1、0≤y≤1、0≤z≤1)等。
DBR使用MOCVD(Metal Organic Chemical Vapor Deposition)法等气相生长法来形成。若使用MOCVD法,则由于结晶生长时的温度变动而产生膜厚变动。因此,DBR的反射率相对于设计值会产生变动。例如,若DBR层叠了到10对等,则膜厚变动累积而DBR的反射率下降,并且光输出下降。
下面,说明通过设为α1>α2,能够降低DBR中的膜厚变动。
图2是表示相对膜厚变化率相对于结晶生长温度变动的依赖性的模拟图。
纵轴是相对膜厚变化率(%),横轴是结晶生长温度的变动范围(℃)。In0.5Al0.5P和In0.5Ga0.5P的相对膜厚变化率在结晶生长温度为±5℃的允许范围下分别大至±5%和±4%。与之相对,Al0.5Ga0.5As的相对膜厚变化率小至±2.5%。发明者们发现减小构成DBR的第2层的In组分比z能够减小相对膜厚变化率。例如,允许范围内的相对膜厚变化率在GaAs中小至约2%以下,在GaP中小至1.7%以下。另外,例如发现在In0.5Al0.5P中,当In混晶比z为0.45~0.5的范围时,相对于结晶生长温度的允许范围±5℃,相对膜厚变化率约为±5%。在本实施方式中,结晶生长时的温度变动的允许范围设为,相对于设定温度,为±5℃以内。
图3的(a)是涉及比较例的光半导体元件的模式截面图,图3的(b)是分布反射器的局部模式侧面图。
设DBR140中的由AlxGa1-xAs构成的第1层152的厚度TT1为4分之1波长,由Inz(GaAl)1-zP构成的第2层154的厚度TT2为4分之1波长。比较例的第2层154的厚度TT2比第1实施方式的第2层54的膜厚T2大。因此,比较例中,由相对膜厚变化率×TT2表示的第2层154的厚度变动的绝对值也比第1实施方式的第2层54的相对膜厚变化率×T2的厚度变动的绝对值大。
图4是表示比较例的不同批次芯片光输出的平均值的图。
纵轴是芯片光输出(实测值)的平均值的相对值,横轴是结晶生长批次编号。根据结晶生长温度的变动,DBR膜厚分布的变动范围变大。因此,每批次的DBR的相对反射率的变动范围变大,芯片光输出的相对值在0.75~1.15之间较大地变动。
与此相对,在第1实施方式中,对应于第2层54的厚度T2比4分之1波长小的量,使第1层52的厚度T1比4分之1波长大,相位变化量(α12)保持在180°。即使第1层52的厚度T1为4分之1波长以上,也由于其相对膜厚变化率小至2.5%以下,所以也能够与比较例相比,使作为DBR整体的相对膜厚变化率降低。因此,在第1实施方式中,相对于结晶生长温度的变动允许范围,DBR的相对反射率的变动得到降低,批次间的光输出的变动得到降低。
例如,若使第1层52为Al0.2Ga0.8As,则折射率n1在770nm下约为3.55,媒质内波长约为54.2nm。另外,若使第2层54为In0.5Al0.5P,则折射率n2在770nm下约为3.12,媒质内波长约为61.7nm。若DBR由这种层构成,则能够成为n1>n2。例如,当使第2层54的厚度T2为56.1nm(相当于α2=82°)时,第1层52的厚度T1为59nm(相当于α1=98°)。使DBR的1对的相位变化为180°,可提高反射率。
另外,相位变化量α2例如也能够根据第2层54而为30°以上且小于90°。若相位变化量α2过小,则相对于波长的DBR反射特性会恶化,所以设相位变化量α2的下限为例如30°。
图5是表示相对于结晶生长温度变动的InzGa1-zP的相对膜厚变化率依赖性的模拟图。
在In混晶比z从0.5减少至0.42的同时,相对膜厚变化率从4%降低至2.8%。即,In混晶比z越小,则越能降低构成DBR的第1层52中、结晶生长温度变动的允许范围(设定温度±5℃)内的相对膜厚变化率。
图6是表示InzAl1-zP的相对膜厚变化率相对于结晶生长温度变动的依赖性的模拟图。
在In混晶比z从0.5减少至0.42的同时,相对膜厚变化率从5%降低至3.3%。即,In混晶比z越小,则越能降低构成DBR的第1层52中、结晶生长温度变动的允许范围(设定温度±5℃)内的相对膜厚变化率。另外,第2层54在图5中为InzGa1-zP、在图6中为InzAl1-zP。另外,即使第2层54为Inz(AlyGa1-y)1-zP,也成为与图5和图6中基本一样的相对膜厚变化率的变动范围。
图7是表示DBR相对反射率相对于InzAl1-zP的In混晶比z的依赖性的模拟图。
纵轴为DBR相对反射率(%),横轴为In混晶比z。设相对反射率在In混晶比z=0.50时为100%。随着In混晶比z减少(横轴右方向),DBR相对反射率逐渐减少,在z=0.45下降至约93%。即,当固定第1层(AlGaAs)52的混晶比、使第2层54的InzAl1-zP的In混晶比z发生变化时,In混晶比z越小,则DBR的相对反射率越低。
图8的(a)是第2实施方式中z=0.50附近的DBR相对反射率的模拟图,图8的(b)是表示第2实施方式中z=0.45附近的DBR相对反射率的模拟图。
纵轴是DBR相对反射率(%),横轴是In混晶比z。设相对反射率在z=0.50时为100%。设第1层52包含AlxGa1-xAs,第2层54包含InzAl1-zP。另外,设第1层52的相位α1由式(1)表示,第2层54的相位α2由式(2)表示。另外,与图2中一样,相对于结晶生长温度的变动范围±5℃,In组分比z的变动率约为±5%。
图8的(a)中,若设In混晶比z的设定值为0.5,则在结晶生长温度的变动范围中,In混晶比z在0.475至0.525的范围下变动。此时,相对反射率为96~104%(变动范围为8%)。另一方面,图8的(b)中,若设In混晶比z的设定值为0.45,则在结晶生长温度的变动范围中,In混晶比z在0.4275至0.4725的范围下变动。此时,预测相对反射率为90.0~95.5%(变动范围小至5.5%)。但是,若设z<0.45,则相对于GaAs基板,晶格不匹配率变高,所以设z≥0.45。
另外,设z≤0.525。即,随着使In组分比z从0.5下降至0.45,可减小相对反射率的变动范围,可降低晶片面内的发光输出变动幅度。
根据本实施方式,提供一种光半导体元件,在结晶生长温度的变动允许范围中,降低晶片面内的光输出的变动,结果,降低批次间的光输出的变动。本实施方式的光半导体元件被广泛地用于能够在将输入输出电绝缘的状态下传输信号的光电耦合器或光继电器中。
虽然说明了本发明的几个实施方式,但这些实施方式仅作为示例提示,不意图限定发明的范围。这些新的实施方式也能够以其他各种方式实施,在不脱离发明的主旨的范围下,可进行各种省略、替换、变更。这些实施方式或其变形也包含在发明的范围或主旨中,同时,也包含在权利要求书所记载的发明和与其等价的范围中。

Claims (5)

1.一种光半导体元件,其中,具备:
基板;
具有AlGaAs多量子阱层的发光层;和
设置在所述基板与所述发光层之间的分布布拉格反射器,该分布布拉格反射器周期性地层叠了第1层与第2层的对,所述第1层包含AlxGa1-xAs,所述第2层包含Inz(AlyGa1-y)1-zP,
所述第1层的折射率n1比所述第2层的折射率n2高,
以所述分布布拉格反射器的反射率的波长分布中的频带的中心波长为λ0,所述第1层具有比λ0/(4n1)大的厚度,
所述第2层具有比λ0/(4n2)小的厚度。
2.如权利要求1所述的光半导体元件,其中,
所述中心波长为700nm以上。
3.如权利要求1或2所述的光半导体元件,其中,
所述第2层的In混晶比z为0.45≤z≤0.525。
4.如权利要求1或2所述的光半导体元件,其中,
所述基板包含GaAs。
5.如权利要求3所述的光半导体元件,其中,
所述基板包含GaAs。
CN202010145989.0A 2019-08-27 2020-03-05 光半导体元件 Pending CN112447888A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019154590 2019-08-27
JP2019-154590 2019-08-27
JP2020011009 2020-01-27
JP2020-011009 2020-01-27
JP2020-017199 2020-02-04
JP2020017199A JP2021114594A (ja) 2019-08-27 2020-02-04 光半導体素子

Publications (1)

Publication Number Publication Date
CN112447888A true CN112447888A (zh) 2021-03-05

Family

ID=74681467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010145989.0A Pending CN112447888A (zh) 2019-08-27 2020-03-05 光半导体元件

Country Status (2)

Country Link
US (1) US11114822B2 (zh)
CN (1) CN112447888A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244749A (en) * 1992-08-03 1993-09-14 At&T Bell Laboratories Article comprising an epitaxial multilayer mirror
JPH05283808A (ja) * 1992-02-18 1993-10-29 Eastman Kodak Co 低抵抗のブラッグ反射層を備えた表面発光レーザ
JPH07226535A (ja) * 1994-02-09 1995-08-22 Omron Corp 半導体発光素子、光学検知装置、光学的情報検知装置、投光器及び光ファイバーモジュール
JP2003101141A (ja) * 2001-07-09 2003-04-04 Nichia Chem Ind Ltd 多層膜反射層およびそれを用いた窒化ガリウム系発光素子
US20030086467A1 (en) * 2001-09-27 2003-05-08 Prasanta Modak DBR comprising GaP, and use thereof in a semiconductor resonant cavity device
CN1825642A (zh) * 2005-02-25 2006-08-30 日立电线株式会社 发光二极管及其制造方法
CN101478025A (zh) * 2009-01-22 2009-07-08 厦门大学 大功率半导体微腔发光二极管
US20120235191A1 (en) * 2011-03-18 2012-09-20 Kabushiki Kaisha Toshiba Semiconductor light emitting device and photocoupler

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104240A (ja) 1996-06-17 1998-01-06 Furukawa Electric Co Ltd:The 半導体光素子、ウエハ及びその製造方法
JP2006270073A (ja) 2005-02-25 2006-10-05 Hitachi Cable Ltd 発光ダイオード及びその製造方法
CN101454954B (zh) * 2006-03-07 2012-04-11 玛丽·K·勃伦纳 红光激光器
US7903711B1 (en) * 2009-11-13 2011-03-08 Coherent, Inc. Separate confinement heterostructure with asymmetric structure and composition
JP5087672B2 (ja) * 2010-12-13 2012-12-05 株式会社東芝 半導体発光素子
JP2014120695A (ja) 2012-12-19 2014-06-30 Rohm Co Ltd 半導体発光素子
JP2016129189A (ja) 2015-01-09 2016-07-14 信越半導体株式会社 赤外発光素子
JP2018050070A (ja) 2017-11-21 2018-03-29 ローム株式会社 半導体発光素子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283808A (ja) * 1992-02-18 1993-10-29 Eastman Kodak Co 低抵抗のブラッグ反射層を備えた表面発光レーザ
US5244749A (en) * 1992-08-03 1993-09-14 At&T Bell Laboratories Article comprising an epitaxial multilayer mirror
JPH07226535A (ja) * 1994-02-09 1995-08-22 Omron Corp 半導体発光素子、光学検知装置、光学的情報検知装置、投光器及び光ファイバーモジュール
JP2003101141A (ja) * 2001-07-09 2003-04-04 Nichia Chem Ind Ltd 多層膜反射層およびそれを用いた窒化ガリウム系発光素子
US20030086467A1 (en) * 2001-09-27 2003-05-08 Prasanta Modak DBR comprising GaP, and use thereof in a semiconductor resonant cavity device
CN1825642A (zh) * 2005-02-25 2006-08-30 日立电线株式会社 发光二极管及其制造方法
CN101478025A (zh) * 2009-01-22 2009-07-08 厦门大学 大功率半导体微腔发光二极管
US20120235191A1 (en) * 2011-03-18 2012-09-20 Kabushiki Kaisha Toshiba Semiconductor light emitting device and photocoupler

Also Published As

Publication number Publication date
US20210066888A1 (en) 2021-03-04
US11114822B2 (en) 2021-09-07

Similar Documents

Publication Publication Date Title
JP5175918B2 (ja) 半導体発光素子
US20080137701A1 (en) Gallium Nitride Based Semiconductor Device with Reduced Stress Electron Blocking Layer
US9847449B2 (en) Nitride semiconductor light-emitting device with periodic gain active layers
US6548824B2 (en) Semiconductor light emitting device for stably obtaining peak wave length of emission spectrum
JP2021170686A (ja) 垂直共振器型発光素子及び垂直共振器型発光素子の製造方法
JP2011238852A (ja) 面発光レーザ素子およびその製造方法
CN109994582B (zh) 一种降低GaAs基外延片翘曲度的DBR结构
US20050190807A1 (en) Semiconductor laser
US20090103583A1 (en) Surface emitting laser and manufacturing method thereof
CN114175281A (zh) 发光元件和发光元件的制造方法
US20150139261A1 (en) Semiconductor device having a semiconductor dbr layer
CN112447888A (zh) 光半导体元件
JPH11261170A (ja) 半導体レーザおよび半導体発光素子
JP2017204579A (ja) 垂直共振器型発光素子及び垂直共振器型発光素子の製造方法
US8331411B2 (en) Edge-emitting semiconductor laser
US7974323B2 (en) Semiconductor laser
US8355421B2 (en) Vertical-cavity surface emitting laser
KR20050034970A (ko) 수직 공진기형 발광소자 및 제조방법
WO2012017505A1 (ja) 半導体発光素子
JP2010034221A (ja) 端面発光型半導体レーザおよびその製造方法
JP5728411B2 (ja) 半導体発光素子
JP2021114594A (ja) 光半導体素子
Shchukin et al. A high-power 975 nm tilted cavity laser with a 0.13 nm K− 1 thermal shift of the lasing wavelength
JP2010165723A (ja) 面発光レーザの製造方法
CN111446621A (zh) 半导体激光元件及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination